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Introduction
Branching networks are useful things:

I Fundamental to material supply and collection
I Supply: From one source to many sinks in 2- or 3-d.
I Collection: From many sources to one sink in 2- or

3-d.
I Typically observe hierarchical, recursive self-similar

structure

Examples:

I River networks (our focus)
I Cardiovascular networks
I Plants
I Evolutionary trees
I Organizations (only in theory...)
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Branching networks are everywhere...

http://hydrosheds.cr.usgs.gov/ (�)
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Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (�)
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A beautiful simulation of erosion:

Bruce Shaw (LDEO, Columbia) and Marcelo Magnasco (Rockefeller)


2008-09-23erosion.mov
Media File (video/quicktime)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Geomorphological networks

Definitions
I Drainage basin for a point p is the complete region of

land from which overland flow drains through p.
I Definition most sensible for a point in a stream.
I Recursive structure: Basins contain basins and so

on.
I In principle, a drainage basin is defined at every

point on a landscape.
I On flat hillslopes, drainage basins are effectively

linear.
I We treat subsurface and surface flow as following the

gradient of the surface.
I Okay for large-scale networks...

http://www.uvm.edu
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Basic basin quantities: a, l , L‖, L⊥:

a
L?0

L? Lk = L
a0 ll0Lk0

I a = drainage
basin area

I ` = length of
longest (main)
stream (which
may be fractal)

I L = L‖ =
longitudinal length
of basin

I L = L⊥ = width of
basin

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Allometry

I Isometry:
dimensions scale
linearly with each
other.

http://www.uvm.edu
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Allometry

I Isometry:
dimensions scale
linearly with each
other.

I Allometry:
dimensions scale
nonlinearly.

http://www.uvm.edu
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Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:

I

` ∝ ah

I

` ∝ Ld

I Combine above:

a ∝ Ld/h ≡ LD

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Branching
Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

10 of 41

Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:

I

` ∝ ah

I

` ∝ Ld

I Combine above:

a ∝ Ld/h ≡ LD

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Branching
Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

10 of 41

Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:

I

` ∝ ah

I

` ∝ Ld

I Combine above:

a ∝ Ld/h ≡ LD

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Branching
Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

10 of 41

Basin allometry

a
L?0

L? Lk = L
a0 ll0Lk0

Allometric
relationships:

I

` ∝ ah

I

` ∝ Ld

I Combine above:

a ∝ Ld/h ≡ LD

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Branching
Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

11 of 41

‘Laws’
I Hack’s law (1957) [2]:

` ∝ ah

reportedly 0.5 < h < 0.7

I Scaling of main stream length with basin size:

` ∝ Ld
‖

reportedly 1.0 < d < 1.1

I Basin allometry:

L‖ ∝ ah/d ≡ a1/D

D < 2 → basins elongate.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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There are a few more ‘laws’: [1]

Relation: Name or description:

Tk = T1(RT )k Tokunaga’s law
` ∼ Ld self-affinity of single channels

nω/nω+1 = Rn Horton’s law of stream numbers
¯̀
ω+1/¯̀

ω = R` Horton’s law of main stream lengths
āω+1/āω = Ra Horton’s law of basin areas
s̄ω+1/s̄ω = Rs Horton’s law of stream segment lengths

L⊥ ∼ LH scaling of basin widths
P(a) ∼ a−τ probability of basin areas
P(`) ∼ `−γ probability of stream lengths

` ∼ ah Hack’s law
a ∼ LD scaling of basin areas
Λ ∼ aβ Langbein’s law
λ ∼ Lϕ variation of Langbein’s law

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Reported parameter values: [1]

Parameter: Real networks:

Rn 3.0–5.0
Ra 3.0–6.0

R` = RT 1.5–3.0
T1 1.0–1.5
d 1.1± 0.01
D 1.8± 0.1
h 0.50–0.70
τ 1.43± 0.05
γ 1.8± 0.1
H 0.75–0.80
β 0.50–0.70
ϕ 1.05± 0.05

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Kind of a mess...

Order of business:

1. Find out how these relationships are connected.
2. Determine most fundamental description.
3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

http://www.uvm.edu
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Stream Ordering:

Method for describing network architecture:

I Introduced by Horton (1945) [3]

I Modified by Strahler (1957) [6]

I Term: Horton-Strahler Stream Ordering [4]

I Can be seen as iterative trimming of a network.
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http://www.uvm.edu/~pdodds
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Stream Ordering:

Some definitions:
I A channel head is a point in landscape where flow

becomes focused enough to form a stream.
I A source stream is defined as the stream that

reaches from a channel head to a junction with
another stream.

I Roughly analogous to capillary vessels.
I Use symbol ω = 1, 2, 3, ... for stream order.
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Stream Ordering:

1. Label all source streams as order ω = 1 and remove.
2. Label all new source streams as order ω = 2 and

remove.
3. Repeat until one stream is left (order = Ω)
4. Basin is said to be of the order of the last stream

removed.
5. Example above is a basin of order Ω = 3.
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Stream Ordering—A large example:

−105 −100 −95 −90 −85
30

32

34

36

38

40

42

44

46

48

longitude

la
tit

ud
e

ω = 11
10         
9          
8          

Mississippi

[s
ou

rc
e=

/d
at

a6
/d

od
ds

/w
or

k/
riv

er
s/

de
m

s/
m

is
si

ss
ip

pi
/fi

gu
re

s/
fig

or
de

r_
pa

th
s_

m
is

pi
10

.p
s]

[2
1−

M
ar

−
20

00
 p

et
er

 d
od

ds
]

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Branching
Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

19 of 41

Stream Ordering:

Another way to define ordering:

I As before, label all source streams as order ω = 1.
I Follow all labelled streams downstream
I Whenever two streams of the same order (ω) meet,

the resulting stream has order incremented by 1
(ω + 1).

I If streams of different orders
ω1 and ω2 meet, then the
resultant stream has order
equal to the largest of the two.

I Simple rule:

ω3 = max(ω1, ω2) + δω1,ω2

where δ is the Kronecker delta.
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Stream Ordering:

One problem:

I Resolution of data messes with ordering
I Micro-description changes (e.g., order of a basin

may increase)
I ... but relationships based on ordering appear to be

robust to resolution changes.
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Stream Ordering:

Utility:

I Stream ordering helpfully discretizes a network.
I Goal: understand network architecture
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Stream Ordering:

Resultant definitions:
I A basin of order Ω has nω streams (or sub-basins) of

order ω.
I nω > nω+1

I An order ω basin has area aω.
I An order ω basin has a main stream length `ω.
I An order ω basin has a stream segment length sω

1. an order ω stream segment is only that part of the
stream which is actually of order ω

2. an order ω stream segment runs from the basin
outlet up to the junction of two order ω − 1 streams
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Horton’s laws
Self-similarity of river networks

I First quantified by Horton (1945) [3], expanded by
Schumm (1956) [5]

Three laws:
I Horton’s law of stream numbers:

nω/nω+1 = Rn > 1

I Horton’s law of stream lengths:

¯̀
ω+1/¯̀

ω = R` > 1

I Horton’s law of basin areas:

āω+1/āω = Ra > 1
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Horton’s laws

Horton’s Ratios:
I So... Horton’s laws are defined by three ratios:

Rn, R`, and Ra.

I Horton’s laws describe exponential decay or growth:

nω = nω−1/Rn

= nω−2/R 2
n

...

= n1/R ω−1
n

= n1e−(ω−1) ln Rn
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Horton’s laws

Similar story for area and length:

I

āω = ā1e(ω−1) ln Ra

I

¯̀
ω = ¯̀1e(ω−1) ln R`

I As stream order increases, number drops and area
and length increase.

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Branching
Networks I

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton’s Laws

Tokunaga’s Law

Nutshell

References

25 of 41

Horton’s laws

Similar story for area and length:

I
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Horton’s laws

A few more things:

I Horton’s laws are laws of averages.
I Averaging for number is across basins.
I Averaging for stream lengths and areas is within

basins.
I Horton’s ratios go a long way to defining a branching

network...
I But we need one other piece of information...
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Horton’s laws

A bonus law:
I Horton’s law of stream segment lengths:

s̄ω+1/s̄ω = Rs > 1

I Can show that Rs = R`.
I Insert question 2, assignment 2 (�)
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Horton’s laws in the real world:
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Horton’s laws-at-large

Blood networks:
I Horton’s laws hold for sections of cardiovascular

networks
I Measuring such networks is tricky and messy...
I Vessel diameters obey an analogous Horton’s law.
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Data from real blood networks

Network Rn R−1
r R−1

` − ln Rr
ln Rn

− ln R`

ln Rn
α

West et al. – – – 1/2 1/3 3/4

rat (PAT) 2.76 1.58 1.60 0.45 0.46 0.73

cat (PAT) 3.67 1.71 1.78 0.41 0.44 0.79
(Turcotte et al. [10])

dog (PAT) 3.69 1.67 1.52 0.39 0.32 0.90

pig (LCX) 3.57 1.89 2.20 0.50 0.62 0.62
pig (RCA) 3.50 1.81 2.12 0.47 0.60 0.65
pig (LAD) 3.51 1.84 2.02 0.49 0.56 0.65

human (PAT) 3.03 1.60 1.49 0.42 0.36 0.83
human (PAT) 3.36 1.56 1.49 0.37 0.33 0.94
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Horton’s laws

Observations:
I Horton’s ratios vary:

Rn 3.0–5.0
Ra 3.0–6.0
R` 1.5–3.0

I No accepted explanation for these values.
I Horton’s laws tell us how quantities vary from level to

level ...
I ... but they don’t explain how networks are

structured.
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Tokunaga’s law

Delving deeper into network architecture:

I Tokunaga (1968) identified a clearer picture of
network structure [7, 8, 9]

I As per Horton-Strahler, use stream ordering.
I Focus: describe how streams of different orders

connect to each other.
I Tokunaga’s law is also a law of averages.
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Network Architecture

Definition:
I Tµ,ν = the average number of side streams of order

ν that enter as tributaries to streams of order µ

I µ, ν = 1, 2, 3, . . .
I µ ≥ ν + 1
I Recall each stream segment of order µ is ‘generated’

by two streams of order µ− 1
I These generating streams are not considered side

streams.
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Network Architecture
Tokunaga’s law

I Property 1: Scale independence—depends only on
difference between orders:

Tµ,ν = Tµ−ν

I Property 2: Number of side streams grows
exponentially with difference in orders:

Tµ,ν = T1(RT )µ−ν−1

I We usually write Tokunaga’s law as:

Tk = T1(RT )k−1 where RT ' 2

.
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Tokunaga’s law—an example:

T1 ' 2

RT ' 4
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The Mississippi

A Tokunaga graph:
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Nutshell:
Branching networks I:

I Show remarkable self-similarity over many scales.
I There are many interrelated scaling laws.
I Horton-Strahler Stream ordering gives one useful

way of getting at the architecture of branching
networks.

I Horton’s laws reveal self-similarity.
I Horton’s laws can be misinterpreted as suggesting a

pure hierarchy.
I Tokunaga’s laws neatly describe network

architecture.
I Branching networks exhibit a mixed hierarchical

structure.
I Horton and Tokunaga can be connected analytically

(next up).
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