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Basic idea:

» Random networks with arbitrary degree distributions
cover much territory but do not represent all
networks.
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Basic idea:

» Random networks with arbitrary degree distributions
cover much territory but do not represent all
networks.

» Moving away from pure random networks was a key
first step.
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» We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
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» Random networks with arbitrary degree distributions
cover much territory but do not represent all
networks.

» Moving away from pure random networks was a key
first step.

» We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.

» Node attributes may be anything, e.g.:

1. degree
2. demographics (age, gender, etc.)
3. group affiliation
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first step.

» We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.

» Node attributes may be anything, e.g.:

1. degree
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» We speak of mixing patterns, correlations, biases...

» Networks are still random at base but now have more
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» Random networks with arbitrary degree distributions = ="
cover much territory but do not represent all
networks.
» Moving away from pure random networks was a key
first step.
» We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.
» Node attributes may be anything, e.g.:
1. degree
2. demographics (age, gender, etc.)
3. group affiliation
» We speak of mixing patterns, correlations, biases...
» Networks are still random at base but now have more
global structure.
» Build on work by Newman * °!, and Bogufia and o B
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» Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....
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» Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

» Consider networks with directed edges.
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» Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

» Consider networks with directed edges.

Soalin an edge connects a node of type
oAy to a node of type v
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» Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....
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Soalin an edge connects a node of type
oAy to a node of type v

a, = Pr(an edge comes from a node of type 1)
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General mixing between node categories

» Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

» Consider networks with directed edges.

Soalin an edge connects a node of type
oAy to a node of type v

a, = Pr(an edge comes from a node of type 1)

b, = Pr(an edge leads to a node of type v)

» Write E = [e,,], @ = [a,], and b = [b,].
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General mixing between node categories

» Assume types of nodes are countable, and are
assigned numbers 1, 2, 3, ....

» Consider networks with directed edges.

Soalin an edge connects a node of type
oAy to a node of type v

a, = Pr(an edge comes from a node of type 1)

b, = Pr(an edge leads to a node of type v)

» Write E = [e,,], @ = [a,], and b = [b,].
» Requirements:

Zem,: b Zem,:a“, andZeW:bl,.
wv v 7
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Notes:

» Varying e, allows us to move between the following:
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1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, =0 if u # v and E# E =11
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» Varying e, allows us to move between the following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, =0 if u # v and E# E =11
2. Uncorrelated networks (as we have studied so far)
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» Varying e, allows us to move between the following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, =0 if u # v and Z# E =11

2. Uncorrelated networks (as we have studied so far)

For these we must have independence: e, = a,b,.
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» Varying e, allows us to move between the following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, =0 if u # v and Z# E =11

2. Uncorrelated networks (as we have studied so far)
For these we must have independence: e, = a,b,.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.
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1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, =0 if u # v and Z# E =11

2. Uncorrelated networks (as we have studied so far)
For these we must have independence: e, = a,b,.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

» Disassortative networks can be hard to build and
may require constraints on the e,,, .
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Notes:

» Varying e, allows us to move between the following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.

Requires e, =0ifp#vand >’ e, =1.

2. Uncorrelated networks (as we have studied so far)
For these we must have independence: e, = a,b,.

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

» Disassortative networks can be hard to build and
may require constraints on the e,,, .

» Basic story: level of assortativity reflects the degree
to which nodes are connected to nodes within their

group.

Assortativity and
Mixing

General mixing

1he o]
ﬁ' UNIVERSITY |§|
¥ VERMONT 10!

Qv 5of 26


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Correlation coefficient:

» Quantify the level of assortativity with the following
assortativity coefficient [°!:

p_ 2w S~ 2 8B TrE — ||E?|)y
1-22,auby =

where || - ||1 is the 1-norm = sum of a matrix’s entries.
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» Quantify the level of assortativity with the following
assortativity coefficient

p_ 2w S~ 2 8B TrE — ||E?|)y
1-22,auby =

where || - ||1 is the 1-norm = sum of a matrix’s entries.
» TrE is the fraction of edges that are within groups.

» ||E?||; is the fraction of edges that would be within
groups if connections were random.
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» Quantify the level of assortativity with the following
assortativity coefficient

p_ 2w S~ 2 8B TrE — ||E?|)y
1-22,auby =

where || - ||1 is the 1-norm = sum of a matrix’s entries.

» TrE is the fraction of edges that are within groups.

» ||E?||; is the fraction of edges that would be within
groups if connections were random.

» 1 — ||E?||; is a normalization factor SO fy, = 1.
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» Quantify the level of assortativity with the following
assortativity coefficient

p_ 2w S~ 2 8B TrE — ||E?|)y
1-22,auby =

where || - ||1 is the 1-norm = sum of a matrix’s entries.

» TrE is the fraction of edges that are within groups.

» ||E?||; is the fraction of edges that would be within
groups if connections were random.

» 1 — ||E?||; is a normalization factor S0 fya = 1.
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General mixing

» Quantify the level of assortativity with the following
assortativity coefficient

p_ 2w S~ 2 8B TrE — ||E?|)y
1-22,auby =

where || - ||1 is the 1-norm = sum of a matrix’s entries.

v

Tr E is the fraction of edges that are within groups.

||[E?||4 is the fraction of edges that would be within
groups if connections were random.

1 — ||E?||; is a normalization factor s fiax = 1.

v

v

v

When Tre,, =1, wehave r=1. v

\4

When e, = a,b,, we have r =0. v
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Correlation coefficient:

Notes:

» r = —1 is inaccessible if three or more types are
present.
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Correlation coefficient:

Notes:

» r = —1 is inaccessible if three or more types are
present.
» Disassortative networks simply have nodes

connected to unlike nodes—no measure of how
unlike nodes are.
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Correlation coefficient:

Notes:

» r = —1 is inaccessible if three or more types are
present.
» Disassortative networks simply have nodes

connected to unlike nodes—no measure of how
unlike nodes are.

» Minimum value of r occurs when all links between
non-like nodes: Tre,,, = 0.

Assortativity and
Mixing

General mixing

1he o]
ﬁ' UNIVERSITY |§|
¥ VERMONT 10!

Qv 7of 26


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Correlation coefficient:

Notes:

» r = —1 is inaccessible if three or more types are

present.

» Disassortative networks simply have nodes
connected to unlike nodes—no measure of how

unlike nodes are.

» Minimum value of r occurs when all links between

non-like nodes: Tre,,, = 0.

Imin =

where —1 < r, < 0.

=lisslk

1 |1E2||s
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Scalar quantities

» Now consider nodes defined by a scalar integer
quantity.
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» Now consider nodes defined by a scalar integer
quantity. Assortativity by
» Examples: age in years, height in inches, number of degles
friends, ...

» ey = Pr (a randomly chosen edge connects a node
with value j to a node with value k).
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» Now consider nodes defined by a scalar integer
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» a; and by are defined as before.
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» Now consider nodes defined by a scalar integer
quantity.

Assortativity by
» Examples: age in years, height in inches, number of degles
friends, ...
» ey = Pr (a randomly chosen edge connects a node
with value j to a node with value k).
» a; and by are defined as before.
» Can now measure correlations between nodes
based on this scalar quantity using standard
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» Now consider nodes defined by a scalar integer
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» Examples: age in years, height in inches, number of deqree
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» ey = Pr (a randomly chosen edge connects a node
with value j to a node with value k).

» a; and by are defined as before.
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» Now consider nodes defined by a scalar integer
quantitY' Assortativity by
» Examples: age in years, height in inches, number of deqree
friends, ...

» ey = Pr (a randomly chosen edge connects a node
with value j to a node with value k).

» a; and by are defined as before.

» Can now measure correlations between nodes
based on this scalar quantity using standard

sk S (k) — () alk)p
e Ve~ 02/ (k36 — (k)2
» This is the observed normalized deviation from “ﬁ‘fyts}t\n;;g,}: |§|
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Degree-degree correlations
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Degree-degree correlations

» Natural correlation is between the degrees of
connected nodes.

» Now define ej with a slight twist:

€k = Pr(

an edge connects a degree j + 1 node
to a degree k + 1 node
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Degree-degree correlations

» Natural correlation is between the degrees of
connected nodes.

» Now define ej with a slight twist:

( an edge connects a degree j + 1 node )
ejk =[2

o

to a degree k + 1 node

an edge runs between a node of in-degree j
and a node of out-degree k
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connected nodes.

» Now define ej with a slight twist:

S an edge connects a degree j + 1 node
ling to a degree k + 1 node

an edge runs between a node of in-degree j
=P
and a node of out-degree k

» Useful for calculations (as per Ry)
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» Natural correlation is between the degrees of
connected nodes.

» Now define ej with a slight twist:

S an edge connects a degree j + 1 node
ling to a degree k + 1 node

an edge runs between a node of in-degree j
=P
and a node of out-degree k

» Useful for calculations (as per Ry)

» Important: Must separately define Py as the {ej}
contain no information about isolated nodes.

)

Assortativity and
Mixing
Definition

General mixing

Assortativity by

Contagion

References

) B3 (o]
UNIVERSITY |g|
¥-8 vervont 18]

Qv 9of 26


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Degree-degree correlations My
Definition
» Natural correlation is between the degrees of Baporol mixing
connected nodes. e
» Now define ej with a slight twist: Contagion
References

S an edge connects a degree j + 1 node
ling to a degree k + 1 node

an edge runs between a node of in-degree j
=P
and a node of out-degree k
» Useful for calculations (as per Ry)
» Important: Must separately define Py as the {ej}
contain no information about isolated nodes.

» Directed networks still fine but we will assume from
here on that ey = e. P (2]
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Degree-degree correlations

» Notation reconciliation for undirected networks:

P ke B )
) >

where, as before, Ry is the probability that a
randomly chosen edge leads to a node of degree
k+1,and

2
0% = ZF’R,- e [Z/R,] :
j j
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Degree-degree correlations

Error estimate for r:

» Remove edge i and recompute r to obtain r;.
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Degree-degree correlations Mhing o
Definition

General mixing

degree
Error estimate for r: St

References

» Remove edge i and recompute r to obtain r;.

» Repeat for all edges and compute using the jackknife
method (E) [
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Degree-degree correlations

Error estimate for r:

» Remove edge i and recompute r to obtain r;.

» Repeat for all edges and compute using the jackknife
method (E) [

ot — Ol

» Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...
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Measurements of degree-degree correlations ™™

Definition
Group Network Type Size n Assortativity r  Error o, General mixing
a Physics coauthorship undirected 52909 0.363 0.002 Assortativity by
a  Biology coauthorship undirected 1520251 0.127 0.0004 degree
b Mathematics coauthorship  undirected 253339 0.120 0.002 Contagion
Social @© Film actor collaborations undirected 449913 0.208 0.0002
d Company directors undirected 7673 0.276 0.004 References
@ Student relationships undirected 575, —0.029 0.037
f Email address books directed 16 881 0.092 0.004
g Power grid undirected 4941 —0.003 0013
Technological h Internet undirected 10 697 =LY 0.002
i World Wide Web directed 269 504 —0.067 0.0002
j Software dependencies directed 3162 —0.016 0.020
k Protein interactions undirected 2, 1615 —0.156 0.010
1 Metabolic network undirected 765 —0.240 0.007
Biological m  Neural network directed 307 —0.226 0.016
n Marine food web directed 134 —0.263 0.037
o Freshwater food web directed 92 —0.326 0.031

» Social networks tend to be assortative (homophily)

» Technological and biological networks tend to be
disassortative ;qfw,i,m g

o VERMONT 1O

DA~ 120f 26


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Spreading on degree-correlated networks

» Next: Generalize our work for random networks to
degree-correlated networks.
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Spreading on degree-correlated networks

» Next: Generalize our work for random networks to
degree-correlated networks.
» As before, by allowing that a node of degree k is

activated by one neighbor with probability By, we
can handle various problems:
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Spreading on degree-correlated networks

» Next: Generalize our work for random networks to
degree-correlated networks.
» As before, by allowing that a node of degree k is

activated by one neighbor with probability By, we
can handle various problems:

1. find the giant component size.
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Spreading on degree-correlated networks

» Next: Generalize our work for random networks to
degree-correlated networks.

» As before, by allowing that a node of degree k is
activated by one neighbor with probability By, we
can handle various problems:

1. find the giant component size.
2. find the probability and extent of spread for simple
disease models.
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Spreading on degree_corre|ated networks Assortativity and

Mixing

» Next: Generalize our work for random networks to Eh
degree-correlated networks.
» As before, by allowing that a node of degree k is
activated by one neighbor with probability By, we
can handle various problems:
1. find the giant component size.
2. find the probability and extent of spread for simple
disease models.
3. find the probability of spreading for simple threshold
models.
P @
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Spreading on degree-correlated networks

» Goal: Find f, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.
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Spreading on degree-correlated networks

» Goal: Find f, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

» Repeat: a node of degree k is in the game with
probability By .
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Spreading on degree-correlated networks

» Goal: Find f, ; = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

» Repeat: a node of degree k is in the game with
probability By .

» Define By = [Byi].

Assortativity and
Mixing
Definition

General mixing

Assortativity by
degree
Contagion

References

) B (o]
UNIVERSITY |g|
F-¥ vervont 18]

Qv 14 of 26


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Spreading on degree-correlated networks Mhing o

Definition
General mixing

Assortativity by
degree

Contagion

» Goal: Find f, ; = Pr an edge emanating from a TR
degree j + 1 node leads to a finite active
subcomponent of size n.

» Repeat: a node of degree k is in the game with
probability By .

» Define By = [Byi].

» Plan: Find the generating function
Fi(x: Bi) 22520 fax".
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Spreading on degree-correlated networks

» Recursive relationship:

=

Fi(x:B))=x") #(1 — Bkt1.1)
e

+sz_o%l/(f3k+1,1 [Fk(X; 51)}k-
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Spreading on degree-correlated networks

» Recursive relationship:

=

Fi(x:B))=x") #(1 — Bkt1.1)
e

+sz_()7qﬂ;3k+1,1 [Fk(X; 51)}k-

» First term = Pr that the first node we reach is not in
the game.
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Spreading on degree-correlated networks

» Recursive relationship:

=

Fi(x:B))=x") #(1 — Bkt1.1)
e

00 ejk = K
+x) E_Bmm [Fk(X, B; )} :
k=0
» First term = Pr that the first node we reach is not in
the game.

» Second term involves Pr we hit an active node which
has k outgoing edges.
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Assortativity and

Spreading on degree-correlated networks Mixing

» Recursive relationship:

B s € ontagion
Fi(x; By) =’ Z #(1 — Byy1,1) ha

+XZ Bk+11 [Fk X; 31)}k-

» First term = Pr that the first node we reach is not in
the game.

» Second term involves Pr we hit an active node which
has k outgoing edges.

» Next: find average size of active components
reached by following a link from a degree j + 1 node

o Fj/(1 ' B1 ). UV]\IRSIH |g|

¥ VERMONT 10!

o~ 15 of 26


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Spreading on degree-correlated networks

» Differentiate Fj(x; .§1 ), set x = 1, and rearrange.
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Spreading on degree-correlated networks

» Differentiate Fj(x; §1 ), set x = 1, and rearrange.

» We use F(1; By) = 1 which is true when no giant
component exists.
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Assortativity and

Spreading on degree-correlated networks Mg

Definition

General mixing

» Differentiate F;(x; By), set x = 1, and rearrange. el
» We use F(1; By) = 1 which is true when no giant Centagion
References

component exists. We find:

RiF/(1; B) = Z ek Bri1,1 + Z kejBi1,1Fi(1; By).
k=0 k=0
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Assortativity and

Spreading on degree-correlated networks Mixing

Definition

General mixing

» Differentiate ,:j(X; B1 ), set x = 1, and rearrange. Qég?e\*teatx\/\ty by
» We use F(1; By) = 1 which is true when no giant Centagion
References

component exists. We find:

RiF/(1:B1) =Y exBri1,1 + Y keiBri1,1Fi(1; By).
k=0 k=0
» Rearranging and introducing a sneaky dj:

o0

Z (0 Rk — kB+1.1€j) Fi(1: By) Z €k Bky1,1-
k=0
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Spreading on degree-correlated networks

» In matrix form, we have
AE,B1 ﬁ/(1 ; é1) = EB1
where

A } R AR e
|: E,B; 1 k1 jk Tk k+1,1Cjk,

[F(1:By)], = Filt: By,

[Elj 1 k41 = €, @nd [31}“1 = Biy1,1-
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Spreading on degree-correlated networks
» So, in principle at least:

ﬁ/(1 ; §1) = AE;& E§1
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Spreading on degree-correlated networks
» So, in principle at least:

S P e
Fels By)i= AE,E;1 EB;.
» Now: as F'(1; By), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.
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Spreading on degree-correlated networks
» So, in principle at least:
ﬁ/(1 ; §1) = AE,1é1 E§1 i

» Now: as F'(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

» Right at the transition, the average component size
explodes.
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Spreading on degree-correlated networks

» So, in principle at least:

S P e
Fels By)i= AE,§1 EB;.

» Now: as F'(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

» Right at the transition, the average component size
explodes.

» Exploding inverses of matrices occur when their
determinants are 0.
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Assortativity and

Spreading on degree-correlated networks Mixing

» So, in principle at least:

E'(1-B,) — A—1 B
F (1 : B1) = AEB1 EB1. Contagion

» Now: as F'(1; B;), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

» Right at the transition, the average component size
explodes.

» Exploding inverses of matrices occur when their
determinants are 0.

» The condition is therefore:
det AE’ e 0
The (o]
|} el
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Spreading on degree-correlated networks

» General condition details:

detAg 5 = det [dRk—1 — (k — 1)Bx,16j—1,k-1] = 0.
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Spreading on degree-correlated networks

» General condition details:

detAg 5 = det [dRk—1 — (k — 1)Bx,16j—1,k-1] = 0.

» The above collapses to our standard contagion
condition when ey = R;R.
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Spreading on degree-correlated networks Mg

» General condition details:

detAg 5 = det [dRk—1 — (k — 1)Bx,16j—1,k-1] = 0.

Contagion
» The above collapses to our standard contagion
condition when ey = R;R.
» When B; = B1, we have the condition for a simple
disease model’'s successful spread
det [(5ij/(,1 — B(k — 1)ej,17k,1] =0
P @
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Assortativity and

Spreading on degree-correlated networks Mixing

» General condition details:

detAg 5 = det [dRk—1 — (k — 1)Bx,16j—1,k-1] = 0.

Contagion
» The above collapses to our standard contagion
condition when ey = R;R.
» When B; = B1, we have the condition for a simple
disease model’'s successful spread
det [(5ij?/(,1 — B(k — 1)ej,17k,1] =0
» When B; = 1, we have the condition for the
existence of a giant component:
det [(5ij;(_1 s (k = 1)ej_17k_1] —1{0)
| 4 [EeR
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Spreading on degree-correlated networks Mg

» General condition details:

detAg 5 = det [dRk—1 — (k — 1)Bx,16j—1,k-1] = 0.

Contagion
» The above collapses to our standard contagion
condition when ey = R;R.
» When B; = B1, we have the condition for a simple
disease model’'s successful spread
det [(5ij?/(,1 — B(k — 1)ej,17k,1] =0
» When B; = 1, we have the condition for the
existence of a giant component:
det [(5ij;(_1 s (k = 1)ej_17k_1] —1{0)
» Bonusville: We'll find a much better version of this ey 9

set of conditions later... R L on
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Spreading on degree-correlated networks

We'll next find two more pieces:

1. Puig, the probability of starting a cascade
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Spreading on degree-correlated networks

We'll next find two more pieces:

1. Puig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.
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Spreading on degree-correlated networks

We'll next find two more pieces:

1. Puig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Triggering probability:
» Generating function:
Kk

H(x; By) = X Eh [qu (x; By )}
k=0
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Spreading on degree-correlated networks

We'll next find two more pieces:

1. Puig, the probability of starting a cascade

2. S, the expected extent of activation given a small
seed.

Triggering probability:
» Generating function:
e, & A
H(x; By) = XZ Py [qu(x: 51)}
k=0

» Generating function for vulnerable component size is
more complicated.
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Spreading on degree-correlated networks

» Want probability of not reaching a finite component.

Ptrig = Strig =1- H(1v§1)

i _ipk [Fk_1(1;1§1)]k.
k=0
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Spreading on degree-correlated networks

» Want probability of not reaching a finite component.

Ptrig = Strig =1 - H(1v§1)

1 —iPK [Fk_1(1;é1)}k.
k=0

» Last piece: we have to compute Fx_1(1; §1).
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Assortativity and

Spreading on degree-correlated networks Mixing
Definition

General mixing

» Want probability of not reaching a finite component. bl
= Contagion
Ptrig = Strig =1- H(1 ' B1) References

1 —iPK [Fk_1(1;é1)}k.
k=0

» Last piece: we have to compute Fx_1(1; §1).

» Nastier (nonlinear)—we have to solve the recursive
expression we started with when x = 1:
= e
Fi(1: B1) = 3020 7 (1 = Bry1,0)+

o B Fe(1:8)|"
2 k=0 B Brr11 | Fk(1; B1)
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Assortativity and

Spreading on degree-correlated networks Mixing

» Want probability of not reaching a finite component.
Ptrig Tc H(; §1) Contagion
=) ek
=il — Z Py |:Fk_1 (1; By ):| 4
k=0
» Last piece: we have to compute Fx_1(1; §1).
» Nastier (nonlinear)—we have to solve the recursive
expression we started with when x = 1:
s, S
Fi(1:B1) = 3kZ0 % (1 = Birra)+
il %Bk+1,1 [Fk(1§ 91)}
» lterative methods should work here.

k
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Spreading on degree-correlated networks

» Truly final piece: Find final size using approach of
Gleeson °!, a generalization of that used for
uncorrelated random networks.
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Spreading on degree-correlated networks

» Truly final piece: Find final size using approach of
Gleeson °!, a generalization of that used for
uncorrelated random networks.

» Need to compute 0; ;, the probability that an edge
leading to a degree j node is infected at time t.
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Spreading on degree-correlated networks Mg

» Truly final piece: Find final size using approach of
Gleeson '*!, a generalization of that used for
uncorrelated random networks.
Contagion

» Need to compute 0;, the probability that an edge
leading to a degree j node is infected at time t.

» Evolution of edge activity probability:

8jt+1 = Gi(0:) = o + (1 — o)

k

Ze/1k1z< ) (g ) ls

iy, 0
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¥ VERMONT 10!

v 220f 26


http://www.uvm.edu
http://www.uvm.edu/~pdodds

Spreading on degree-correlated networks Mg

» Truly final piece: Find final size using approach of
Gleeson '*!, a generalization of that used for
uncorrelated random networks.

» Need to compute 0; ;, the probability that an edge e
leading to a degree j node is infected at time t.
» Evolution of edge activity probability:
0141 = Gi(0r) = ¢o + (1 — o) X
e S
Il 7 i kSt yey
> 2l Z ( i >9k,t(1 — Ok,1) Bi.
k=1 i=0
» Overall active fraction’s evolution:
(%) k Kk : .
brr1=do+(1=60) d_ P} < ,)%(1 =000 B st
2= P @
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Spreading on degree-correlated networks

» As before, these equations give the actual evolution
of ¢; for synchronous updates.
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Spreading on degree-correlated networks

» As before, these equations give the actual evolution
of ¢; for synchronous updates.
» Contagion condition follows from 6,1 = G(6;).
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Spreading on degree-correlated networks

» As before, these equations give the actual evolution
of ¢; for synchronous updates.

» Contagion condition follows from 6;, 1 = G(6;).

» Expand G around 6 = O.
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Spreading on degree-correlated networks
» As before, these equations give the actual evolution
of ¢; for synchronous updates. oy
» Contagion condition follows from 6,1 = G(6;).
» Expand G around f = 6

i dG
0 t+1 = Gj(0)+

aZG, (0},
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Spreading on degree-correlated networks

>

As before, these equations give the actual evolution
of ¢; for synchronous updates. i
Contagion condition follows from 6;,1 = G(6;).

Expand G around § = 6
dG 92G;(0)

Ojt11 = Gj(6) 2| Z 892 Hk,t+

k=1

If Gj(ﬁ) # 0 for at least one j, always have some
infection.

If Gj(ﬁ) = 0V, want largest eigenvalue

dG;(0)
89’“ ] B 1
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Spreading on degree-correlated networks Mg

» As before, these equations give the actual evolution
of ¢; for synchronous updates.

» Contagion condition follows from 6;, 1 = G(6;).

» Expand G around f = 6 b

dG 92G;(0)

Ojt11 = Gj(6) 2, Z 892 Hk,t+

k=1
> If Gj(ﬁ) # 0 for at least one j, always have some

infection. .

> If Gj(0) = 0V, want largest eigenvalue Dy

» Condition for spreading is therefore dependent on
eigenvalues of this matrix:

gON0) _ i gyg,,
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How the giant component changes with

assortativity:
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from Newman, 2002 [4}

exponential parameter K

100

» More assortative
networks
percolate for lower
average degrees

» But disassortative
networks end up
with higher
extents of
spreading.
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