Measures of centrality
 Complex Networks
 CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics \& Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

(cc) (i)오

Centrality

measures
Degree centrality

UNIVERSITY VERMONT ๑a凤 1 of 28

Outline

Background

Centrality measures

Degree centrality
Closeness centrality

Betweenness

Eigenvalue centrality Hubs and Authorities

References

 VERMONTっの^2 of 28

How big is my node?

- Basic question: how 'important' are specific nodes and edges in a network?
- An important node or edge might:

1. handle a relatively large amount of the network's traffic (e.g., cars, information);
2. bridge two or more distinct groups (e.g., liason, interpreter);
3. be a source of important ideas, knowledge, or judgments (e.g., supreme court decisions, an employee who 'knows where everything is').

- So how do we quantify such a slippery concept as importance?
- We generate ad hoc, reasonable measures, and examine their utility...

Centrality
measures
Degree centrality
$\left\lvert\, \begin{aligned} & \circ \\ & 0 \\ & 0\end{aligned}\right.$

Centrality

- One possible reflection of importance is centrality.
- Presumption is that nodes or edges that are (in some sense) in the middle of a network are important for the network's function.
- Idea of centrality comes from social networks literature ${ }^{[7]}$.
- Many flavors of centrality...

1. Many are topological and quasi-dynamical;
2. Some are based on dynamics (e.g., traffic).

- We will define and examine a few...
- (Later: see centrality useful in identifying communities in networks.)

Centrality

Degree centrality

- Naively estimate importance by node degree. ${ }^{[7]}$
- Doh: assumes linearity (If node i has twice as many friends as node j, it's twice as important.)
- Doh: doesn't take in any non-local information. VERMONT

つดल 6 of 28

Closeness centrality

- Idea: Nodes are more central if they can reach other nodes 'easily.'
- Measure average shortest path from a node to all other nodes.
- Define Closeness Centrality for node i as

$$
\frac{N-1}{\sum_{j, j \neq i}(\text { distance from } i \text { to } j) .}
$$

- Range is 0 (no friends) to 1 (single hub).
- Unclear what the exact values of this measure tells us because of its ad-hocness.
- General problem with simple centrality measures: what do they exactly mean?
- Perhaps, at least, we obtain an ordering of nodes in terms of 'importance.'

Betweenness centrality

- Betweenness centrality is based on shortest paths in a network.
- Idea: If the quickest way between any two nodes on a network disproportionately involves certain nodes, then they are 'important' in terms of global cohesion.
- For each node i, count how many shortest paths pass through i.
- In the case of ties, or divide counts between paths.
- Call frequency of shortest paths passing through node i the betweenness of i, B_{i}.
- Note: Exclude shortest paths between i and other nodes.
- Note: works for weighted and unweighted networks.
- Consider a network with N nodes and m edges (possibly weighted).
- Computational goal: Find $\binom{N}{2}$ shortest paths (\boxplus) between all pairs of nodes.
- Traditionally use Floyd-Warshall (\boxplus) algorithm.
- Computation time grows as $O\left(N^{3}\right)$.
- See also:

1. Dijkstra's algorithm (\boxplus) for finding shortest path between two specific nodes,
2. and Johnson's algorithm (\boxplus) which outperforms Floyd-Warshall for sparse networks: $O\left(m N+N^{2} \log N\right)$.

- Newman (2001) ${ }^{[4,5]}$ and Brandes (2001) ${ }^{[1]}$ independently derive equally fast algorithms that also compute betweenness.
- Computation times grow as:

1. $O(m N)$ for unweighted graphs;
2. and $O\left(m N+N^{2} \log N\right)$ for weighted graphs.

Shortest path between node i and all others:

- Consider unweighted networks.
- Use breadth-first search:

1. Start at node i, giving it a distance $d=0$ from itself.
2. Create a list of all of i 's neighbors and label them being at a distance $d=1$.
3. Go through list of most recently visited nodes and find all of their neighbors.
4. Exclude any nodes already assigned a distance.
5. Increment distance d by 1.
6. Label newly reached nodes as being at distance d.
7. Repeat steps 3 through 6 until all nodes are visited.

- Record which nodes link to which nodes moving out from i (former are 'predecessors' with respect to i 's shortest path structure).
- Runs in $O(m)$ time and gives $N-1$ shortest paths.
- Find all shortest paths in $O(m N)$ time
- Much, much better than naive estimate of $O\left(\mathrm{mN}^{2}\right)$.

Newman's Betweenness algorithm: ${ }^{[4]}$

1. Set all nodes to have a value $c_{i j}=0, j=1, \ldots, N$ (c for count).
2. Select one node i.
3. Find shortest paths to all other $N-1$ nodes using breadth-first search.
4. Record \# equal shortest paths reaching each node.
5. Move through nodes according to their distance from i, starting with the furthest.
6. Travel back towards i from each starting node j, along shortest path(s), adding 1 to every value of $c_{i \ell}$ at each node ℓ along the way.
7. Whenever more than one possibility exists, apportion according to total number of short paths coming through predecessors.
8. Exclude starting node j and i from increment.
9. Repeat steps $2-8$ for every node i and obtain betweenness as $B_{j}=\sum_{i=1}^{N} c_{i j}$.

Newman's Betweenness algorithm: ${ }^{[4]}$

- For a pure tree network, $c_{i j}$ is the number of nodes beyond j from i's vantage point.
- Same algorithm for computing drainage area in river networks (with 1 added across the board).
- For edge betweenness, use exact same algorithm but now

1. j indexes edges,
2. and we add one to each edge as we traverse it.

- For both algorithms, computation time grows as

$$
O(m N)
$$

- For sparse networks with relatively small average degree, we have a fairly digestible time growth of

$$
O\left(N^{2}\right) .
$$

Newman’s Betweenness algorithm: ${ }^{[4]}$

Measures of centrality

Background
Centrality
measures
Degree centrality
Closeness centrality
Betweenness
Eigenvalue centrality
Hubs and Authorities
References

๑a^ 16 of 28

Important nodes have important friends:

- Define x_{i} as the 'importance' of node i.
- Idea: x_{i} depends (somehow) on x_{j} if j is a neighbor of i.
- Recursive: importance is transmitted through a network.
- Simplest possibility is a linear combination:

$$
x_{i} \propto \sum_{j} a_{j i} x_{j}
$$

- Assume further that constant of proportionality, c, is independent of i.
- Above gives $\vec{x}=c \mathbf{A}^{\mathrm{T}} \vec{x}$ or $\mathbf{A}^{\mathrm{T}} \vec{x}=c^{-1} \vec{x}=\lambda \vec{x}$.
- Eigenvalue equation based on adjacency matrix...
- Note: Lots of despair over size of the largest eigenvalue. ${ }^{[7]}$ Lose sight of original assumption's non-physicality.

Important nodes have important friends:

- So... solve $\mathbf{A}^{\mathrm{T}} \vec{x}=\lambda \vec{x}$.
- But which eigenvalue and eigenvector?
- We, the people, would like:

1. A unique solution. \checkmark
2. λ to be real. \checkmark
3. Entries of \vec{x} to be real.
4. Entries of \vec{x} to be non-negative.
5. λ to actually mean something... (maybe too much)
6. Values of x_{i} to mean something (what does an observation that $x_{3}=5 x_{7}$ mean?) (maybe only ordering is informative...) (maybe too much)
7. λ to equal 1 would be nice... (maybe too much)
8. Ordering of \vec{x} entries to be robust to reasonable modifications of linear assumption (maybe too much)

- We rummage around in bag of tricks and pull out the Perron-Frobenius theorem...

Centrality
measures
Degree centrality

1. A has a real eigenvalue $\lambda_{1} \geq\left|\lambda_{i}\right|$ for $i=2, \ldots, N$.
2. λ_{1} corresponds to left and right 1-d eigenspaces for which we can choose a basis vector that has non-negative entries.
3. The dominant real eigenvalue λ_{1} is bounded by the minimum and maximum row sums of A :

$$
\min _{i} \sum_{j=1}^{N} a_{i j} \leq \lambda_{1} \leq \max _{i} \sum_{j=1}^{N} a_{i j}
$$

4. All other eigenvectors have one or more negative entries.
5. The matrix A can make toast.
6. Note: Proof is relatively short for symmetric matrices that are strictly positive ${ }^{[6]}$ and just non-negative ${ }^{[3]}$.

Other Perron-Frobenius aspects:

- Assuming our network is irreducible (\boxplus), meaning there is only one component, is reasonable: just consider one component at a time if more than one exists.
- Irreducibility means largest eigenvalue's eigenvector has strictly non-negative entries.
- Analogous to notion of ergodicity: every state is reachable.
- (Another term: Primitive graphs and matrices.)

Hubs and Authorities

- Generalize eigenvalue centrality to allow nodes to have two attributes:

1. Authority: how much knowledge, information, etc., held by a node on a topic.
2. Hubness (or Hubosity or Hubbishness): how well a node 'knows' where to find information on a given topic.

- Original work due to the legendary Jon Kleinberg. ${ }^{[2]}$
- Best hubs point to best authorities.
- Recursive: nodes can be both hubs and authorities.
- More: look for dense links between sets of good hubs pointing to sets of good authorities.
- Known as the HITS algorithm (\boxplus) (Hyperlink-Induced Topics Search).

Hubs and Authorities

- Give each node two scores:

1. $x_{i}=$ authority score for node i
2. $y_{i}=$ hubtasticness score for node i

- As for eigenvector centrality, we connect the scores of neighboring nodes.
- New story I: a good authority is linked to by good hubs.
- Means x_{i} should increase as $\sum_{j=1}^{N} a_{j i} y_{j}$ increases.
- Note: indices are $j i$ meaning j has a directed link to i.
- New story II: good hubs point to good authorities.
- Means y_{i} should increase as $\sum_{j=1}^{N} a_{i j} x_{j}$ increases.
- Linearity assumption:

$$
\vec{x} \propto A^{T} \vec{y} \text { and } \vec{y} \propto A \vec{x}
$$

Hubs and Authorities

$$
\vec{x}=c_{1} A^{T} \vec{y} \text { and } \vec{y}=c_{2} A \vec{x}
$$

where c_{1} and c_{2} must be positive.

- Above equations combine to give

$$
\vec{x}=c_{1} A^{T} c_{2} A \vec{x}=\lambda A^{T} A \vec{x}
$$

$$
\text { where } \lambda=c_{1} c_{2}>0
$$

- It's all good: we have the heart of singular value decomposition before us...

We can do this:

- $A^{T} A$ is symmetric.
- $A^{T} A$ is semi-positive definite so its eigenvalues are all ≥ 0.
- $A^{T} A$'s eigenvalues are the square of A 's singular values.
- $A^{T} A$'s eigenvectors form a joyful orthogonal basis.
- Perron-Frobenius tells us that only the dominant eigenvalue's eigenvector can be chosen to have non-negative entries.
- So: linear assumption leads to a solvable system.
- What would be very good: find networks where we have independent measures of node 'importance' and see how importance is actually distributed.

References I

［1］U．Brandes．
A faster algorithm for betweenness centrality． J．Math．Sociol．，25：163－177，2001．pdf（ $⿴ 囗 十$ ）
［2］J．M．Kleinberg．
Authoritative sources in a hyperlinked environment．
Proc．9th ACM－SIAM Symposium on Discrete Algorithms，1998．pdf（ $⿴ 囗 十$ ）
［3］K．Y．Lin．
An elementary proof of the perron－frobenius theorem for non－negative symmetric matrices．
Chinese Journal of Physics，15：283－285， 1977. pdf（ \boxplus ） VERMONT

References II

[4] M. E. J. Newman.
Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.
Phys. Rev. E, 64(1):016132, 2001. pdf (\boxplus)
[5] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in networks.
Phys. Rev. E, 69(2):026113, 2004. pdf (\boxplus)
[6] F. Ninio.
A simple proof of the Perron-Frobenius theorem for positive symmetric matrices.
J. Phys. A.: Math. Gen., 9:1281-1282, 1976. pdf (\boxplus)
[7] S. Wasserman and K. Faust.
Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge, UK, 1994.

