Measures of centrality Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Background

Centrality measures

Degree centrality

Betweenness Eigenvalue centrali

Eigenvalue centralit Hubs and Authoritie

Outline

Background

Centrality measures

Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities

References

Measures of centrality

Background

Centrality measures

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authoriti

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might.
 - handle a relatively large amount of the network's traffic (e.g., cars, information);
 - bridge two or more distinct groups (e.g., liason, interpreter);
 - 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
 - So how do we quantify such a slippery concept as
- Importan
- We generate ad hoc, reasonable measures, and examine their utility...

Measures of centrality

Background

Centrality measures

Degree centrality

Betweenness
Eigenvalue centrality

References

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might:

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Eigenvalue centrali

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might:
 - handle a relatively large amount of the network's traffic (e.g., cars, information);

Measures of centrality

Background

Centrality

Degree centrality
Closeness central

Betweenness Eigenvalue centrali

Hubs and Autr

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might:
 - handle a relatively large amount of the network's traffic (e.g., cars, information);
 - 2. bridge two or more distinct groups (e.g., liason, interpreter);

Measures of centrality

Background

measures

Degree centrality Closeness centrali

Betweenness Eigenvalue centralit

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might:
 - handle a relatively large amount of the network's traffic (e.g., cars, information);
 - bridge two or more distinct groups (e.g., liason, interpreter);
 - 3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').

Measures of centrality

Background

measures

Closeness centralit
Betweenness
Figenvalue centralit

Hubs and Au

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might:
 - handle a relatively large amount of the network's traffic (e.g., cars, information);
 - bridge two or more distinct groups (e.g., liason, interpreter);
 - be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
- So how do we quantify such a slippery concept as importance?

Measures of centrality

Background

measures

Degree centrality Closeness centrali

Eigenvalue centralit

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might:
 - handle a relatively large amount of the network's traffic (e.g., cars, information);
 - bridge two or more distinct groups (e.g., liason, interpreter);
 - be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').
- So how do we quantify such a slippery concept as importance?
- We generate ad hoc, reasonable measures, and examine their utility...

Measures of centrality

Background

measures

Degree centrality

Cioseness centrality Betweenness Eigenvalue centrality

- One possible reflection of importance is centrality.
 - sense) in the middle of a network are important for the network's function
- Idea of centrality comes from social networks literature ^[7].
- ▶ Many flavors of centrality.
 - Many are topological and quasi-dynamical,
 Some are based on dynamics (e.g., traffic).
- We will define and examine a few.
- (Later: see centrality useful in identifying communities in networks.)

Measures of centrality

Background

measures

Degree centrality Closeness centra

Betweenness Eigenvalue centrality

Hubs and Authoritie

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.

Measures of centrality

Background

measures

Closeness central

Eigenvalue centrality

Reference

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
- ► Idea of centrality comes from social networks literature [7].

Measures of centrality

Background

measures

Degree centrality

Closeness centrali

Eigenvalue centrality
Hubs and Authorities

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
- Idea of centrality comes from social networks literature [7].
- Many flavors of centrality...
 - 1. Many are topological and quasi-dynamical;
 - 2. Some are based on dynamics (e.g., traffic).

Measures of centrality

Background

measures

Closeness centrality

Eigenvalue centrality

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
- ▶ Idea of centrality comes from social networks literature [7].
- Many flavors of centrality...
 - 1. Many are topological and quasi-dynamical;
 - 2. Some are based on dynamics (e.g., traffic).
- We will define and examine a few...

Measures of centrality

Background

measures

Closeness centrality

Eigenvalue centrality

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
- ► Idea of centrality comes from social networks literature ^[7].
- Many flavors of centrality...
 - 1. Many are topological and quasi-dynamical;
 - 2. Some are based on dynamics (e.g., traffic).
- We will define and examine a few...
- ► (Later: see centrality useful in identifying communities in networks.)

Measures of centrality

Background

Centrality

Closeness centrality

Eigenvalue centralit

Outline

Background

Centrality measures Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubsward Authorities

References

Measures of centrality

Background

Centrality measures

Degree centrality

Closeness centrality

Eigenvalue centrality

Degree centrality

- Naively estimate importance by node degree. [7]
- ▶ Doh: assumes linearity (If node // has twice as many friends as node /, it's twice as important.)
- Don: doesn't take in any non-local information

Measures of centrality

Background

measures

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authoritie

Degree centrality

- Naively estimate importance by node degree. [7]
- Doh: assumes linearity (If node i has twice as many friends as node j, it's twice as important.)
- Den: doesn't take in any non-local information

Measures of centrality

Background

measures

Degree centrality

Betweenness Eigenvalue centra

Hubs and Authoritie

Degree centrality

- Naively estimate importance by node degree. [7]
- Doh: assumes linearity (If node i has twice as many friends as node j, it's twice as important.)
- Doh: doesn't take in any non-local information.

Measures of centrality

Background

measures

Degree centrality

Betweenness Eigenvalue centra

Outline

Background

Centrality measures

Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubsand Authorities

References

Measures of centrality

Background

Centrality measures

Degree centrality
Closeness centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

Idea: Nodes are more central if they can reach other nodes 'easily.' Measures of centrality

Background

Centrality

Degree centralit

Closeness centrality

Eigenvalue centrality

References

Closeness Centrality

(distance fr

ande) to 1 (cinals hub

the exact values of this measure tells

▶ General problem with simple centrality measures:

they exactly mean?

Perhaps, at least, we obtain an ordering of nodes in

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.

Measures of centrality

Background

Centrality

Degree centralit

Closeness centrality

Eigenvalue centrality

References

Hange is 0 (no mends) to 1 (single nub)
 Unclear what the exact values of this measure

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- Define Closeness Centrality for node i as

$$\frac{N-1}{\sum_{j,j\neq i} (\text{distance from } i \text{ to } j)}.$$

Measures of centrality

Background

Centrality measures

Degree centrality

Closeness centrality Betweenness

Hubs and Authoriti

References

20 € 8 of 28

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- Define Closeness Centrality for node i as

$$\frac{N-1}{\sum_{j,j\neq i} (\text{distance from } i \text{ to } j).}$$

► Range is 0 (no friends) to 1 (single hub).

Measures of centrality

Background

measures

Degree centrality

Closeness centrality Betweenness

Hubs and Author

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- ▶ Define Closeness Centrality for node *i* as

$$\frac{N-1}{\sum_{j,j\neq i} (\text{distance from } i \text{ to } j).}$$

- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.

Measures of centrality

Background

measures

Degree centrality

Degree centrality
Closeness centrality

Betweenness Eigenvalue centrality

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- ▶ Define Closeness Centrality for node *i* as

$$\frac{N-1}{\sum_{j,j\neq i} (\text{distance from } i \text{ to } j).}$$

- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?

Measures of centrality

Background

measures

Degree centrality

Closeness centrality

Eigenvalue centralit

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- Define Closeness Centrality for node i as

$$\frac{N-1}{\sum_{j,j\neq i} (\text{distance from } i \text{ to } j).}$$

- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

Measures of centrality

Background

Centrality
measures
Degree centrality

Closeness centrality Betweenness

Eigenvalue centralii
Hubs and Authoritie

Photosynth (⊞).

Measures of centrality

Background

Centrality measures

Degree centrality

Closeness centrality
Betweenness

Eigenvalue centrality Hubs and Authorities

Outline

Background

Centrality measures

Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubsand Authorities

References

Measures of centrality

Background

Centrality measures

Degree centrality
Closeness centrality

Betweenness

Eigenvalue centrality

Deference

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes or a network disproportionately involves certain nodes then they are 'important' in terms of global cohesion
- For each node /, count how many shortest paths pass through *i*.
- In the case of ties, or divide counts between paths.
- ➤ Call requency of shortest paths passing through node *i* the betweenness of *i*, *B_i*.
- Note: Exclude shortest paths between i and othe nodes.
- Note: works for weighted and unweighted networks.

Measures of centrality

Background

Centralit

Degree centrality

Betweenness

Eigenvalue centrality

Hubs and Authorit

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- For each node i, count how many shortest paths in pass through i.
- ▶ In the case of ties, or divide counts between paths.
- ► Car requency of shortest paths passing through node *i* the betweenness of *i*, *B*_i.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.

Measures of centrality

Background

Central

Degree centrality

Betweenness

Eigenvalue centrality

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- ► For each node *i*, count how many shortest paths pass through *i*.

Call transpary of abortoet notice agesing throughput

▶ Note: Exclude shortest paths between *i* and other

▶ Note, works for weighted and unweighted networks

Measures of centrality

Background

Central

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- ► For each node *i*, count how many shortest paths pass through *i*.
- In the case of ties, or divide counts between paths.

Measures of centrality

Background

measures

Degree centrality
Closeness centrality

Betweenness Eigenvalue centrality

Hubs and Authoriti

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
- ▶ In the case of ties, or divide counts between paths.
- ► Call frequency of shortest paths passing through node *i* the betweenness of *i*, *B_i*.

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality

Betweenness Eigenvalue centrality

ridoo diid rid

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
- ▶ In the case of ties, or divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_i.
- Note: Exclude shortest paths between i and other nodes.
 - Note: works for weighted and unweighted networks

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- ► For each node *i*, count how many shortest paths pass through *i*.
- ▶ In the case of ties, or divide counts between paths.
- ► Call frequency of shortest paths passing through node *i* the betweenness of *i*, *B_i*.
- Note: Exclude shortest paths between *i* and other nodes.
- Note: works for weighted and unweighted networks.

- Consider a network with N nodes and m edges (possibly weighted).
- Computational goal: Find (⅓) shortest paths (⊞)
 - Maditionally use Floyd-Warshall (⊞) algorithm
- Computation time grows as O(N³)
- See also
 - Dijkstra's algorithm (H) for finding shortest path between two specific nodes.
 - 2. and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks:
 - $-O(mN+N^2\log N)$
 - Newman (2001) [4, 5] and Brandes (2001) [1]
 Sindependently derive equally fast algorithms that also compute betweenness
- ► Computation times grow as:
 - 1. O(mN) for unweighted graphs;
 - 2. and $O(mN + N^2 \log N)$ for weighted graphs

Background

Centrality

Degree centrality
Closeness centrality

Betweenness Figenvalue centrali

Hubs and Author

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.

tactitionally use Floyd-Warshall (H) algorithm

Computation time grows as $O(N^3)$

See also:

- Dijkstra's algorithm (

) for finding shortest path between two specific nodes,
- 2. and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks:

 $O(mN + N^2 \log N)$

lewman (2001) ^[4, 5] and Brandes (2001) ^[1] ndependently derive equally fast algorithms that als

Computation times grow as:

- 1. O(mN) for unweighted graphs:
- 2. and $O(mN + N^2 \log N)$ for weighted graphs

Measures of centrality

Background

Centrality measures

Degree centrality
Closeness centrali

Betweenness Figenvalue centra

Eigenvalue centrality

Hubs and Authorities

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.

Computation time grows as $O(N^3)$.

- Dijkstra's algorithm (⊞) for finding shortest path between two specific nodes
- 2. and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks:

 $O(mN + N^2 \log N)$

lewman (2001) ^[4, 5] and Brandes (2001) ^[1] adependently derive equally fast algorithms that als

Computation times grow as

- 1. O(mN) for unweighted graphs;
- 2. and $O(mN + N^2 \log N)$ for weighted graphs

Measures of centrality

Background

Centrality measures

Degree centrality

Betweenness

Eigenvalue centrality

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.
- ▶ Computation time grows as $O(N^3)$.

Se Se

- Dijkstra's algorithm (

) for finding shortest path between two specific nodes,
- 2. and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks:

 $O(mN + N^2 \log N)$

ewman (2001) [4,5] and Brandes (2001) [1] dependently derive equally fast algorithms that also

► Compi

- 1. O(mN) for unweighted graphs:
- 2. and $O(mN + N^2 \log N)$ for weighted graphs.

Measures of centrality

Background

neasures

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.
- ▶ Computation time grows as $O(N^3)$.
- See also:
 - Dijkstra's algorithm (⊞) for finding shortest path between two specific nodes,
 - 2. and Johnson's algorithm (⊞) w

Newman (2001) [4,5] and Brandes (2001) [1]

idently derive equally fast algorithms that also e betweenness.

- computation unles grow as
- 1. O(mN) for unweighted graphs;
- 2. and $O(mN + N^2 \log N)$ for weighted graphs.

Measures of centrality

Background

neasures

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.
- ▶ Computation time grows as $O(N^3)$.
- See also:
 - Dijkstra's algorithm (⊞) for finding shortest path between two specific nodes,
 - and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks: O(mN + N² log N).

ewman (2001) ^[4, 5] and Brandes (2001) ^[1]

ombutation times grow as:

- 1. O(mN) for unweighted graphs;
- 2. and $O(mN + N^2 \log N)$ for weighted graphs

Measures of centrality

Background

measures

Degree centrality
Closeness central

Betweenness

Eigenvalue centrality
Hubs and Authorities

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.
- ▶ Computation time grows as $O(N^3)$.
- See also:
 - Dijkstra's algorithm (⊞) for finding shortest path between two specific nodes,
 - and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks: O(mN + N² log N).
- Newman (2001) [4, 5] and Brandes (2001) [1] independently derive equally fast algorithms that also compute betweenness.

1. O(mN) for unweighted graphs;

2. and $O(mN + N^2 \log N)$ for weighted graphs

Measures of centrality

Background

measures

Degree centrality Closeness centrali

Betweenness Figenvalue centra

Hubs and Authoritie

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.
- ▶ Computation time grows as $O(N^3)$.
- See also:
 - Dijkstra's algorithm (⊞) for finding shortest path between two specific nodes,
 - and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks: O(mN + N² log N).
- Newman (2001) [4, 5] and Brandes (2001) [1] independently derive equally fast algorithms that also compute betweenness.
- Computation times grow as:

Background

measures

Degree centrality Closeness central

Eigenvalue centra

Hubs and Authoritie

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.
- ▶ Computation time grows as $O(N^3)$.
- See also:
 - Dijkstra's algorithm (⊞) for finding shortest path between two specific nodes,
 - and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks: O(mN + N² log N).
- Newman (2001) [4, 5] and Brandes (2001) [1] independently derive equally fast algorithms that also compute betweenness.
- Computation times grow as:
 - 1. O(mN) for unweighted graphs;

Background

Centrali

Degree centrality
Closeness centrality

Betweenness

Hubs and Authoritie

- Consider a network with N nodes and m edges (possibly weighted).
- ► Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- ► Traditionally use Floyd-Warshall (⊞) algorithm.
- ▶ Computation time grows as $O(N^3)$.
- See also:
 - Dijkstra's algorithm (⊞) for finding shortest path between two specific nodes,
 - and Johnson's algorithm (⊞) which outperforms Floyd-Warshall for sparse networks:
 O(mN + N² log N).
- Newman (2001) [4, 5] and Brandes (2001) [1] independently derive equally fast algorithms that also compute betweenness.
- Computation times grow as:
 - 1. O(mN) for unweighted graphs;
 - 2. and $O(mN + N^2 \log N)$ for weighted graphs.

Background

Centrality

Degree centrality

Betweenness Figenvalue central

Hubs and Authori

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label the being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - Exclude any nodes already assigned a distance.
 - 5. Increment distance d by 1
 - 6. Label newly reached nodes as being at distance d.
 - Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i's shortest path structure).
- ▶ Runs in O(m) time and gives N 1 shortest paths
- ➤ Find all shortest paths in O(mN) time
- ▶ Much, much better than naive estimate of O(mN²).

Measures of centrality

Background

Centrality measures

Degree centrality
Closeness centrality

Betweenness Eigenvalue centrali

Tidos and Addi

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself
 - Create a list of all of i's neighbors and label ther being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - Exclude any nodes already assigned a distance.
 - 5. Increment distance d by 1.
 - 6. Label newly reached nodes as being at distance d.
 - 7. Repeat steps 3 through 6 until all nodes are visited
- from i (former are 'predecessors' with respect to i's shortest path structure).
- ▶ Runs in O(m) time and gives N 1 shortest paths
- ➤ Find all shortest paths in O(mN) time
- ► Much much better than naive estimate of O(mN²).

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrali

Betweenness Eigenvalue centralii

Hubs and Authorit

- Consider unweighted networks.
- Use breadth-first search:
 - Greate a list of all of /s neighbors and labe
 - being at a distance d=1.
 - 3. Go through list of most recently visited nodes and
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance d by 1
 - 6. Label newly reached nodes as being at distance d.
 - 7. Repeat steps 3 through 6 until all nodes are visited.
 - from i (former are predecessors with respect to i's
- ▶ Runs in O(m) time and gives N-1 shortest paths.
- ➤ Find all shortest paths in O(mN) time
- ➤ Much, much better than naive estimate of O(mN²)

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality

Closeness centrali

Eigenvalue cent

Hubs and Authorities

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.

 Go through list of most recently visited nodes and find all of thoir paidblags.

4. Exclude any nodes already assigned a distance.

6. Label newly reached nodes as being at distance d.

Secord which nodes link to which nodes moving out

Shortest path Structure).

► Find all shortest paths in O(mN) time

Measures of

Eigenvalue centrality

centrality

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.

Measures of centrality

Background

Centralit

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.

Measures of centrality

Background

Centrali

Degree centrality
Closeness centrali

Eigenvalue centrality

Hubs and Authoritie

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.

Measures of centrality

Background

Centrali

Degree centrality
Closeness centrali

Eigenvalue centrality

Hubs and Authorities

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance d by 1.

Measures of centrality

Background

Centrality

Degree centrality

Eigenvalue centrality

Hubs and Authoritie

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance d by 1.
 - 6. Label newly reached nodes as being at distance d.

Measures of centrality

Background

Centrality

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authoritie

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance d by 1.
 - 6. Label newly reached nodes as being at distance *d*.
 - 7. Repeat steps 3 through 6 until all nodes are visited.

Measures of centrality

Background

Centralit

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authoritie

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance *d* by 1.
 - 6. Label newly reached nodes as being at distance *d*.
 - 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from *i* (former are 'predecessors' with respect to *i*'s shortest path structure).

Measures of centrality

Background

Centrality

Closeness centrality

Eigenvalue centrality

Reference

N St.

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance *d* by 1.
 - 6. Label newly reached nodes as being at distance *d*.
 - 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from *i* (former are 'predecessors' with respect to *i*'s shortest path structure).
- ▶ Runs in O(m) time and gives N-1 shortest paths.

Measures of centrality

Background

Centrality

Closeness centralit

Eigenvalue centrality

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance *d* by 1.
 - 6. Label newly reached nodes as being at distance *d*.
 - 7. Repeat steps 3 through 6 until all nodes are visited.
- From *i* (former are 'predecessors' with respect to *i*'s shortest path structure).
- ▶ Runs in O(m) time and gives N-1 shortest paths.
- ► Find all shortest paths in O(mN) time

Measures of centrality

Background

Centrality

Closeness centralit Betweenness

Eigenvalue centrali

- Consider unweighted networks.
- Use breadth-first search:
 - 1. Start at node i, giving it a distance d = 0 from itself.
 - 2. Create a list of all of i's neighbors and label them being at a distance d = 1.
 - Go through list of most recently visited nodes and find all of their neighbors.
 - 4. Exclude any nodes already assigned a distance.
 - 5. Increment distance d by 1.
 - 6. Label newly reached nodes as being at distance *d*.
 - 7. Repeat steps 3 through 6 until all nodes are visited.
- Record which nodes link to which nodes moving out from *i* (former are 'predecessors' with respect to *i*'s shortest path structure).
- ▶ Runs in O(m) time and gives N-1 shortest paths.
- ► Find all shortest paths in O(mN) time
- Much, much better than naive estimate of $O(mN^2)$.

Measures of centrality

Background

Centrality

Degree centrality

Betweenness Eigenvalue centrali

Tiubs and Auti

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 3. Find shortest paths to all other N 1 nodes up
- 4. Record # equal shortest paths reaching each node.
- Move through nodes according to their distance from it starting with the furthest.
- 6. Travel back towards *i* from each starting node *j*, along shortest path(s), adding 1 to every value of *c_i*, at seath node along the way.
 - Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
- 8. Exclude starting node / and / from increment.
- 9. Repeat steps 2-8 for every node in

in betweenness as $B_i = \sum_{i=1}^{N} c_{ii}$.

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Eigenvalue centralit

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 2. Select one node i.
- Find shortest paths to all other N = 1 nodes using property first coarses
- 4. Record # equal shortest paths reaching each node
- Move through nodes according to their distance from it starting with the furthest.
- 6. Travel back towards *i* from each starting node *j*, along shortest path(s), adding 1 to every value of c_{ij} along the way
 - Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
- 8. Exclude starting node *j* and *i* from increment.
- 9. Repeat sleps 2-8 for every node.)

N S

20 € 14 of 28

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Eigenvalue central

Hubs and Authorities

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 2. Select one node i.
- Find shortest paths to all other N 1 nodes using breadth-first search.

Measures of centrality

Background

Centrali

Degree centrality

Betweenness

Hubs and Authoritie

Reference

Travel back towards i from each starting node

Whenever more than one possibility exists, apportion according to total number of short paths coming

Exclude starting node / and / from increment.

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 2. Select one node i.
- Find shortest paths to all other N 1 nodes using breadth-first search.
- 4. Record # equal shortest paths reaching each node.

6. Travel back towards i from each starting node

according to total number of short paths

Evaluate discretize seeds i and i from

Exclude starting node / and / from increment.

Measures of centrality

Background

Centralit

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 2. Select one node i.
- Find shortest paths to all other N 1 nodes using breadth-first search.
- 4. Record # equal shortest paths reaching each node.
- 5. Move through nodes according to their distance from *i*, starting with the furthest.
- 6. Travel back towards i from each starting node j

A catch-sode along the way.

Whenever more than one possibility exists, apportion

according to total number of short paths coming

through predecessors

Exclude starting node j and i from increment.

9. Repeal sleps 2-8 for every node /

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 2. Select one node i.
- Find shortest paths to all other N 1 nodes using breadth-first search.
- 4. Record # equal shortest paths reaching each node.
- 5. Move through nodes according to their distance from *i*, starting with the furthest.
- 6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.

according to total number of short paths coming

mileugh predecessors.

9. Repe

betweenness a

Measures of centrality

Background

Centrality

Degree centrality

Betweenness Figenvalue centralii

Hubs and Authorities

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 2. Select one node i.
- Find shortest paths to all other N 1 nodes using breadth-first search.
- 4. Record # equal shortest paths reaching each node.
- 5. Move through nodes according to their distance from *i*, starting with the furthest.
- 6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
- 7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Hubs and Authoritie

- 1. Set all nodes to have a value $c_{ij} = 0$, j = 1, ..., N (c for count).
- 2. Select one node i.
- Find shortest paths to all other N 1 nodes using breadth-first search.
- 4. Record # equal shortest paths reaching each node.
- 5. Move through nodes according to their distance from *i*, starting with the furthest.
- 6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
- 7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
- 8. Exclude starting node *j* and *i* from increment.

Measures of centrality

Background

Centrality measures

Degree centrality

Betweenness Eigenvalue centra

Hubs and Autho

- 2. Select one node i.
- Find shortest paths to all other N 1 nodes using breadth-first search.
- 4. Record # equal shortest paths reaching each node.
- 5. Move through nodes according to their distance from *i*, starting with the furthest.
- 6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i\ell}$ at each node ℓ along the way.
- 7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
- 8. Exclude starting node *j* and *i* from increment.
- 9. Repeat steps 2–8 for every node *i* and obtain betweenness as $B_j = \sum_{i=1}^{N} c_{ij}$.

Background

Centrality measures

Degree centrality

Betweenness Eigenvalue centra

Tiubs and Au

► For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.

Same algorithm for computing drainage area in rive

- For edge betweenness, use exact same algorithm but now
 - 1. *j* indexes edges,
 - 2. and we add one to each edge as we traverse it
- ▶ For both algorithms, computation time grows as

 For sparse networks with relatively small averages degree, we have a fairly digestible time growth of Measures of centrality

Background

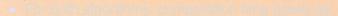
Centrali

Degree centrality

Betweenness

Hubs and Authorities

- For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm
 - 1. *j* indexes edges,
 - 2. and we add one to each edge as we traverse it.



Background

Central

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now

Measures of centrality

Background

Central

Degree centrality

Betweenness Eigenvalue centrality

- (

- For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 - 1. j indexes edges,

Measures of centrality

Background

measur

Degree centrality
Closeness centrality

Eigenvalue centrality

Deference

- For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 - 1. j indexes edges,
 - 2. and we add one to each edge as we traverse it.

Measures of centrality

Background

Central

Degree centrality
Closeness centrality

Eigenvalue centrality

Deference

- For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 - 1. j indexes edges,
 - and we add one to each edge as we traverse it.
- For both algorithms, computation time grows as

O(mN).

Measures of centrality

Background

Centrality

Degree centrality

Betweenness Eigenvalue centrality

Poforonco

- For a pure tree network, c_{ij} is the number of nodes beyond j from i's vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now
 - 1. j indexes edges,
 - and we add one to each edge as we traverse it.
- ► For both algorithms, computation time grows as

O(mN).

 For sparse networks with relatively small average degree, we have a fairly digestible time growth of

 $O(N^2)$

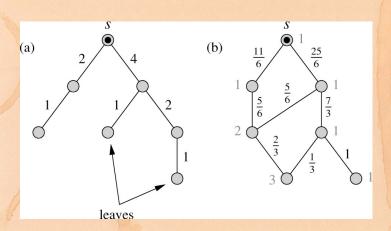
Measures of centrality

Background

Centrality

Closeness centralit Betweenness

Eigenvalue centrality
Hubs and Authorities



Measures of centrality

Background

Centrality measures

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

Outline

Background

Centrality measures

Degree centrality

Closeness centralit

Betweennes

Eigenvalue centrality

Hubsand Authorities

References

Measures of centrality

Background

Centrality measures

Degree centrality
Closeness centrality

Eigenvalue centrality

- Define x_i as the 'importance' of node i
- Idea: x, depends (somehow) on x, if y is a neighbor of i.
- Recursive: importance is transmitted through network.
- Simplest possibility is a linear combination

$$x_i \propto \sum a_{ji} x_j$$

 Assume further that constant of proportionality, c, is independent of i.

Above give

 $\mathbf{c}\mathbf{A}^{\mathsf{T}}\mathbf{X}$ or

$$\mathbf{A}^{\mathrm{T}}\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$$

- Eigenvalue equation based on adjacency matrix.
- eigenvalue [7] Lose sight of original assumption's non-physicality.

Measures of centrality

Background

Centrality

Degree centrality
Closeness centra

Eigenvalue centrality
Hubs and Authorities

- ▶ Define *x_i* as the 'importance' of node *i*.

$$x_i \propto \sum a_{ji} x_j$$

$$\mathbf{A}^{\mathrm{T}}\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$$

Measures of centrality

Eigenvalue centrality

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- ► Recursive: importance is transmitted through
- Simplest possibility is a linear combination

ssume further that constant of proportionality, c, is

or .

$$\mathbf{A}^{\mathrm{T}}\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$$

Eigenvalue equation based on adjacency mains

non-physicality

Measures of centrality

Background

Centrality

Degree centrality
Closeness central

Eigenvalue centrality
Hubs and Authorities

- ▶ Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.

Measures of centrality

Background

Centrality

Degree centrality
Closeness central

Eigenvalue centrality

Reference:

non-physicality.

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

or $\mathbf{A}^{\mathrm{T}}\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$

non-physicality.

Measures of centrality

Background

Centrality

Degree centrality Closeness central

Eigenvalue centrality

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

► Assume further that constant of proportionality, *c*, is independent of *i*.

or
$$\left| \mathbf{A}^{\mathrm{T}} \vec{x} = c^{-1} \vec{x} = \lambda \vec{x} \right|$$

non-physicality. Lose sight of original assumption's

Measures of centrality

Background

measures

Degree centrality Closeness centrali

Eigenvalue centrality
Hubs and Authorities

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x} = c\mathbf{A}^{\mathrm{T}}\vec{x}$

eigenvalue (// Lose sight of original assumption's non-physicality.

Measures of centrality

Background

measures

Degree centrality Closeness centrali

Eigenvalue centrality

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- ► Assume further that constant of proportionality, *c*, is independent of *i*.
- Above gives $\vec{x} = c\mathbf{A}^T\vec{x}$ or $\mathbf{A}^T\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$.

non-physicality.

Measures of centrality

Background

Centrality

Degree centrality Closeness centrali

Eigenvalue centrality

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- ► Assume further that constant of proportionality, *c*, is independent of *i*.
- Above gives $\vec{x} = c\mathbf{A}^T\vec{x}$ or $\mathbf{A}^T\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$.
- Eigenvalue equation based on adjacency matrix...

bigernable. [7] Lose sight of original assumption's non-physicality.

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality
Betweenness

Eigenvalue centrality
Hubs and Authorities

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, *c*, is independent of *i*.
- Above gives $\vec{x} = c\mathbf{A}^T\vec{x}$ or $\mathbf{A}^T\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. [7]

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrali

Eigenvalue centrality
Hubs and Authorities

- Define x_i as the 'importance' of node i.
- ► Idea: x_i depends (somehow) on x_j if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$x_i \propto \sum_j a_{ji} x_j$$

- Assume further that constant of proportionality, *c*, is independent of *i*.
- Above gives $\vec{x} = c\mathbf{A}^T\vec{x}$ or $\mathbf{A}^T\vec{x} = c^{-1}\vec{x} = \lambda\vec{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. Lose sight of original assumption's non-physicality.

Measures of centrality

Background

measures

Degree centrality
Closeness centrality
Betweenness

Eigenvalue centrality
Hubs and Authorities

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector
- ► We, the people, would like
 - 1. A unique solution
 - 2. λ to be real
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something..
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative...)
 - 7. λ to equal 1 would be nice...
 - 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption

Measures of centrality

Background

Centrality

Degree centrality
Closeness central

Eigenvalue centrality

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like
 - 1. A unique solution
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something..
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean? (maybe only ordering is informative...)
 - 7. λ to equal 1 would be nice...
 - 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption

Measures of centrality

Background

measures

Degree centrality
Closeness central
Betweenness

Eigenvalue centrality
Hubs and Authorities

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - λ 2. λ to be real
 - 3 Entries of \vec{x} to be real
 - 4 Entries of \vec{v} to be non-neg
 - F. Vita notucilly many comothing
 - 6 Values of v. to mean comething
 - (what does an observation that $x_0 = b$)
 - 7 λ to equal 1 would be nice
 - 8. Ordering of x entries to be robust to reasonable

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. >
 - 3. Entrine of \vec{v} to be read
 - 4 Entries of V to be non
 - T. Lillings of A to be from negative
 - C. Making of the many name thin
 - 6. Values of x, to mean something

 - 7. A to equal 1 would be nice
 - 8. Ordering of x entries to be robust to reasonable

Measures of centrality

Background

measu

Degree centrality
Closeness central

Eigenvalue centrality

ridos and Admond

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something
 - 6. Values of x, to mean something

- 7 A to equal 1 would be nice
- 8. Ordering of x entries to be robust to reasonable

Measures of centrality

Background

Centrali

Degree centrality
Closeness central

Eigenvalue centrality

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.

6

6

7.

8

Measures of centrality

Background

Central

Closeness centrality

Eigenvalue centrality

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.

6

1

8. Orderin

Measures of centrality

Background

measur

Degree centrality
Closeness centrali

Eigenvalue centrality
Hubs and Authorities

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something...

Measures of centrality

Background

measur

Closeness centrality

Eigenvalue centrality

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something...
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative...)

Measures of centrality

Background

measures

Degree centrality Closeness centrali

Eigenvalue centrality
Hubs and Authorities

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{x} = \lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something...
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative...)
 - 7. λ to equal 1 would be nice...

Measures of centrality

Background

measures

Degree centrality
Closeness centrality

Eigenvalue centrality
Hubs and Authorities

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something...
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative...)
 - 7. λ to equal 1 would be nice...
 - 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption

Measures of centrality

Background

measures

Degree centrality
Closeness centralit

Eigenvalue centrality
Hubs and Authorities

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something... (maybe too much)
 - 6. Values of x_i to mean something
 (what does an observation that x₃ = 5x₇ mean?)
 (maybe only ordering is informative...)
 (maybe too much)
 - 7. λ to equal 1 would be nice... (maybe too much)
 - 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much)

Measures of centrality

Background

Centrality

Degree centrality Closeness centrali

Eigenvalue centrality

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - 1. A unique solution.
 - 2. λ to be real.
 - 3. Entries of \vec{x} to be real.
 - 4. Entries of \vec{x} to be non-negative.
 - 5. λ to actually mean something... (maybe too much)
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative...) (maybe too much)
 - 7. λ to equal 1 would be nice... (maybe too much)
 - 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much)
- We rummage around in bag of tricks and pull out the Perron-Frobenius theorem...

Measures of centrality

Background

Centrality

Degree centrality Closeness central

Eigenvalue centrality

- So... solve $\mathbf{A}^{\mathrm{T}}\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$.
- But which eigenvalue and eigenvector?
- ▶ We, the people, would like:
 - A unique solution. ✓
 - 2. λ to be real. \checkmark
 - 3. Entries of \vec{x} to be real. \checkmark
 - 4. Entries of \vec{x} to be non-negative. \checkmark
 - 5. λ to actually mean something... (maybe too much)
 - 6. Values of x_i to mean something (what does an observation that $x_3 = 5x_7$ mean?) (maybe only ordering is informative...) (maybe too much)
 - 7. λ to equal 1 would be nice... (maybe too much)
 - 8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much)
- We rummage around in bag of tricks and pull out the Perron-Frobenius theorem...

Measures of centrality

Background

measures

Closeness centrality

Eigenvalue centrality
Hubs and Authorities

If an $N \times N$ matrix A has non-negative entries then:

A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i=2,\ldots$

 A₁ corresponds to left and right 1-d eigenspaces fo which we can choose a basis vector that has

/ non-negative entries.

3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A

 $\min \sum a_{ij} \le \lambda_1 \le \max_i \sum a_{ij}$

All other eldervectors have one or more negative

entries.

5. Note: Proof is relatively short for symmetric matrices that are structly positive [6] and just non-negative [3]

Measures of centrality

Background

Centrality

Degree centrality

Closeness central Betweenness

Eigenvalue centrality

If an $N \times N$ matrix A has non-negative entries then:

1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i = 2, \dots, N$.

Measures of centrality

Background

Centralit

Degree centrality

Closeness centrality Betweenness

Eigenvalue centrality
Hubs and Authorities

If an $N \times N$ matrix A has non-negative entries then:

- 1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for i = 2, ..., N.
- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.

Measures of centrality

Background

Central

Degree centrality

Closeness centralit Betweenness

Eigenvalue centrality
Hubs and Authorities

If an $N \times N$ matrix A has non-negative entries then:

- 1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for i = 2, ..., N.
- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
- 3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

$$\min_{j} \sum_{j=1}^{N} a_{ij} \leq \lambda_1 \leq \max_{i} \sum_{j=1}^{N} a_{ij}$$

Measures of centrality

Background

Centralit

Degree centrality

Betweenness Figenvalue centrality

Eigenvalue centrality
Hubs and Authorities

If an $N \times N$ matrix A has non-negative entries then:

- 1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for i = 2, ..., N.
- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
- 3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

$$\min_{j} \sum_{j=1}^{N} a_{ij} \le \lambda_1 \le \max_{i} \sum_{j=1}^{N} a_{ij}$$

4. All other eigenvectors have one or more negative entries.

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality

Eigenvalue centrality

Perron-Frobenius theorem: (H)

If an $N \times N$ matrix A has non-negative entries then:

- 1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for $i = 2, \dots, N$.
- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
- 3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

$$\min_{j} \sum_{j=1}^{N} a_{ij} \le \lambda_1 \le \max_{i} \sum_{j=1}^{N} a_{ij}$$

- 4. All other eigenvectors have one or more negative entries.
- 5. The matrix A can make toast.

Measures of centrality

Background

Centrality measures

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

Perron-Frobenius theorem: (⊞)

If an $N \times N$ matrix A has non-negative entries then:

- 1. A has a real eigenvalue $\lambda_1 \geq |\lambda_i|$ for i = 2, ..., N.
- 2. λ_1 corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
- 3. The dominant real eigenvalue λ_1 is bounded by the minimum and maximum row sums of A:

$$\min_{j} \sum_{j=1}^{N} a_{ij} \le \lambda_1 \le \max_{i} \sum_{j=1}^{N} a_{ij}$$

- 4. All other eigenvectors have one or more negative entries.
- 5. The matrix A can make toast.
- 6. Note: Proof is relatively short for symmetric matrices that are strictly positive [6] and just non-negative [3].

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Eigenvalue centrality
Hubs and Authorities

Assuming our network is irreducible (⊞), meaning there is only one component, is reasonable:

Measures of centrality

Background

Central

Degree centrality Closeness centralit

Betweenness Eigenvalue centrality

Deference

Assuming our network is irreducible (⊞), meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.

Irreducibility means largest eigenvalue's eigenvector

Analogous to notion of ergodicity: every state is

(Another term: Primitive graphs and matrices

Measures of centrality

Background

Central

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authorit

- Assuming our network is irreducible (⊞), meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.

Analogous to notion of ergodicity: every state is

Primitive graphs and matrices.)

Measures of centrality

Background

measures

Degree centrality Closeness centralit

Eigenvalue centrality

- Assuming our network is irreducible (⊞), meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
- Analogous to notion of ergodicity: every state is reachable.

(Another texts: Primitive graphs and matrices.)

Measures of centrality

Background

Centrality

Degree centrality Closeness centralit

Eigenvalue centrality
Hubs and Authorities

- Assuming our network is irreducible (⊞), meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
- Analogous to notion of ergodicity: every state is reachable.
- (Another term: Primitive graphs and matrices.)

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality

Eigenvalue centrality
Hubs and Authorities

Outline

Background

Centrality measures

Degree centrality

Closeness centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

References

Measures of centrality

Background

Centrality measures

Degree centrality
Closeness centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well'a node 'knows' where to find information on a given
- Original work due to the legendary Jon Kleinberg.
- Best hubs point to best authorities
- ▶ Recursive: nodes can be both hubs and authorities.
- More: look for dense links between sets of good hubs pointing to sets of good authorities.
- Flower as the HITS algorithm (H)

 (Physical tribs induced Topics Search)

Measures of centrality

Background

measures

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well
- ▶ Original work due to the legendary Jon Kleinberg. [2]
- Best hubs point to best authorities
- Recursive: nodes can be both hubs and authorities.
 - More: look for dense links between sets of good
- ▶ Known as the HITS algorithm (⊞
- /Humaning Indused Topics Sourch

Measures of centrality

Background

Centrality

Degree centrality

Closeness central

Eigenvalue centrality
Hubs and Authorities

References

relefences

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg.
- P Boot habo point to boot dat
- ▶ Recursive: nodes can be both hubs and authorities
 - More: look for dense links between sets of good
 - ► Known as the HITS algorithm (⊞
- (Hyperlinks Industry Tonics Search)

Measures of centrality

Background

Centrality

Degree centrality Closeness centrality

Betweenness
Eigenvalue centrality
Hubs and Authorities

Deference

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg.
- ▶ Beoursi
- Hecuisive. Houes can be built hubs and authorities
- More: look for dense links between sets of
- ▶ Known as the HITS algorithm (⊞
- (Hyperlidk-Induced Topics Search)

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality

Betweenness
Eigenvalue centrality
Hubs and Authorities

D-6----

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg.
- Best hubs point to best authorities.
- Recursive: nodes can be both hubs and authorities.
- More
- ► Known as the HITS algorithm (⊞
- (Hyperlink-Induced Topics Search)

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality

Betweenness
Eigenvalue centrality
Hubs and Authorities

D-6----

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg.
- Best hubs point to best authorities.
- Recursive: nodes can be both hubs and authorities.
- ▶ More

- the HITS algorithm (H)
- (Hyperlink-Induced Topics Search)

Measures of centrality

Background

Centrality

Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

D-(----

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg.
- Best hubs point to best authorities.
- Recursive: nodes can be both hubs and authorities.
- More: look for dense links between sets of good hubs pointing to sets of good authorities.
- ► Known as the HITS algorithm (⊞)

Measures of centrality

Background

Centrality measures

Degree centrality
Closeness centrality

Eigenvalue centrality
Hubs and Authorities

Deference

- Generalize eigenvalue centrality to allow nodes to have two attributes:
 - 1. Authority: how much knowledge, information, etc., held by a node on a topic.
 - 2. Hubness (or Hubosity or Hubbishness): how well a node 'knows' where to find information on a given topic.
- Original work due to the legendary Jon Kleinberg.
- Best hubs point to best authorities.
- Recursive: nodes can be both hubs and authorities.
- More: look for dense links between sets of good hubs pointing to sets of good authorities.
- ► Known as the HITS algorithm (⊞) (Hyperlink-Induced Topics Search).

Measures of centrality

Background

Centrality measures

Degree centrality Closeness centrality Betweenness

Eigenvalue centrality
Hubs and Authorities

- Give each node two scores:
 - 1. x_i = authority score for node
 - 2. y_i = hubtasticness score for node
- As for eigenvector centrality, we connect the scores of neighboring nodes.
 - New story f. a good authority is linked to by good hubs:
- ▶ Means x_i should increase as $\sum_{i=1}^{N} a_{ii} y_i$ increases
- ▶ Note: indices are ji meaning i has a directed link to i
- ▶ Newstory II. good hubs point to good authorities
- Means y_i should increase as $\sum_{i=1}^{N} a_{ii} x_i$ increases
- ► Linearity assumption

 $P_{X \sim A}^T \vec{v}$ and $\vec{v} \sim A\vec{v}$

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrali

Betweenness
Eigenvalue centrality
Hubs and Authorities

- Give each node two scores:
 - 1. x_i = authority score for node i
 - 2. v_i = hubtasticness score for node
- As for eigenvector centrality, we connect the scores of neighboring nodes.
 - New story I: a good authority is linked to by good hubs:
- \blacktriangleright Means x_i should increase as $\sum_{i=1}^N a_{ji} y_i$ increases
- Note: indices are ji meaning j has a directed link to i
- New story It good nubs point to good authorities.
- Means y_i should increase as $\sum_{j=1}^{N} a_{ij}x_j$ increases
- Linearity assumption

 $\vec{A} \times \vec{A} \times \vec{A} \vec{V}$ and $\vec{V} \times \vec{A} \vec{X}$

Measures of centrality

Background

Centrality

Degree centrality
Closeness central

Betweenness
Eigenvalue centrality
Hubs and Authorities

- Give each node two scores:
 - 1. x_i = authority score for node i
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of pelophoring nodes
- New story I: a good authority is linked to by good hubs:
- ▶ Means x_i should increase as $\sum_{i=1}^N a_{ji}y_i$ increases
- Note: indices are ji meaning j has a directed link to
- New story It good hubs point to good authorities.
- Means y_i should increase as $\sum_{i=1}^{N} a_{ii}x_i$ increases
- Linearity assumption

 $\vec{A} \propto \vec{A}' \vec{y}$ and $\vec{y} \propto \vec{A} \vec{x}$

Measures of centrality

Background

Centrality

Degree centrality
Closeness centra

Betweenness
Eigenvalue centrality
Hubs and Authorities

References

- Give each node two scores:
 - 1. $x_i = authority score for node i$
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hube
- ▶ Means x_i should increase as $\sum_{i=1}^{n} a_{ii} y_i$ increases
- ▶ Note: indices are ji meaning j has a directed link to
- ► New story II. good hubs point to good authorities.
 - Means y should increase as $\sum_{i=1}^{N} a_{ii} x_i$ increases.
- Linearity assumption:

 $\vec{A} \propto \vec{A}^T \vec{V}$ and $\vec{V} \propto \vec{A} \vec{X}$

Measures of centrality

Background

Centrality

Degree centrality Closeness centra

Closeness centra Betweenness

Eigenvalue centrality
Hubs and Authorities

- Give each node two scores:
 - 1. $x_i = authority score for node i$
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- Means x_i should increase as ∑_{i=1} a_{ii} y_i increases
- ▶ Note: indices are ji meaning j has a directed link to
- New story IT good hubs point to good authorities.
- Means y_i should increase as $\sum_{i=1}^{N} a_{ii} x_i$ increases.
- Linearity assumption:

 $\vec{x} \propto A^T \vec{y}$ and $\vec{y} \propto A \vec{x}$

Measures of centrality

Background

Centrality

Degree centrality
Closeness central

Betweenness Figenvalue central

Hubs and Authorities

- Give each node two scores:
 - 1. $x_i =$ authority score for node i
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- ► Means x_i should increase as $\sum_{j=1}^{N} a_{ji}y_j$ increases.
- ▶ Note: indices are ii meaning i has a directed
- New story It good hubs point to good authorities.
 - increase as $\sum_{i=1}^{N} a_{ij} x_j$ increases.
- Linearity assumption:

Measures of centrality

Background

Centrality

Degree centrality

Betweenness

Hubs and Authorities

- Give each node two scores:
 - 1. $x_i = authority score for node i$
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- ► Means x_i should increase as $\sum_{j=1}^{N} a_{ji}y_j$ increases.
- ▶ Note: indices are ji meaning j has a directed link to i.
- Means v_{i} and the point to good authorities.
- Means y_i should increase as $\sum_{j=1}^i a_{ij} x_j$ increases
- Entourity assumption.

Measures of centrality

Background

Centrality

Degree centrality Closeness centrali

Betweenness Eigenvalue centralit

Hubs and Authorities

- Give each node two scores:
 - 1. x_i = authority score for node i
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- ► Means x_i should increase as $\sum_{j=1}^{N} a_{ji}y_j$ increases.
- Note: indices are ji meaning j has a directed link to i.
- New story II: good hubs point to good authorities.

Means v_i should increase as $\sum_{i=1}^{N} a_{ii}x_i$ increases

➤ Linearity assumption:

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality

Betweenness
Eigenvalue centrality

Hubs and Authorities

- Give each node two scores:
 - 1. x_i = authority score for node i
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- ► Means x_i should increase as $\sum_{j=1}^{N} a_{ji}y_j$ increases.
- Note: indices are ji meaning j has a directed link to i.
- New story II: good hubs point to good authorities.
- Means y_i should increase as $\sum_{i=1}^{N} a_{ij}x_i$ increases.

Measures of centrality

Background

Centrality

Degree centrality Closeness centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

- Give each node two scores:
 - 1. x_i = authority score for node i
 - 2. y_i = hubtasticness score for node i
- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- ► Means x_i should increase as $\sum_{j=1}^{N} a_{ji}y_j$ increases.
- ▶ Note: indices are ji meaning j has a directed link to i.
- New story II: good hubs point to good authorities.
- Means y_i should increase as $\sum_{j=1}^{N} a_{ij}x_j$ increases.
- Linearity assumption:

 $\vec{x} \propto A^T \vec{y}$ and $\vec{y} \propto A \vec{x}$

Measures of centrality

Background

Centrality

Degree centrality Closeness centrali

Betweenness Eigenvalue centrality

Hubs and Authorities

So let's say we have

$$\vec{x} = c_1 A^T \vec{y}$$
 and $\vec{y} = c_2 A \vec{x}$

where c_1 and c_2 must be positive.

Above equations combine to give

$$\vec{X} = c_1 A^T c_2 A \vec{X} = \lambda A^T A \vec{X}$$

► It's all good: We have the heart of singular value decomposition before us...

Measures of centrality

Background

Centrali

Degree centrality

Betweenness Eigenvalue centrality

Hubs and Authorities

So let's say we have

$$\vec{x} = c_1 A^T \vec{y}$$
 and $\vec{y} = c_2 A \vec{x}$

where c_1 and c_2 must be positive.

Above equations combine to give

$$\vec{x} = c_1 A^T c_2 A \vec{x} - \lambda A^T A \vec{x}$$

where $\lambda = c_1 c_2 > 0$.

 It's all good, we have the heart of singular value decomposition before us.

Measures of centrality

Background

Centra

Degree centrality

Betweenness Figenvalue centralit

Hubs and Authorities

So let's say we have

$$\vec{x} = c_1 A^T \vec{y}$$
 and $\vec{y} = c_2 A \vec{x}$

where c_1 and c_2 must be positive.

Above equations combine to give

$$\vec{\mathbf{x}} = \mathbf{c}_1 \mathbf{A}^T \mathbf{c}_2 \mathbf{A} \vec{\mathbf{x}} = \lambda \mathbf{A}^T \mathbf{A} \vec{\mathbf{x}}.$$

where $\lambda = c_1 c_2 > 0$.

lt's all good: we have the heart of singular value decomposition before us...

Measures of centrality

Background

Centrali

Degree centrality

Closeness centrality Betweenness Eigenvalue centrality

Hubs and Authorities

- \rightarrow A^TA is symmetric.
 - A^t A is semi-positive definite so its eigenvalues are all > 0.
 - A' A's eigenvalues are the square of A's singular values.
- A' A's eigenvectors form a joyful orthogonal basis
- ➤ Perron-Frobenius tells us that only the dominant elgenvalue's elgenvector can be chosen to have
 - nenenegative entries
 - So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.

Measures of centrality

Background

Centrality

Degree centrality
Closeness centrality
Betweenness

Eigenvalue centrality
Hubs and Authorities

- A^TA is symmetric.
- A^T A is semi-positive definite so its eigenvalues are all > 0.

Measures of centrality

Background

Central

Degree centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

- A^TA is symmetric.
- ► A^TA is semi-positive definite so its eigenvalues are all ≥ 0 .
- A^T A's eigenvalues are the square of A's singular values.

Measures of centrality

Background

Centra

Degree centrality

Betweenness

Eigenvalue centrality

Hubs and Authorities

- A^TA is symmetric.
- A^T A is semi-positive definite so its eigenvalues are all > 0.
- A^TA 's eigenvalues are the square of A's singular values.
- A^TA's eigenvectors form a joyful orthogonal basis.

Measures of centrality

Background

Central

Degree centralit

Betweenness

Eigenvalue centrality
Hubs and Authorities

- ▶ A^TA is symmetric.
- A^T A is semi-positive definite so its eigenvalues are all ≥ 0 .
- A^T A's eigenvalues are the square of A's singular values.
- \triangleright $A^T A$'s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.

Measures of centrality

Background

Centrality

Degree centrality Closeness centrality

Betweenness Eigenvalue centrality Hubs and Authorities

- ▶ A^TA is symmetric.
- A^T A is semi-positive definite so its eigenvalues are all ≥ 0 .
- A^TA's eigenvalues are the square of A's singular values.
- \triangleright A^TA 's eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.

Measures of centrality

Background

Centrality

Degree centrality Closeness centrality

Eigenvalue centrality
Hubs and Authorities

- \triangleright A^TA is symmetric.
- A^T A is semi-positive definite so its eigenvalues are all ≥ 0 .
- A^T A's eigenvalues are the square of A's singular values.
- \triangleright A^TA 's eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.

Measures of centrality

Background

Centrality measures

Degree centrality Closeness centralit Betweenness

Hubs and Authorities

References I

[1] U. Brandes.
A faster algorithm for betweenness centrality.
J. Math. Sociol., 25:163–177, 2001. pdf (⊞)

[2] J. M. Kleinberg.
Authoritative sources in a hyperlinked environment.

Proc. 9th ACM-SIAM Symposium on Discrete
Algorithms, 1998. pdf (⊞)

[3] K. Y. Lin.

An elementary proof of the perron-frobenius theorem for non-negative symmetric matrices.

Chinese Journal of Physics, 15:283–285, 1977.
pdf (H)

Measures of centrality

Background

Centrality

Closeness centrali Betweenness

References II

[4] M. E. J. Newman.
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.
Phys. Rev. E, 64(1):016132, 2001. pdf (⊞)

[5] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in networks.
Phys. Rev. E, 69(2):026113, 2004. pdf (⊞)

[6] F. Ninio. A simple proof of the Perron-Frobenius theorem for positive symmetric matrices. J. Phys. A.: Math. Gen., 9:1281–1282, 1976. pdf (H)

[7] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge, UK, 1994.

Measures of centrality

Background

Degree centrality
Closeness centrality
Betweenness
Finenyalue centrali

