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Basic idea:
I Random networks with arbitrary degree distributions

cover much territory but do not represent all
networks.

I Moving away from pure random networks was a key
first step.

I We can extend in many other directions and a
natural one is to introduce correlations between
different kinds of nodes.

I Node attributes may be anything, e.g.:
1. degree
2. demographics (age, gender, etc.)
3. group affiliation

I We speak of mixing patterns, correlations, biases...
I Networks are still random at base but now have more

global structure.
I Build on work by Newman [4, 5], and Boguñá and

Serano. [1].
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General mixing between node categories
I Assume types of nodes are countable, and are

assigned numbers 1, 2, 3, . . . .
I Consider networks with directed edges.

eµν = Pr
(

an edge connects a node of type µ
to a node of type ν

)

aµ = Pr(an edge comes from a node of type µ)

bν = Pr(an edge leads to a node of type ν)

I Write E = [eµν ], ~a = [aµ], and ~b = [bν ].
I Requirements:∑

µ ν

eµν = 1,
∑

ν

eµν = aµ, and
∑

µ

eµν = bν .
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Notes:

I Varying eµν allows us to move between the following:

1. Perfectly assortative networks where nodes only
connect to like nodes, and the network breaks into
subnetworks.
Requires eµν = 0 if µ 6= ν and

∑
µ eµµ = 1.

2. Uncorrelated networks (as we have studied so far)
For these we must have independence: eµν = aµbν .

3. Disassortative networks where nodes connect to
nodes distinct from themselves.

I Disassortative networks can be hard to build and
may require constraints on the eµν .

I Basic story: level of assortativity reflects the degree
to which nodes are connected to nodes within their
group.
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Correlation coefficient:

I Quantify the level of assortativity with the following
assortativity coefficient [5]:

r =

∑
µ eµµ −

∑
µ aµbµ

1 −
∑

µ aµbµ
=

Tr E − ||E2||1
1 − ||E2||1

where || · ||1 is the 1-norm = sum of a matrix’s entries.
I Tr E is the fraction of edges that are within groups.
I ||E2||1 is the fraction of edges that would be within

groups if connections were random.
I 1 − ||E2||1 is a normalization factor so rmax = 1.
I When Tr eµµ = 1, we have r = 1. X

I When eµµ = aµbµ, we have r = 0. X
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Correlation coefficient:

Notes:
I r = −1 is inaccessible if three or more types are

present.
I Disassortative networks simply have nodes

connected to unlike nodes—no measure of how
unlike nodes are.

I Minimum value of r occurs when all links between
non-like nodes: Tr eµµ = 0.

I

rmin =
−||E2||1

1 − ||E2||1
where −1 ≤ rmin < 0.
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Scalar quantities
I Now consider nodes defined by a scalar integer

quantity.
I Examples: age in years, height in inches, number of

friends, ...
I ejk = Pr (a randomly chosen edge connects a node

with value j to a node with value k ).
I aj and bk are defined as before.
I Can now measure correlations between nodes

based on this scalar quantity using standard Pearson
correlation coefficient (�):

r =

∑
j k j k(ejk − ajbk )

σa σb
=

〈jk〉 − 〈j〉a〈k〉b√
〈j2〉a − 〈j〉2

a

√
〈k2〉b − 〈k〉2

b

I This is the observed normalized deviation from
randomness in the product jk .
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Degree-degree correlations

I Natural correlation is between the degrees of
connected nodes.

I Now define ejk with a slight twist:

ejk = Pr
(

an edge connects a degree j + 1 node
to a degree k + 1 node

)

= Pr
(

an edge runs between a node of in-degree j
and a node of out-degree k

)
I Useful for calculations (as per Rk )
I Important: Must separately define P0 as the {ejk}

contain no information about isolated nodes.
I Directed networks still fine but we will assume from

here on that ejk = ekj .
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Degree-degree correlations

I Notation reconciliation for undirected networks:

r =

∑
j k j k(ejk − RjRk )

σ2
R

where, as before, Rk is the probability that a
randomly chosen edge leads to a node of degree
k + 1, and

σ2
R =

∑
j

j2Rj −

∑
j

jRj

2

.
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Degree-degree correlations

Error estimate for r :
I Remove edge i and recompute r to obtain ri .
I Repeat for all edges and compute using the jackknife

method (�) [2]

σ2
r =

∑
i

(ri − r)2.

I Mildly sneaky as variables need to be independent
for us to be truly happy and edges are correlated...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Resampling_(statistics)#Jackknife
http://en.wikipedia.org/wiki/Resampling_(statistics)#Jackknife
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Measurements of degree-degree correlations

!m) almost never is. In this paper, therefore, we take an
alternative approach, making use of computer simulation.

We would like to generate on a computer a random net-

work having, for instance, a particular value of the matrix

e jk . !This also fixes the degree distribution, via Eq. "23#.$ In
Ref. !22$ we discussed one possible way of doing this using
an algorithm similar to that of Sec. II C. One would draw

edges from the desired distribution e jk and then join the de-

gree k ends randomly in groups of k to create the network.

"This algorithm has also been discussed recently by

Dorogovtsev, Mendes, and Samukhin !42$.# As we pointed
out, however, this algorithm is flawed because in order to

create a network without any dangling edges the number of

degree k ends must be a multiple of k for all k. It is very

unlikely that these constraints will be satisfied by chance,

and there does not appear to be any simple way of arranging

for them to be satisfied without introducing bias into the

ensemble of graphs. Instead, therefore, we use a Monte Carlo

sampling scheme which is essentially equivalent to the

Metropolis–Hastings method widely used in the mathemati-

cal and social sciences for generating model networks

!58,59$. The algorithm is as follows.

"1# Given the desired edge distribution e jk , we first cal-
culate the corresponding distribution of excess degrees qk
from Eq. "23#, and then invert Eq. "22# to find the degree
distribution:

pk"
qk!1 /k

%
j
q j!1 / j

. "27#

Note that this equation cannot tell us how many vertices

there are of degree zero in the network. This information is

not contained in the edge distribution e jk since no edges

connect to degree-zero vertices, and so must be specified

separately. On the other hand, most of the properties of net-

works with which we will be concerned here do not depend

on the number of degree-zero vertices, so we can safely set

p0"0 for the purposes of this paper.
"2# We draw a degree sequence, a specific set ki of de-

grees of the vertices i"1, . . . ,N , from the distribution pk ,

TABLE II. Size n, degree assortativity coefficient r, and expected error &r on the assortativity, for a

number of social, technological, and biological networks, both directed and undirected. Social networks:

coauthorship networks of "a# physicists and biologists !46$ and "b# mathematicians !47$, in which authors are
connected if they have coauthored one or more articles in learned journals; "c# collaborations of film actors

in which actors are connected if they have appeared together in one or more movies !5,7$; "d# directors of
fortune 1000 companies for 1999, in which two directors are connected if they sit on the board of directors

of the same company !48$; "e# romantic "not necessarily sexual# relationships between students at a U.S. high
school !49$; "f# network of email address books of computer users on a large computer system, in which an
edge from user A to user B indicates that B appears in A’s address book !50$. Technological networks: "g#
network of high voltage transmission lines in the Western States Power Grid of the United States !5$; "h#
network of direct peering relationships between autonomous systems on the Internet, April 2001 !51$; "i#
network of hyperlinks between pages in the World Wide Web domain nd.edu, circa 1999 !52$; "j# network of
dependencies between software packages in the GNU/Linux operating system, in which an edge from pack-

age A to package B indicates that A relies on components of B for its operation. Biological networks: "k#
protein-protein interaction network in the yeast S. Cerevisiae !53$; "l# metabolic network of the bacterium E.

Coli !54$; "m# neural network of the nematode worm C. Elegans !5,55$; tropic interactions between species
in the food webs of "n# Ythan Estuary, Scotland !56$ and "o# Little Rock Lake, Wisconsin !57$.

Group Network Type Size n Assortativity r Error &r

a Physics coauthorship undirected 52 909 0.363 0.002

a Biology coauthorship undirected 1 520 251 0.127 0.0004

b Mathematics coauthorship undirected 253 339 0.120 0.002

Social c Film actor collaborations undirected 449 913 0.208 0.0002

d Company directors undirected 7 673 0.276 0.004

e Student relationships undirected 573 !0.029 0.037

f Email address books directed 16 881 0.092 0.004

g Power grid undirected 4 941 !0.003 0.013

Technological h Internet undirected 10 697 !0.189 0.002

i World Wide Web directed 269 504 !0.067 0.0002

j Software dependencies directed 3 162 !0.016 0.020

k Protein interactions undirected 2 115 !0.156 0.010

l Metabolic network undirected 765 !0.240 0.007

Biological m Neural network directed 307 !0.226 0.016

n Marine food web directed 134 !0.263 0.037

o Freshwater food web directed 92 !0.326 0.031

MIXING PATTERNS IN NETWORKS PHYSICAL REVIEW E 67, 026126 "2003#

026126-7

I Social networks tend to be assortative (homophily)
I Technological and biological networks tend to be

disassortative
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Spreading on degree-correlated networks

I Next: Generalize our work for random networks to
degree-correlated networks.

I As before, by allowing that a node of degree k is
activated by one neighbor with probability Bk1, we
can handle various problems:

1. find the giant component size.
2. find the probability and extent of spread for simple

disease models.
3. find the probability of spreading for simple threshold

models.
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Spreading on degree-correlated networks

I Goal: Find fn,j = Pr an edge emanating from a
degree j + 1 node leads to a finite active
subcomponent of size n.

I Repeat: a node of degree k is in the game with
probability Bk1.

I Define ~B1 = [Bk1].
I Plan: Find the generating function

Fj(x ; ~B1) =
∑∞

n=0 fn,jxn.
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Spreading on degree-correlated networks

I Recursive relationship:

Fj(x ; ~B1) = x0
∞∑

k=0

ejk

Rj
(1 − Bk+1,1)

+ x
∞∑

k=0

ejk

Rj
Bk+1,1

[
Fk (x ; ~B1)

]k
.

I First term = Pr that the first node we reach is not in
the game.

I Second term involves Pr we hit an active node which
has k outgoing edges.

I Next: find average size of active components
reached by following a link from a degree j + 1 node
= F ′

j (1; ~B1).
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has k outgoing edges.

I Next: find average size of active components
reached by following a link from a degree j + 1 node
= F ′

j (1; ~B1).
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Spreading on degree-correlated networks

I Differentiate Fj(x ; ~B1), set x = 1, and rearrange.

I We use Fk (1; ~B1) = 1 which is true when no giant
component exists. We find:

RjF ′
j (1; ~B1) =

∞∑
k=0

ejkBk+1,1 +
∞∑

k=0

kejkBk+1,1F ′
k (1; ~B1).

I Rearranging and introducing a sneaky δjk :

∞∑
k=0

(
δjkRk − kBk+1,1ejk

)
F ′

k (1; ~B1) =
∞∑

k=0

ejkBk+1,1.
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Spreading on degree-correlated networks

I In matrix form, we have

AE,~B1
~F ′(1; ~B1) = E~B1

where [
AE,~B1

]
j+1,k+1

= δjkRk − kBk+1,1ejk ,[
~F ′(1; ~B1)

]
k+1

= F ′
k (1; ~B1),

[E]j+1,k+1 = ejk , and
[
~B1

]
k+1

= Bk+1,1.
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Spreading on degree-correlated networks

I So, in principle at least:

~F ′(1; ~B1) = A−1
E,~B1

E~B1.

I Now: as ~F ′(1; ~B1), the average size of an active
component reached along an edge, increases, we
move towards a transition to a giant component.

I Right at the transition, the average component size
explodes.

I Exploding inverses of matrices occur when their
determinants are 0.

I The condition is therefore:

det AE,~B1
= 0

.
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Spreading on degree-correlated networks
I General condition details:

det AE,~B1
= det

[
δjkRk−1 − (k − 1)Bk ,1ej−1,k−1

]
= 0.

I The above collapses to our standard contagion
condition when ejk = RjRk .

I When ~B1 = B~1, we have the condition for a simple
disease model’s successful spread

det
[
δjkRk−1 − B(k − 1)ej−1,k−1

]
= 0.

I When ~B1 = ~1, we have the condition for the
existence of a giant component:

det
[
δjkRk−1 − (k − 1)ej−1,k−1

]
= 0.

I Bonusville: We’ll find a much better version of this
set of conditions later...
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Spreading on degree-correlated networks

We’ll next find two more pieces:

1. Ptrig, the probability of starting a cascade
2. S, the expected extent of activation given a small

seed.

Triggering probability:

I Generating function:

H(x ; ~B1) = x
∞∑

k=0

Pk

[
Fk−1(x ; ~B1)

]k
.

I Generating function for vulnerable component size is
more complicated.
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Spreading on degree-correlated networks

I Want probability of not reaching a finite component.

Ptrig = Strig =1 − H(1; ~B1)

=1 −
∞∑

k=0

Pk

[
Fk−1(1; ~B1)

]k
.

I Last piece: we have to compute Fk−1(1; ~B1).
I Nastier (nonlinear)—we have to solve the recursive

expression we started with when x = 1:
Fj(1; ~B1) =

∑∞
k=0

ejk
Rj

(1 − Bk+1,1)+∑∞
k=0

ejk
Rj

Bk+1,1

[
Fk (1; ~B1)

]k
.

I Iterative methods should work here.
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Spreading on degree-correlated networks
I Truly final piece: Find final size using approach of

Gleeson [3], a generalization of that used for
uncorrelated random networks.

I Need to compute θj,t , the probability that an edge
leading to a degree j node is infected at time t .

I Evolution of edge activity probability:

θj,t+1 = Gj(~θt) = φ0 + (1 − φ0)×

∞∑
k=1

ej−1,k−1

Rj−1

k−1∑
i=0

(
k − 1

i

)
θ i

k ,t(1 − θk ,t)
k−1−iBki .

I Overall active fraction’s evolution:

φt+1 = φ0 +(1−φ0)
∞∑

k=0

Pk

k∑
i=0

(
k
i

)
θ i

k ,t(1−θk ,t)
k−iBki .
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Spreading on degree-correlated networks
I As before, these equations give the actual evolution

of φt for synchronous updates.
I Contagion condition follows from ~θt+1 = ~G(~θt).
I Expand ~G around ~θ0 = ~0.

θj,t+1 = Gj(~0)+
∞∑

k=1

∂Gj(~0)

∂θk ,t
θk ,t+

1
2!

∞∑
k=1

∂2Gj(~0)

∂θ2
k ,t

θ2
k ,t+. . .

I If Gj(~0) 6= 0 for at least one j , always have some
infection.

I If Gj(~0) = 0∀ j , want largest eigenvalue
[

∂Gj (~0)
∂θk,t

]
> 1.

I Condition for spreading is therefore dependent on
eigenvalues of this matrix:

∂Gj(~0)

∂θk ,t
=

ej−1,k−1

Rj−1
(k − 1)Bk1

Insert question from assignment 9 (�)
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How the giant component changes with
assortativity:

Equation (7) diverges at the point at which the deter-
minant of A is zero. This point marks the phase transition
at which a giant component forms in our graph. By
considering the behavior of Eq. (7) close to the transition,
where hsi must be large and positive in the absence of a
giant component, we deduce that a giant component ex-
ists in the network when detA > 0. This is the appropriate
generalization for a network with assortative mixing of
the criterion of Molloy and Reed [16] for the existence of
a giant component.

To calculate the size S of the giant component, we
define uk to be the probability that an edge connected to
a vertex of remaining degree k leads to another vertex that
does not belong to the giant component. Then

S ! 1" p0 "
X

1

k!1

pkukk"1; uj !
P

k ejku
k
k

P

k ejk
: (8)

To test these results and to help form a more complete
picture of the properties of assortatively mixed networks,
we have also performed computer simulations, generating
networks with given values of ejk and measuring their
properties directly. Generating such networks is not en-
tirely trivial. One cannot simply draw a set of degree pairs
#ji; ki$ for edges i from the distribution ejk, since such a
set would almost certainly fail to satisfy the basic topo-
logical requirement that the number of edges ending at
vertices of degree k must be a multiple of k. Instead,
therefore we propose the following Monte Carlo algo-
rithm for generating graphs.

First, we generate a random graph with the desired
degree distribution according to the prescription given
in Ref. [16]. Then we apply a Metropolis dynamics to
the graph in which on each step we choose at random two
edges, denoted by the vertex pairs, #v1; w1$ and #v2; w2$,
that they connect. We measure the remaining degrees
#j1; k1$ and #j2; k2$ for these vertex pairs, and then replace
the edges with two new ones #v1; v2$ and #w1; w2$ with
probability min%1; #ej1j2ek1k2$=#ej1k1ej2k2$&. This dynamics
conserves the degree sequence, is ergodic on the set of
graphs having that degree sequence, and, with the choice
of acceptance probability above, satisfies detailed balance
for state probabilities

Q

i ejiki , and hence has the required
edge distribution ejk as its fixed point.

As an example, consider the symmetric binomial form

ejk ! N e"#j'k$=!
!"

j' k
j

#

pjqk '
"

j' k
k

#

pkqj
$

; (9)

where p' q ! 1, ! > 0, and N ! 1
2 #1" e"1=!$ is a

normalizing constant. (The binomial probabilities p and
q should not be confused with the quantities pk and qk
introduced earlier.) This distribution is chosen for ana-
lytic tractability, although its behavior is also quite natu-
ral: the distribution of the sum j' k of the degrees at the
ends of an edge falls off as a simple exponential, while
that sum is distributed between the two ends binomially,

the parameter p controlling the assortative mixing. From
Eq. (3), the value of r is

r ! 8pq" 1

2e1=! " 1' 2#p" q$2
; (10)

which can take both positive and negative values, passing
through zero when p ! p0 ! 1

2 " 1
4

%%%

2
p

! 0:1464 . . . .
In Fig. 1 we show the size of the giant component for

graphs of this type as a function of the degree scale
parameter !, from both our numerical simulations and
the exact solution above. As the figure shows, the two are
in good agreement. The three curves in the figure are for
p ! 0:05, where the graph is disassortative, p ! p0,
where it is neutral (neither assortative nor disassortative),
and p ! 0:5, where it is assortative.

As ! becomes large we see the expected phase tran-
sition at which a giant component forms. There are two
important points to notice about the figure. First, the
position of the phase transition moves lower as the graph
becomes more assortative. That is, the graph percolates
more easily, creating a giant component, if the high-
degree vertices preferentially associate with other high-
degree ones. Second, notice that, by contrast, the size of
the giant component for large ! is smaller in the assorta-
tively mixed network.

These findings are intuitively reasonable. If the net-
work mixes assortatively, then the high-degree vertices
will tend to stick together in a subnetwork or core group
of higher mean degree than the network as a whole. It is
reasonable to suppose that percolation would occur earlier
within such a subnetwork. Conversely, since percolation
will be restricted to this subnetwork, it is not surprising
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FIG. 1. Size of the giant component as a fraction of graph
size for graphs with the edge distribution given in Eq. (9). The
points are simulation results for graphs of N ! 100 000 verti-
ces, while the solid lines are the numerical solution of Eq. (8).
Each point is an average over ten graphs; the resulting statis-
tical errors are smaller than the symbols. The values of p are
0.5 (circles), p0 ! 0:146 . . . (squares), and 0:05 (triangles).
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I More assortative
networks
percolate for lower
average degrees

I But disassortative
networks end up
with higher
extents of
spreading.
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