Branching Networks I

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-No.

Branching Networks I

Introduction Allometry

Laws

Stream Ordering Horton's Laws Tokunaga's Law

Nutshell

少Q℃ 1 of 41

Branching Networks I

Introduction

Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law

Branching networks are everywhere...

 $http://hydrosheds.cr.usgs.gov/\ (\boxplus)$

Branching Networks I

Introduction Allometry

Laws Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

少 Q (~ 4 of 41

Branching Networks I

Definitions

Allometry Stream Ordering

Horton's Laws Tokunaga's Law

Introduction

Definitions

Laws

Introduction

Allometry

Horton's Laws Tokunaga's Law Nutshell

Outline

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Introduction

Branching networks are useful things:

- ► Fundamental to material supply and collection
- ▶ Supply: From one source to many sinks in 2- or 3-d.
- ▶ Collection: From many sources to one sink in 2- or
- ► Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- ► Cardiovascular networks
- ► Plants
- Evolutionary trees
- ► Organizations (only in theory...)

Branching networks are everywhere...

 $http://en.wikipedia.org/wiki/Image: Applebox. JPG \ (\boxplus) \\$

Branching Networks I

UNIVERSITY OF

少Q (~ 2 of 41

Introduction

Definitions Allometry Laws

Horton's Laws Tokunaga's Law Nutshell

A beautiful simulation of erosion:

Bruce Shaw (LDEO, Columbia) and Marcelo Magnasco (Rockefeller)

Geomorphological networks

Definitions

- ▶ Drainage basin for a point *p* is the complete region of land from which overland flow drains through p.
- ▶ Definition most sensible for a point in a stream.
- ▶ Recursive structure: Basins contain basins and so
- In principle, a drainage basin is defined at every point on a landscape.
- ▶ On flat hillslopes, drainage basins are effectively linear.
- ▶ We treat subsurface and surface flow as following the gradient of the surface.
- ▶ Okay for large-scale networks...

Branching Networks I

Introduction Definitions

Laws Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

少Q (~ 7 of 41

Branching Networks I

Introduction

Definitions

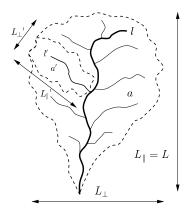
Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Basin allometry



Allometric relationships:

 $\ell \propto a^h$

 $\ell \propto L^d$

Combine above:

$$a \propto L^{d/h} \equiv L^D$$

Branching

Introduction

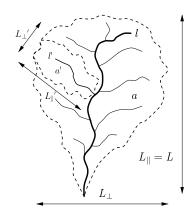
Allometry

Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

少 Q (~ 10 of 41

Basic basin quantities: $a, l, L_{\parallel}, L_{\perp}$:



- a = drainage basin area
- ℓ = length of longest (main) stream (which may be fractal)
- ► *L* = *L*_{||} = longitudinal length of basin
- ▶ $L = L_{\perp}$ = width of basin

'Laws'

► Hack's law (1957) [2]:

$$\ell \propto \textbf{\textit{a}}^{\textbf{\textit{h}}}$$

reportedly 0.5 < h < 0.7

▶ Scaling of main stream length with basin size:

$$\ell \propto L_{\parallel}^d$$

reportedly 1.0 < d < 1.1

Basin allometry:

$$L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$$

 $D < 2 \rightarrow$ basins elongate.

Branching Networks

Introduction Definitions

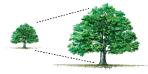
Allometry

Stream Ordering Horton's Laws

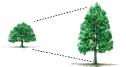
Tokunaga's Law

Allometry

▶ Isometry: dimensions scale linearly with each other.



Allometry: dimensions scale nonlinearly.



Branching Networks I Introduction

UNIVERSITY VERMONT

少Q (~ 8 of 41

Definitions

Allometry Laws

Horton's Laws Tokunaga's Law

Nutshell

少 Q (~ 9 of 41

There are a few more 'laws':[1]

Relation: Name or description:

 $T_k = T_1(R_T)^k$ Tokunaga's law $\ell \sim \dot{L}^d$ self-affinity of single channels $n_{\omega}/n_{\omega+1}=R_n$ Horton's law of stream numbers $\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=R_{\ell}$ Horton's law of main stream lengths $\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$ Horton's law of basin areas Horton's law of stream segment lengths $\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_s$ $L_{\perp} \sim L^{H}$ scaling of basin widths $P(a) \sim a^{-\tau}$ probability of basin areas $P(\ell) \sim \ell^{-\gamma}$ probability of stream lengths $\ell \sim a^h$ Hack's law $a \sim L^D$ scaling of basin areas $\Lambda \sim a^{\beta}$ Langbein's law $\lambda \sim L^{\varphi}$ variation of Langbein's law

Branching Networks I

Introduction Definitions Allometry

Laws

Horton's Laws Tokunaga's Law

Nutshell

少 Q (~ 12 of 41

Reported parameter values: [1]

Parameter:	Real networks:			
R_n	3.0-5.0			
R_a	3.0-6.0			
$R_\ell = R_T$	1.5-3.0			
<i>T</i> ₁	1.0-1.5			
d	1.1 ± 0.01			
D	$\textbf{1.8} \pm \textbf{0.1}$			
h	0.50-0.70			
au	$\textbf{1.43} \pm \textbf{0.05}$			
γ	1.8 ± 0.1			
Н	0.75-0.80			
β	0.50-0.70			
φ	1.05 ± 0.05			

Kind of a mess...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Stream Ordering:

Method for describing network architecture:

- ▶ Introduced by Horton (1945) [3]
- ▶ Modified by Strahler (1957) [6]
- ▶ Term: Horton-Strahler Stream Ordering [4]
- ► Can be seen as iterative trimming of a network.

Branching Networks I

Introduction

Laws

Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References

Stream Ordering:

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- ▶ Use symbol $\omega = 1, 2, 3, ...$ for stream order.

Branching Networks I

Introduction
Definitions
Allometry

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell References

少 Q (~ 16 of 41

Branching Networks I

Introduction Definitions

Laws

Stream Ordering Horton's Laws Tokunaga's Law

Nutshell References

Stream Ordering:

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega=2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.

longitude

5. Example above is a basin of order $\Omega=3$.

Branching Networks I

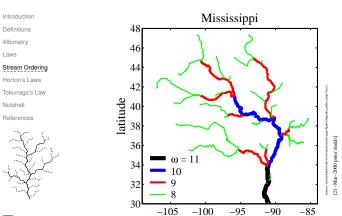
Introduction Definitions Allometry

Stream Ordering

Horton's Laws
Tokunaga's Law
Nutshell

少○ 17 of 41

Branching Networks 1 Stream Ordering—A large example:



Branching Networks I

Introduction
Definitions
Allometry

Laws

Stream Ordering

Horton's Laws Tokunaga's Law

Nutshell

少Q (~ 18 of 41

Vermont of 41

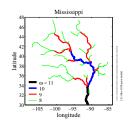
Stream Ordering:

Another way to define ordering:

- ▶ As before, label all source streams as order $\omega = 1$.
- ► Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 $(\omega + 1)$.
- ▶ If streams of different orders ω_1 and ω_2 meet, then the resultant stream has order equal to the largest of the two.
- ► Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.



Branching Networks I

Introduction Allometry

Laws

Stream Ordering Horton's Laws

Tokunaga's Law Nutshell

References

夕Qॡ 19 of 41

Stream Ordering:

Resultant definitions:

- ▶ A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $n_{\omega} > n_{\omega+1}$
- An order ω basin has area aω.
- An order ω basin has a main stream length ℓ_{ω} .
- \blacktriangleright An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order $\boldsymbol{\omega}$
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega-1$ streams

Branching Networks

Introduction Allometry

Laws

Stream Ordering

Horton's Laws Tokunaga's Lav

Nutshell

少 Q (~ 22 of 41

Branching Networks

Introduction

Definitions

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Stream Ordering:

One problem:

- Resolution of data messes with ordering
- ▶ Micro-description changes (e.g., order of a basin may increase)
- ▶ ... but relationships based on ordering appear to be robust to resolution changes.

Branching Networks I

Introduction Definitions

Stream Ordering

Tokunaga's Law

少 Q (~ 20 of 41

Branching Networks I

Introduction

Definitions

Allometry

Stream Ordering

Tokunaga's Law

UNIVERSITY OF VERMONT

少 q (~ 21 of 41

Horton's Law

Nutshell

Laws

Horton's laws

Self-similarity of river networks

▶ First quantified by Horton (1945) [3], expanded by Schumm (1956) [5]

Three laws:

► Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1}=R_n>1$$

► Horton's law of stream lengths:

$$\overline{\ell}_{\omega+1}/\overline{\ell}_{\omega}=R_{\ell}>1$$

Horton's law of basin areas:

$$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a>1$$

UNIVERSITY OF VERMONT

Branching Networks I

Introduction

Definitions

Allometry Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Stream Ordering:

Utility:

- Stream ordering helpfully discretizes a network.
- ► Goal: understand network architecture

Horton's laws

Horton's Ratios:

▶ So... Horton's laws are defined by three ratios:

$$R_n$$
, R_ℓ , and R_a .

► Horton's laws describe exponential decay or growth:

$$n_{\omega} = n_{\omega-1}/R_n$$

$$= n_{\omega-2}/R_n^2$$

$$\vdots$$

$$= n_1/R_n^{\omega-1}$$

$$= n_1 e^{-(\omega-1)\ln R_n}$$

少 Q (~ 24 of 41

Horton's laws

Similar story for area and length:

$$ar{a}_{\omega}=ar{a}_{1}e^{(\omega-1)\ln R_{a}}$$

$$ar{\ell}_{\omega} = ar{\ell}_1 e^{(\omega-1) \ln R_{\ell}}$$

► As stream order increases, number drops and area and length increase.

Branching Networks I

Introduction Allometry

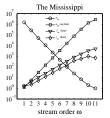
Laws Stream Ordering

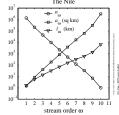
Horton's Laws Tokunaga's Law

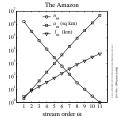
Nutshell

少 Q (~ 25 of 41

Horton's laws in the real world:







Branching Networks I

Introduction Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law Nutshell

少 Q (~ 28 of 41

Horton's laws

A few more things:

- ► Horton's laws are laws of averages.
- ► Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- ▶ Horton's ratios go a long way to defining a branching network...
- ▶ But we need one other piece of information...

Branching Networks I

Introduction Definitions

Stream Ordering

Horton's Laws

Tokunaga's Law

UNIVERSITY VERMONT

少 Q (~ 26 of 41

Blood networks:

Horton's laws-at-large

- ► Horton's laws hold for sections of cardiovascular
- ▶ Measuring such networks is tricky and messy...
- Vessel diameters obey an analogous Horton's law.

Branching Networks

Introduction Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Horton's laws

A bonus law:

► Horton's law of stream segment lengths:

$$ar{s}_{\omega+1}/ar{s}_{\omega}=R_{s}>1$$

- ▶ Can show that $R_s = R_\ell$.
- ▶ Insert question 2, assignment 2 (⊞)

Branching Networks I

Introduction Definitions Allometry Laws Horton's Laws Tokunaga's Law Nutshell

Data from real blood networks

Naturali D

Network	R_n	R_r^-	R_{ℓ}^{-} '	$-\frac{\ln R_n}{\ln R_n}$	$-\frac{\ln H_{\ell}}{\ln R_{n}}$	α
West et al.	_	-	_	1/2	1/3	3/4
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT) (Turcotte et al. [10])	3.67	1.71	1.78	0.41	0.44	0.79
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX) pig (RCA) pig (LAD)	3.57 3.50 3.51	1.89 1.81 1.84	2.20 2.12 2.02	0.50 0.47 0.49	0.62 0.60 0.56	0.62 0.65 0.65
human (PAT) human (PAT)	3.03 3.36	1.60 1.56	1.49 1.49	0.42 0.37	0.36 0.33	0.83 0.94

 $D-1 \mid \ln R_c$

In Re

Branching Networks I

Introduction Definitions Allometry Laws

Horton's Laws Tokunaga's Law Nutshell

少 Q (~ 30 of 41

Horton's laws

Observations:

► Horton's ratios vary:

3.0-5.0 3.0-6.0 1.5-3.0 R_{ℓ}

- ▶ No accepted explanation for these values.
- ▶ Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are structured.

Branching Networks I

Introduction Allometry

Laws Stream Ordering

Horton's Laws Tokunaga's Lav Nutshell

少 Q (~ 31 of 41

Network Architecture

Tokunaga's law

▶ Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,\nu} = T_{\mu-\nu}$$

Property 2: Number of side streams grows exponentially with difference in orders:

$$T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$$

▶ We usually write Tokunaga's law as:

$$T_k = T_1(R_T)^{k-1}$$
 where $R_T \simeq 2$

UNIVERSITY OF VERMONT

Branching

Networks

Introduction

Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

Laws

夕 Q (~ 34 of 41

Branching Networks

Introduction

Definitions Allometry

Stream Ordering

Horton's Laws

Tokunaga's Law

Tokunaga's law

Delving deeper into network architecture:

- ▶ Tokunaga (1968) identified a clearer picture of network structure [7, 8, 9]
- As per Horton-Strahler, use stream ordering.
- ▶ Focus: describe how streams of different orders connect to each other.
- ► Tokunaga's law is also a law of averages.

Branching Networks I

Introduction Definitions

Stream Ordering Horton's Laws

Tokunaga's Law

少 Q (~ 32 of 41

Introduction

Definitions

Allometry

Horton's Laws

Nutshell

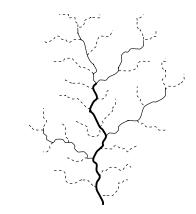
Tokunaga's Law

UNIVERSITY OF VERMONT

少 Q (~ 33 of 41

Laws

Tokunaga's law—an example:



少 Q (~ 35 of 41

Network Architecture

Definition:

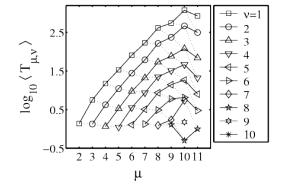
- $ightharpoonup T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ
- μ , ν = 1, 2, 3, ...
- $\mu \geq \nu + 1$
- \blacktriangleright Recall each stream segment of order μ is 'generated' by two streams of order $\mu - 1$
- ▶ These generating streams are not considered side streams.

Branching Networks I The Mississippi

A Tokunaga graph:

 $T_1 \simeq 2$

 $R_T \simeq 4$



Branching Networks I

Introduction Definitions Allometry Laws

Horton's Laws

Tokunaga's Law Nutshell

少 Q (~ 36 of 41

Nutshell:

Branching networks I:

- ▶ Show remarkable self-similarity over many scales.
- ▶ There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically (next up).

References I

[2] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

[3] R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945.

References II

[4] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

[5] S. A. Schumm.

Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.

Bulletin of the Geological Society of America, 67:597–646, 1956.

[6] A. N. Strahler.

Hypsometric (area altitude) analysis of erosional topography.

Bulletin of the Geological Society of America, 63:1117–1142, 1952.

Branching Networks I

Introduction
Definitions
Allometry

Laws

Stream Ordering Horton's Laws

Nutshell

少 Q (~ 37 of 41

Branching Networks I

Introduction Definitions

_aws

Stream Ordering Horton's Laws Tokunaga's Law

References

少∢(~ 38 of 41

Branching Networks I

Introduction

Definitions

Allometry Laws

Stream Orderin

Horton's Laws

Tokunaga's Law Nutshell

References

少 Q (~ 39 of 41

References III

[7] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University, 15:1–19, 1966.

[8] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

[9] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

<u>Transactions of the Japanese Geomorphological</u> Union, 5(2):71–77, 1984.

References IV

[10] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. <u>Journal of Theoretical Biology</u>, 193:577–592, 1998. pdf (H)

Branching Networks I

Introduction Definitions

Allometry Laws

Stream Ordering Horton's Laws Tokunaga's Law

Nutshell References

少 Q (~ 40 of 41

Branching Networks I

Introduction
Definitions
Allometry

Laws
Stream Ordering

Horton's Laws Tokunaga's Law

Deferences

