Branching Networks I

Complex Networks CSYS/MATH 303, Spring, 2011

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

200 1 of 41

Outline

Introduction

Definitions

Allometry

Laws

Stream Ordering

Horton's Laws

Tokunaga's Law

Nutshell

References

Branching Networks I

Introduction

Branching networks are useful things:

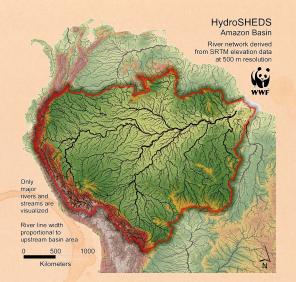
- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Branching Networks

Branching networks are everywhere...



 $http://hydrosheds.cr.usgs.gov/\,(\boxplus)$

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

990 4 of 41

Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (III)

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell Beferences

200 5 of 41

A beautiful simulation of erosion:

Bruce Shaw (LDEO, Columbia) and Marcelo Magnasco (Rockefeller)

Branching Networks I

Geomorphological networks

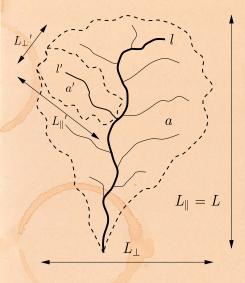
Definitions

- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Branching Networks

ntroduction

Basic basin quantities: *a*, *I*, L_{\parallel} , L_{\perp} :



- a = drainage
 basin area
- length of longest (main) stream (which may be fractal)
- L = L_{||} = longitudinal length of basin
- $L = L_{\perp}$ = width of basin

Branching Networks I

Introduction

Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

♪ UNIVERSITY ✓ VERMONT

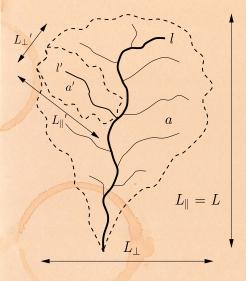
Allometry

► Isometry:

dimensions scale linearly with each other. Allometry: dimensions scale nonlinearly.

Branching Networks I

Basin allometry



Allometric relationships:

 $\ell \propto L^d$

 $\ell \propto a^h$

Combine above:

 $\pmb{a} \propto \pmb{L}^{d/h} \equiv \pmb{L}^D$

Branching Networks I

Hack's law (1957)^[2]:

reportedly 0.5 < h < 0.7

 $\ell \propto a^h$

Scaling of main stream length with basin size:

 $\ell \propto L_{\parallel}^d$

reportedly 1.0 < d < 1.1

Basin allometry:

 $L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$

 $D < 2 \rightarrow$ basins elongate.

Branching Networks I

There are a few more 'laws':^[1]

Relation: Name or description:

 $T_k = T_1 (R_T)^k$ Tokunaga's law $\ell \sim I^d$ self-affinity of single channels Horton's law of stream numbers $n_{\omega}/n_{\omega+1}=R_n$ $\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega} = R_{\ell}$ Horton's law of main stream lengths $\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$ Horton's law of basin areas $\bar{s}_{\omega+1}/\bar{s}_{\omega}=R_s$ Horton's law of stream segment lengths $L_{\perp} \sim L^{H}$ scaling of basin widths $P(a) \sim a^{-\tau}$ probability of basin areas $P(\ell) \sim \ell^{-\gamma}$ probability of stream lengths $\ell \sim a^h$ Hack's law $a \sim L^D$ scaling of basin areas $\Lambda \sim a^{\beta}$ Langbein's law $\lambda \sim I^{\varphi}$ variation of Langbein's law

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell Beferences

UNIVERSITY

Reported parameter values:^[1]

F

Parameter:	Real networks:			
R _n	3.0–5.0			
Ra	3.0-6.0			
$R_\ell = R_T$	1.5–3.0			
<i>T</i> ₁	1.0–1.5			
d	1.1 ± 0.01			
D	1.8 ± 0.1			
h	0.50-0.70			
au	1.43 ± 0.05			
γ	1.8 ± 0.1			
Н	0.75–0.80			
β	0.50-0.70			
arphi	1.05 ± 0.05			

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

DQC 13 of 41

Kind of a mess...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Branching Networks

Method for describing network architecture:

- Introduced by Horton (1945)^[3]
- Modified by Strahler (1957)^[6]
- Term: Horton-Strahler Stream Ordering^[4]
- Can be seen as iterative trimming of a network.

Branching Networks

- Introduction Definitions Allometry Laws Stream Ordering Horton's Laws
- Tokunaga's Law
- Nutshell
- References

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Use symbol $\omega = 1, 2, 3, ...$ for stream order.

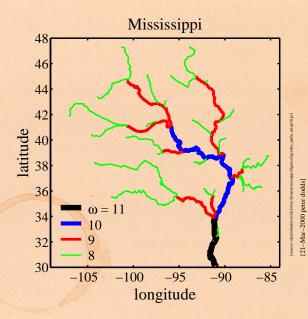
Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

Branching Networks I

Stream Ordering—A large example:



Branching Networks I Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

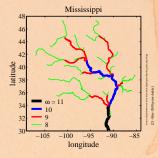
DQC 18 of 41

Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 (ω + 1).
- If streams of different orders ω₁ and ω₂ meet, then the resultant stream has order equal to the largest of the two.
 Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.



Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

VERMONT

One problem:

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)
- ... but relationships based on ordering appear to be robust to resolution changes.

Branching Networks

Utility:

- Stream ordering helpfully discretizes a network.
- Goal: understand network architecture

Branching Networks I

Resultant definitions:

- A basin of order Ω has n_{ω} streams (or sub-basins) of order ω .
 - $n_{\omega} > n_{\omega+1}$
- An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega 1$ streams

Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Da @ 22 of 41

Horton's laws Self-similarity of river networks

 First quantified by Horton (1945)^[3], expanded by Schumm (1956)^[5]

Three laws:

Horton's law of stream numbers:

$$n_{\omega}/n_{\omega+1}=R_n>1$$

Horton's law of stream lengths:

$$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}={\it R}_{\ell}>1$$

Horton's law of basin areas:

$$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a>1$$

Branching Networks

Horton's laws Horton's Ratios:

So... Horton's laws are defined by three ratios:

 R_n, R_ℓ , and R_a .

Horton's laws describe exponential decay or growth:

$$n_{\omega} = n_{\omega-1}/R_n$$
$$= n_{\omega-2}/R_n^2$$
$$\vdots$$

$$= n_1 / R_n^{\omega - 1}$$
$$= n_1 e^{-(\omega - 1) \ln R_n}$$

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws

Tokunaga's Law

Nutshell

Similar story for area and length:

$$ar{a}_\omega = ar{a}_1 e^{(\omega-1) \ln R_z}$$

$$\bar{\ell}_{\omega} = \bar{\ell}_1 e^{(\omega-1)\ln R}$$

As stream order increases, number drops and area and length increase.

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

DQC 25 of 41

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- But we need one other piece of information...

Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws

Tokunaga's Law

Nutshell

A bonus law:

Horton's law of stream segment lengths:

 $ar{s}_{\omega+1}/ar{s}_{\omega}=R_{s}>1$

Can show that R_s = R_ℓ.
 Insert question 2, assignment 2 (⊞)

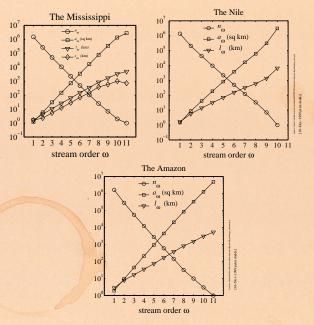
Branching Networks I

Definitions Allometry Laws Stream Ordering Horton's Laws

Tokunaga's Law

Nutshell

Horton's laws in the real world:



Branching Networks I

Horton's laws-at-large

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy...
- Vessel diameters obey an analogous Horton's law.

Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws

Tokunaga's Law

Nutshell

Data from real blood networks

Branching Networks I

Network	R _n	R_{r}^{-1}	R_{ℓ}^{-1}	$-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_{\ell}}{\ln R_n}$	α	Introduction
West <i>et al.</i>	-	-	-	1/2	1/3	3/4	Definitions Allometry Laws
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73	Stream Ordering
cat (PAT) (Turcotte <i>et al.</i> [10])	3.67	1.71	1.78	0.41	0.44	0.79	Horton's Laws Tokunaga's Law Nutshell References
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90	Helerences
pig (LCX) pig (RCA) pig (LAD)	3.57 3.50 3.51	1.89 1.81 1.84	2.20 2.12 2.02	0.50 0.47 0.49	0.62 0.60 0.56	0.62 0.65 0.65	1 A
human (PAT) human (PAT)	3.03 3.36	1.60 1.56	1.49 1.49	0.42 0.37	0.36 0.33	0.83 0.94	University Vermont

99 CP 30 of 41

Observations:

Horton's ratios vary:

 $\begin{array}{rrr} R_n & 3.0-5.0 \\ R_a & 3.0-6.0 \\ R_\ell & 1.5-3.0 \end{array}$

- No accepted explanation for these values.
- Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are structured.

Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law

Nutshell

Tokunaga's law

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure ^[7, 8, 9]
- As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages.

Branching Networks I

Network Architecture

Definition:

• $T_{\mu,\nu}$ = the average number of side streams of order ν that enter as tributaries to streams of order μ

- $\mu \geq \nu + 1$
- Recall each stream segment of order μ is 'generated' by two streams of order μ – 1
- These generating streams are not considered side streams.

Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law

Network Architecture Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

$$T_{\mu,
u} = T_{\mu-
u}$$

Property 2: Number of side streams grows exponentially with difference in orders:

 $T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$

We usually write Tokunaga's law as:

 $T_k = T_1 (R_T)^{k-1}$ where $R_T \simeq 2$

Branching Networks I

Allometry Laws Horton's Laws Tokunaga's Law Nutshell

Tokunaga's law—an example:

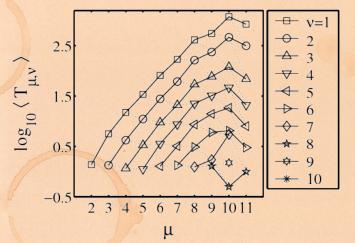
 $T_1 \simeq 2$ $R_T \simeq 4$

Branching Networks I

Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

The Mississippi

A Tokunaga graph:



Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

A.

Dec 36 of 41

Nutshell: Branching networks I:

- Show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically (next up).

Branching Networks

References I

P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.
 Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)

[2] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

[3] R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology. Bulletin of the Geological Society of America, 56(3):275–370, 1945.

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

References

20 38 of 41

References II

[6]

[4] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization.

Cambridge University Press, Cambrigde, UK, 1997.

 [5] S. A. Schumm.
 Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.
 <u>Bulletin of the Geological Society of America</u>, 67:597–646, 1956.

A. N. Strahler. Hypsometric (area altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63:1117–1142, 1952.

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

References

20 C 39 of 41

References III

[7] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. <u>Geophysical Bulletin of Hokkaido University</u>, 15:1–19, 1966.

[8] E. Tokunaga.

[9]

Consideration on the composition of drainage networks and their evolution. Geographical Reports of Tokyo Metropolitan

University, 13:G1-27, 1978.

E. Tokunaga. Ordering of divide segments and law of divide segment numbers. Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

Branching Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

References IV

[10] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998.

pdf (⊞)

Branching Networks I

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

