

かへで 15 of 126

の へ で 19 of 126

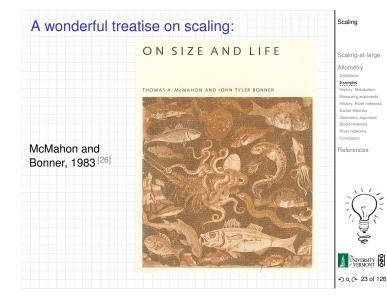
The biggert living things (loft) All the surger		
The biggest living things (<i>left</i>). All the organ- isms are drawn to the same scale. 1, The		
largest flying bird (albatross); 2, the largest known animal (the blue whale), 3, the larg-		
est extinct land mammal (Baluchitherium)		
with a human figure shown for scale; 4, the tallest living land animal (giraffe); 5, Ty-		
rannosaurus; 6, Diplodocus; 7, one of the largest flying reptiles (<i>Pteranodon</i>); 8, the		
largest extinct snake; 9, the length of		
the largest tapeworm found in man; 10,		
the largest living reptile (West African croc-		
odile); 11, the largest extinct lizard; 12, the		
largest extinct bird (Aepyornis); 13, the		
largest jellyfish (Cyanea); 14, the largest liv-		
ing lizard (Komodo dragon); 15, sheep; 16,		
the largest bivalve mollusc (<i>Tridacna</i>); 17;		
the largest fish (whale shark); 18, horse;		
19. the largest crustacean (Japanese spider		
crab); 20, the largest sea scorpion (Euryp-		
terid); 21, large tarpon; 22, the largest lob-		
ster; 23, the largest mollusc (deep-water		
squid, Architeuthis); 24, ostrich; 25, the		
lower 105 feet of the largest organism		
(giant sequoia), with a 100-foot larch su-		
perposed.		
p. 2, McMahon and Bonner ^[26]		

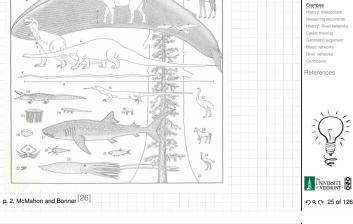
Scaling-at-large

Allometry

Definitions

Isometry versus Allometry:


- Isometry = 'same measure'
- Allometry = 'other measure'


Confusingly, we use allometric scaling to refer to both:

- 1. nonlinear scaling (e.g., $x \propto y^{1/3}$)
- 2. and the relative scaling of different measures (e.g., resting heart rate as a function of body size)

VERMONT わくで 21 of 126

For the following slide:

13 13

6000

The many scales of life:

Medium-sized creatures (above). 1, Dog; 2, common herring; 3, the largest egg (Aepyornis); 4, song thrush with egg; 5, the smallest bird (hummingbird) with egg; 6, queen bee; 7, common cockroach; 8, the largest stick insect; 9, the largest polyp (Branchiocerianthus); 10, the smallest mammal (flying shrew); 11, the smallest vertebrate (a tropical frog); 12, the largest frog (goliath frog); 13, common grass frog; 14, house mouse; 15, the largest land snail (Achatina) with egg; 16, common snail; 17, the largest beetle (goliath beetle); 18, human hand; 19, the largest starfish (Luidia); 20, the largest free-moving protozoan (an extinct nummulite). p. 2, McMahon and Bonner [26]

Allometry Examples Reference

VERMONT

わくで 26 of 126

Scaling

Scaling-at-large

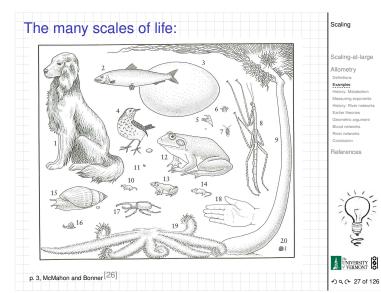
Scaling

Scaling-at-large

Allometry

Reference

VERMONT

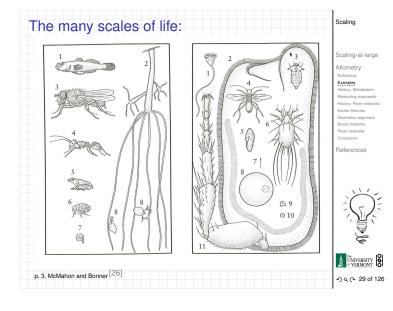

• 𝔍 𝔄 24 of 126

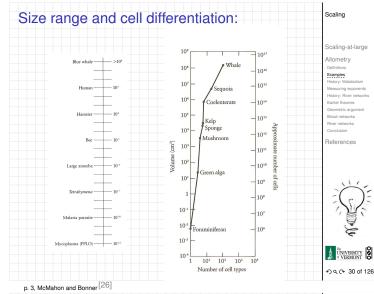
Scaling-at-large

Allometry

Scaling

Examples




For the following slide:

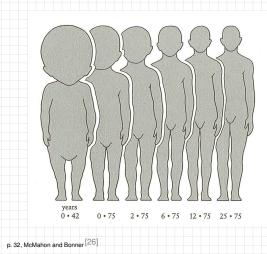
Small, "naked-eye" creatures (*lower left*). 1, One of the smallest fishes (*Trimmatom nanus*); 2, common brown hydra, expanded; 3, housefly; 4, medium-sized ant; 5, the smallest vertebrate (a tropical frog, the same as the one numbered 11 in the figure *above*); 6, flea (*Xenopsylla cheopis*); 7, the smallest land snail; 8, common water flea (*Daphnia*).

The smallest "naked-eye" creatures and some large microscopic animals and cells (*below right*). 1, *Vorticella*, a ciliate; 2, the largest ciliate protozoan (*Bursaria*); 3, the smallest many-celled animal (a rotifer); 4, smallest flying insect (*Elaphis*); 5, another ciliate (*Paramecium*); 6, cheese mite; 7, human sperm; 8, human ovum; 9, dysentery amoeba; 10, human liver cell; 11, the foreleg of the flea (numbered 6 in the figure to the *left*).

p. 2, McMahon and Bonner^[26]

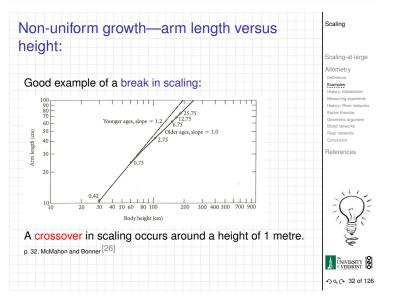
Non-uniform growth:

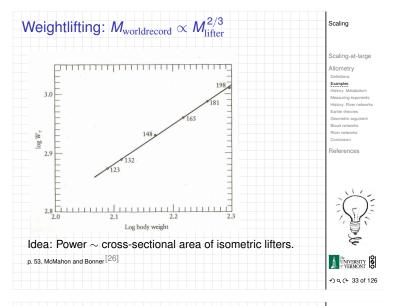
Scaling


Scaling-at-large

VERMONT

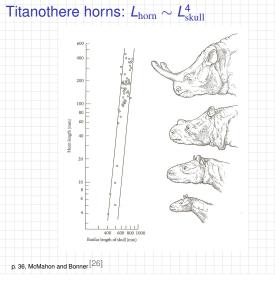
わへで 28 of 126

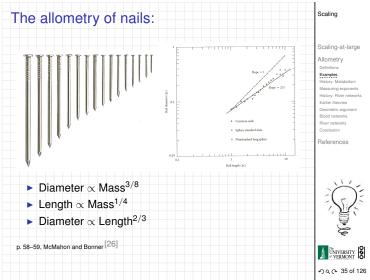

Allometry

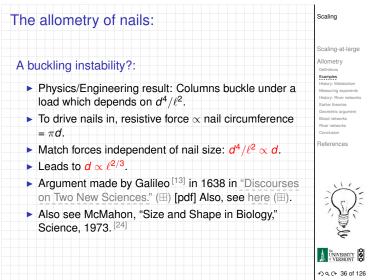

Examples

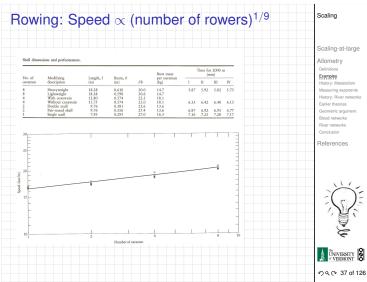
Scaling Scaling-at-large Allometry Definition Scartigi Hastory, Matabolism Masary agroents Hastory, Their networks Constation References

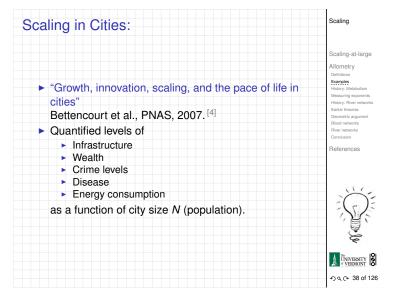
Scaling


Scaling-at-large


VERMONT


わへで 34 of 126


Allometry


Examples

Scaling Scaling in Cities:

Y	β	95% CI	Adj-R ²	Observations	Country-year	Allometry
New patents	1.27	[1.25,1.29]	0.72	331	U.S. 2001	Definitions
Inventors	1.25	[1.22.1.27]	0.76	331	U.S. 2001	Examples
Private R&D employment	1.34	[1.29, 1.39]	0.92	266	U.S. 2002	History: Meta
"Supercreative" employment	1.15	[1.11,1.18]	0.89	287	U.S. 2003	Measuring ex
R&D establishments	1.19	[1.14,1.22]	0.77	287	U.S. 1997	History: Rive
R&D employment	1.26	[1.18,1.43]	0.93	295	China 2002	Earlier theori
Total wages	1.12	[1.09,1.13]	0.96	361	U.S. 2002	Geometric ar
Total bank deposits	1.08	[1.03,1.11]	0.91	267	U.S. 1996	Blood networ
GDP	1.15	[1.06,1.23]	0.96	295	China 2002	River network
GDP	1.26	[1.09,1.46]	0.64	196	EU 1999-2003	Conclusion
GDP	1.13	[1.03,1.23]	0.94	37	Germany 2003	Reference
Total electrical consumption	1.07	[1.03,1.11]	0.88	392	Germany 2002	
New AIDS cases	1.23	[1.18,1.29]	0.76	93	U.S. 2002-2003	
Serious crimes	1.16	[1.11, 1.18]	0.89	287	U.S. 2003	
Total housing	1.00	[0.99,1.01]	0.99	316	U.S. 1990	
Total employment	1.01	[0.99,1.02]	0.98	331	U.S. 2001	
Household electrical consumption	1.00	[0.94,1.06]	0.88	377	Germany 2002	
Household electrical consumption	1.05	[0.89,1.22]	0.91	295	China 2002	-(
Household water consumption	1.01	[0.89,1.11]	0.96	295	China 2002	-1
Gasoline stations	0.77	[0.74,0.81]	0.93	318	U.S. 2001	1,5
Gasoline sales	0.79	[0.73,0.80]	0.94	318	U.S. 2001	Ť.
Length of electrical cables	0.87	[0.82,0.92]	0.75	380	Germany 2002	5
Road surface	0.83	[0.74.0.92]	0.87	29	Germany 2002	4

Scaling

Allometry

Example

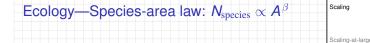
References

Scaling-at-large

Scaling in Cities:

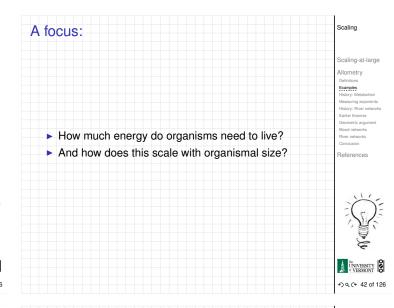
Intriguing findings:

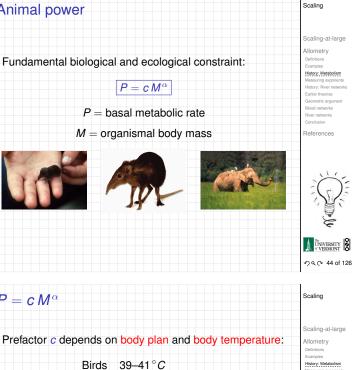
- Global supply costs scale sublinearly with N ($\beta < 1$). Returns to scale for infrastructure.
- Total individual costs scale linearly with N ($\beta = 1$) Individuals consume similar amounts independent of city size.
- Social quantities scale superlinearly with $N (\beta > 1)$ Creativity (# patents), wealth, disease, crime, ...

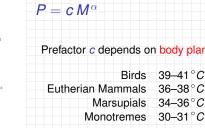

Density doesn't seem to matter...

 Surprising given that across the world, we observe two orders of magnitude variation in area covered by agglomerations of fixed populations.

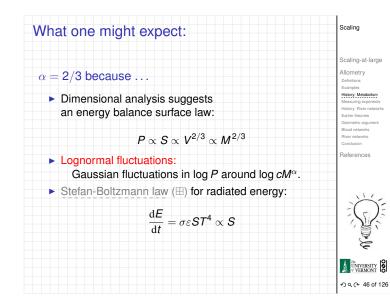
Allometry


Example


Allegedly (data is messy):

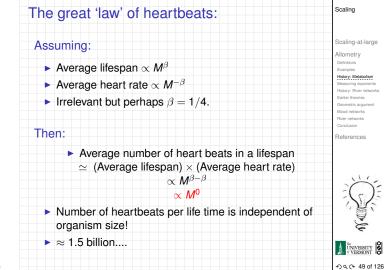

- On islands: $\beta \approx 1/4$.
- On continuous land: $\beta \approx 1/8$.

Animal power



References

わへで 45 of 126


The prevailing belief of the church of

 $\alpha = 3/4$

 $P \propto M^{3/4}$

Huh?

quarterology

History

Scaling

Scaling-at-large

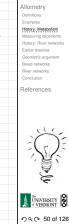
Allometry Definitions Examples History: Metabolis

leference

VERMONT

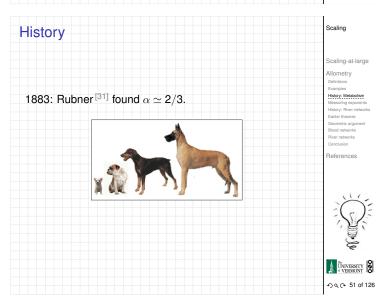
•⊃ < C + 47 of 126

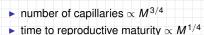
Scaling-at-large


Allometry

listory: Mel

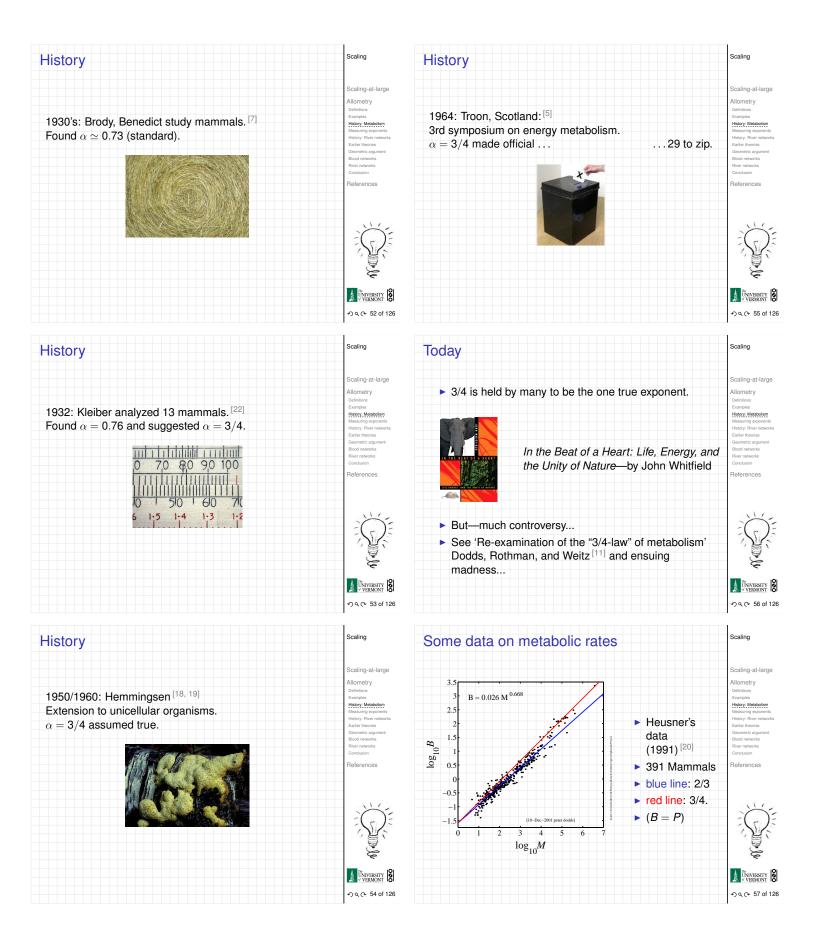
Scaling

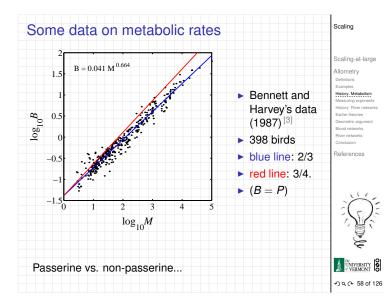

1840's: Sarrus and Rameaux^[33] first suggested $\alpha = 2/3$.



Scaling

Scaling-at-large


Related putative scalings:



- heart rate $\propto M^{-1/4}$
- cross-sectional area of aorta $\propto M^{3/4}$
- population density $\propto M^{-3/4}$

Linear regression

Scaling

Allometry

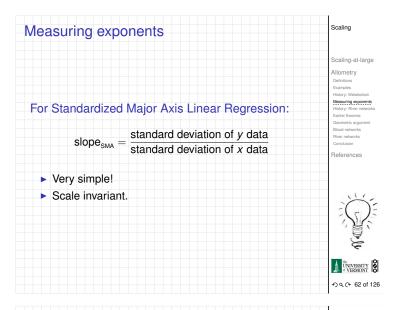
Scaling-at-large

Measuring exponent

Reference

Important:

- Ordinary Least Squares (OLS) Linear regression is only appropriate for analyzing a dataset $\{(x_i, y_i)\}$ when we know the x_i are measured without error.
- Here we assume that measurements of mass M have less error than measurements of metabolic rate B.
- Linear regression assumes Gaussian errors.



Scaling

Scaling-at-large

	Allottietry
	Definitions
	Examples
More on regression:	History: Metabolism Measuring exponents History: River networks Earlier theories
If (a) we don't know what the errors of either variable are,	Geometric argument Blood networks
or (b) no variable can be considered independent,	River networks Conclusion
then we need to use	References
Standardized Major Axis Linear Regression. [32, 30]	
(aka Reduced Major Axis = RMA.)	· ····································
	家
	A.
	VERMONT
	わくひ 61 of 126

Measuring exponents

r

Relationship to ordinary least squares regression is simple:

 $slope_{SMA} = r^{-1} \times slope_{OLS y \text{ on } x}$ = $r \times slope_{OLS x \text{ on } y}$

where *r* = standard correlation coefficient:

$$=\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}\sqrt{\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}}}$$

Scaling-at-large Allometry Definitions Examples History: Metabolism Measuring exponents History: River networks Geometric argument Blood networks River networks River networks Conclusion

References

Scaling

Scaling

Heusner's data, 1991 (391 Mammals)

range of M	N	\hat{lpha}	Scaling-at-large
≤ 0.1 kg	167	0.678 ± 0.038	Allometry Definitions Examples History: Metabolism Measuring exponents
\leq 1 kg	276	0.662 ± 0.032	History: River networks Earlier theories Geometric argument Blood networks River networks
\leq 10 kg	357	$\textbf{0.668} \pm \textbf{0.019}$	Conclusion
≤ 25 kg	366	0.669 ± 0.018	
≤ 35 kg	371	0.675 ± 0.018	
\leq 350 kg	389	0.706 ± 0.016	all
\leq 3670 kg	391	0.710 ± 0.021	
			ታ ዓ ርጉ 64 of 126

Bennett a	and Harve	ey, 19	987 (398 birds)	Scaling
	M _{max}	N	<u> </u>	Scaling-at-large
	≤ 0.032	162	0.636 ± 0.103	Allometry Definitions Examples History: Metabolism
	≤ 0.1	236	0.602 ± 0.060	Measuring exponents History: River networks Earlier theories
	≤ 0.32	290	0.607 ± 0.039	Geometric argument Blood networks River networks Conclusion
	<u>≤</u> 1	334	0.652 ± 0.030	References
	≤ 3.2	371	0.655 ± 0.023	
	≤ 10	391	0.664 ± 0.020	
	≤ 32	396	0.665 ± 0.019	e la companya de
	≤ 100	398	$\textbf{0.664} \pm \textbf{0.019}$	Dec 65 of 12

VINIVERSITY . (℃ 65 of 126

Scaling

Allometry

Measuring exponent

Revisiting	g the	e past	—mam	mals	Scaling
<i>M</i> ≤ 10 kg:	N	â	p _{2/3}	P _{3/4}	Scaling-a Allometry
Kleiber	5	0.667	0.99	0.088	Examples History: Meta Measuring ex History: River
Brody	26	0.709	< 10 ⁻³	< 10 ⁻³	Earlier theorie Geometric an Blood network River network
Heusner	357	0.668	0.91	< 10 ⁻¹⁵	Conclusion
<i>M</i> ≥ 10 kg:	N	$\hat{\alpha}$	p _{2/3}	<i>p</i> _{3/4}	
Kleiber	8	0.754	< 10 ⁻⁴	0.66	=``
Brody	9	0.760	< 10 ⁻³	0.56	and the second s
Heusner	34	0.877	< 10 ⁻¹²	< 10 ⁻⁷	A Period
					9966

Fluctuations—Things look normal... Scaling [07-Nov-1999 peter dodds] Scaling-at-large Scaling-at-large Allometry 20 hins 3.5 Measuring exponer $P(\log_{10}B/M^{2/3})$ 2.5 1.5 References 0 $\log_{10}^{10} \frac{10}{B/M^{2/3}}$ 05 • $P(B|M) = 1/M^{2/3}f(B/M^{2/3})$ Use a Kolmogorov-Smirnov test. VERMONT つへで 69 of 126

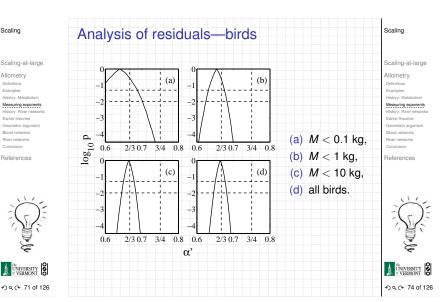
Analysis of residuals	Scaling
 Presume an exponent of your choice: 2/3 or 3/4. Fit the prefactor (log₁₀ c) and then examine the residuals: 	Scaling-at-large Allometry Definitions Examples History: Metabolism Metaryr Rive rebards Earlie theories Calometric argument Biodin retworks
$r_i = \log_{10} B_i - (\alpha' \log_{10} M_i - \log_{10} c).$	River networks Conclusion References
 H₀: residuals are uncorrelated H₁: residuals are correlated. Measure the correlations in the residuals and compute a <i>p</i>-value. 	
	DAC 70 of 126

Hypothesis testing

Test to see if α' is consistent with our data $\{(M_i, B_i)\}$:

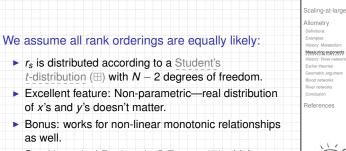
 $H_0: \alpha = \alpha' \text{ and } H_1: \alpha \neq \alpha'.$

- Assume each B_i (now a random variable) is normally distributed about $\alpha' \log_{10} M_i + \log_{10} c$.
- Follows that the measured α for one realization obeys a t distribution with N - 2 degrees of freedom.
- Calculate a *p*-value: probability that the measured α is as least as different to our hypothesized α' as we observe.
- See, for example, DeGroot and Scherish, "Probability and Statistics." [8]



Revisiting the	ne pa	ast—m	ammals	3	Scaling
					Scaling-at-large
Full mass ran	ae:				Allometry Definitions Examples
	N	$\hat{\alpha}$	$p_{2/3}$	<i>p</i> _{3/4}	History: Metabolism Measuring exponents History: River networ
Kleiber	13	0.738	< 10 ⁻⁶	0.11	Earlier theories Geometric argument Blood networks River networks
Brody	35	0.718	< 10 ⁻⁴	< 10 ⁻²	References
Heusner	391	0.710	< 10 ⁻⁶	< 10 ⁻⁵	
Bennett and Harvey	398	0.664	0.69	< 10 ⁻¹⁵	Ŷ

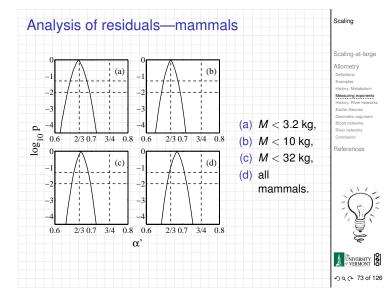
• 𝔍 𝒎 67 of 126

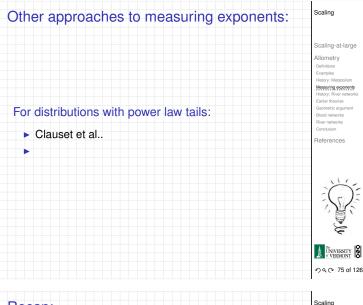

References

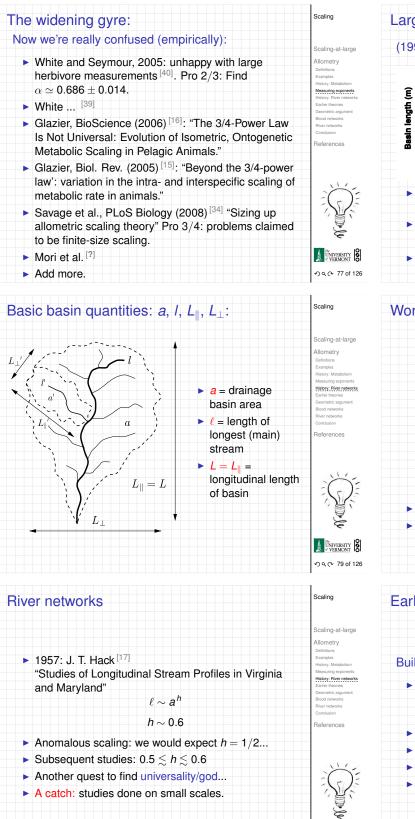
Analysis of residuals	Scaling
 We use the spiffing Spearman Rank-Order Correlation Cofficient (⊞) Basic idea: Given {(x_i, y_i)}, rank the {x_i} and {y_i} separately from smallest to largest. Call these ranks R_i and S_i. Now calculate correlation coefficient for ranks, r_s: 	Scaling-at-large Definitions Examples History: Metabolism Mesouring esponents History: River networks Cannetric argument Blood networks Cancelus argument Blood networks Cancelus argument Blood networks Cancelus argument Blood networks Cancelus argument Blood networks Cancelus argument argument argument argument Blood networks Cancelus argument argument argument argument argument argument Blood networks Cancelus argument argum
$r_s = \frac{\sum_{i=1}^n (R_i - \bar{R})(S_i - \bar{S})}{\sqrt{\sum_{i=1}^n (R_i - \bar{R})^2} \sqrt{\sum_{i=1}^n (S_i - \bar{S})^2}}$ Perfect correlation: <i>x_i</i> 's and <i>y_i</i> 's both increase monotonically.	

Analysis of residuals

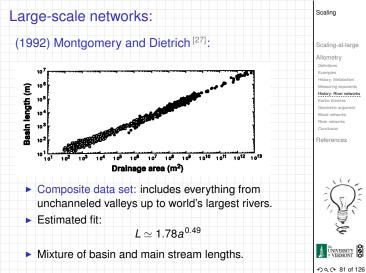
as well.

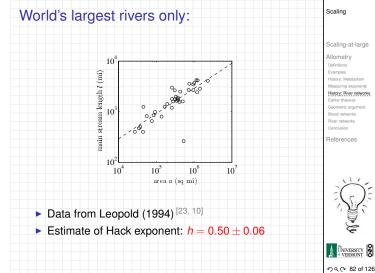



► See Numerical Recipes in C/Fortran (⊞) which contains many good things. [29]

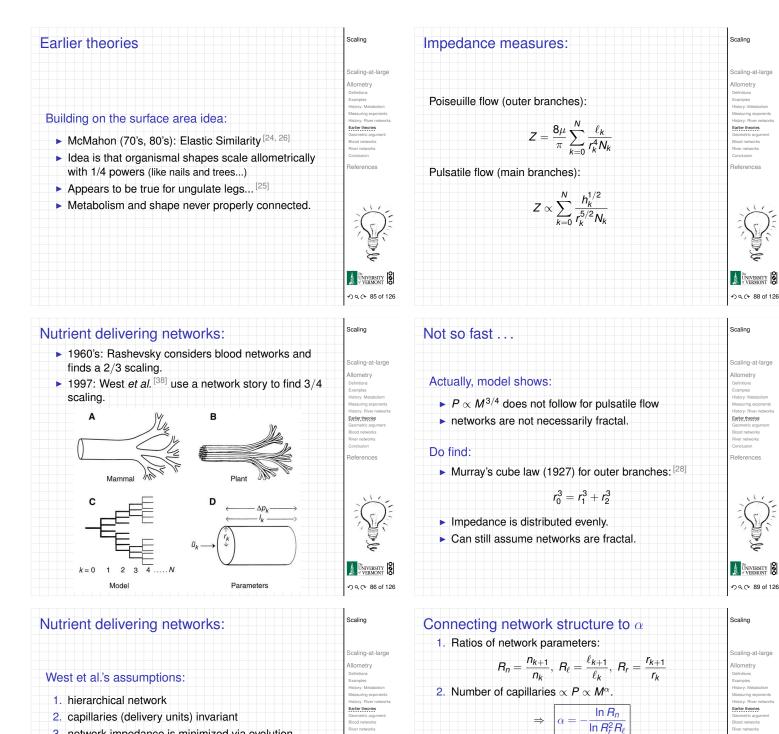

•⊃ < C + 72 of 126

Scaling





Recap:	Scaling
	Scaling-at-large
 So: The exponent α = 2/3 works for all birds and mammals up to 10–30 kg 	Allometry Definitions Examples History: Metabolism Messuring exponents History: River networks Earlier theories
 For mammals > 10–30 kg, maybe we have a new scaling regime 	Geometric argument Blood networks Pliver networks Conclusion
 Possible connection?: Economos (1983)—limb length break in scaling around 20 kg^[12] But see later: non-isometric growth leads to lower 	References
metabolic scaling. Oops.	N. C.
	VERMONT
	୬୦୯ 76 of 126



2 WINVERSITY 8

Earlier theories	Scaling
Building on the surface area idea	Allometry Definitions Examples History: Metabolism Measuring opponents
 Blum (1977)^[6] speculates on four-dimensional biology: P \propto M^{(d-1)/d} 	History: River networks Earlier theories Geometric argument Blood networks River networks Conclusion
 d = 3 gives α = 2/3 d = 4 gives α = 3/4 	References
 So we need another dimension Obviously, a bit silly ^[35] 	N. C.
	VERMONT

arlier the

eference

UNIVERSITY

の q で 90 of 126

- 2. capillaries (delivery units) invariant
- 3. network impedance is minimized via evolution

Claims:

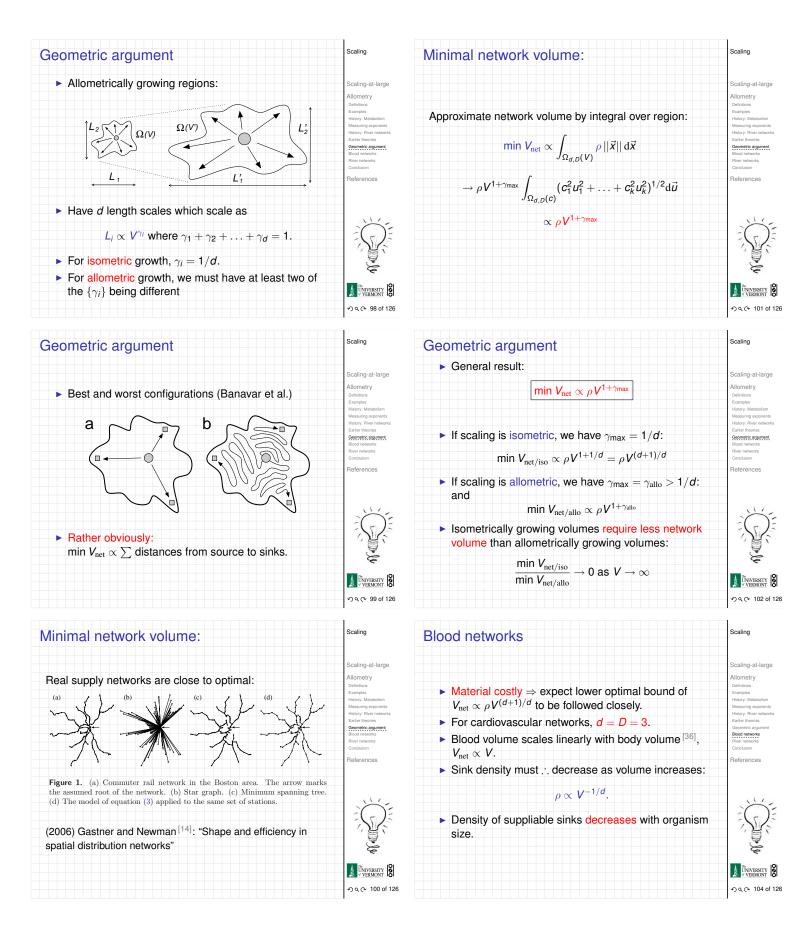
- \triangleright $P \propto M^{3/4}$
- networks are fractal
- quarter powers everywhere

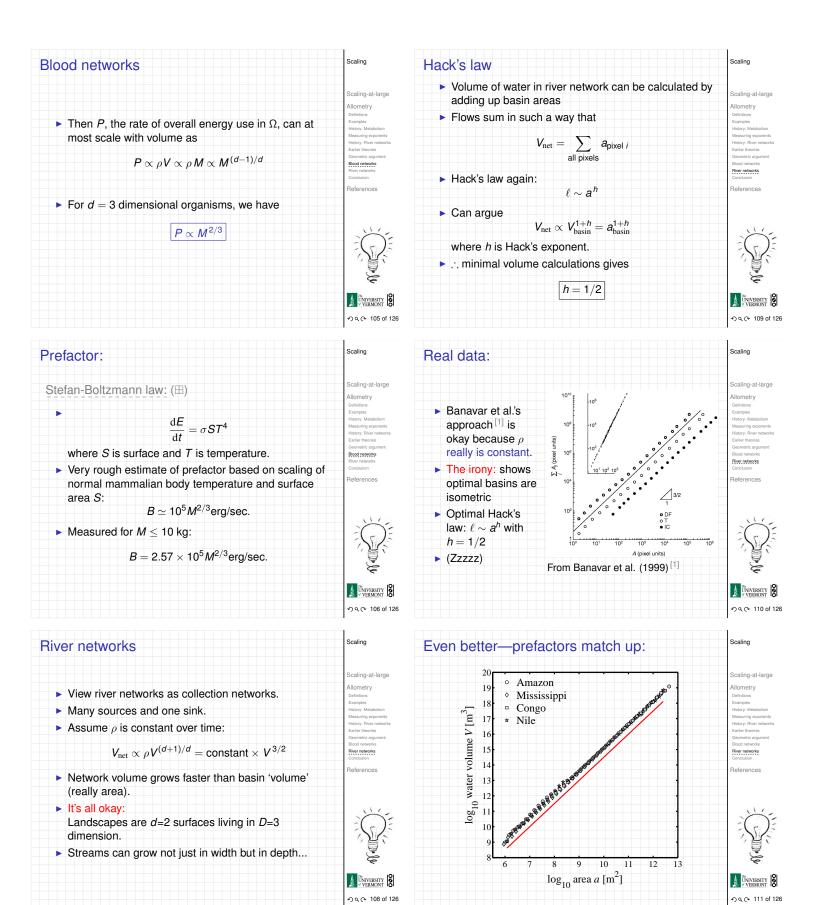
VERMONT

かへで 87 of 126

References

(also problematic due to prefactor issues)


 $\Rightarrow \alpha = 3/4$


• area-preservingness: $R_r = R_n^{-1/2}$

• space-fillingness: $R_{\ell} = R_n^{-1/3}$

Soldiering on, assert:

etwork	R _n	R_r^{-1}	R_{ℓ}^{-1}	$-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_{\ell}}{\ln R_{n}}$	α	Scaling-at-large	
et al.	-	_	-	1/2	1/3	3/4	Allometry Definitions Examples Hadry, Metabolism Such a pachyderm would be rather misera	able:
(PAT)	2.76	1.58	1.60	0.45	0.46	0.73		2010.
(PAT) _{et al.} [37] ₎	3.67	1.71	1.78	0.41	0.44	0.79	Geometric argument Boot intervista Tower intervista Conclusion	11/11/1
g (PAT)	3.69	1.67	1.52	0.39	0.32	0.90	References	ACMEL
ig (LCX) ig (RCA)	3.57 3.50	1.89 1.81	2.20	0.50	0.62	0.62		
oig (LAD) Iman (PAT)	3.51 3.03	1.84 1.60	2.02 1.49	0.49 0.42	0.56 0.36	0.65 0.83		
ian (PAT)	3.36	1.56	1.49	0.37	0.33	0.94	UNVERSITY 0 ⇒ vermont 0 ⇒ vermont 0	
ole supp	oly ne	tworł	۲S				Scaling Geometric argument	
-2 2 2		f-e		▶		ar et al.,	Allometry Continuer Port of Branching Supply and C Definitions Examples Networks." Dodds, Phys. Rev. Lett., 2010.	Collection
	d d				Nature (1999) Flow ra argume Ignore impeda Very ge attemp most e	(1) ate ent ance eneral t to find fficient ortation	Definitions Networks" Dodds Phys Rev Lett 2010	. ^[9] <s a<br="" in="">e.</s>
		twork			Nature (1999) Flow ra argume Ignore impeda Very ge attemp most e transpo	(1) ate ent ance eneral t to find fficient ortation	Definitions Networks." Dodds, Phys. Rev. Lett., 2010. Harry Matabalan Consider one source supplying many sinks d-dim. volume in a D-dim. ambient space. Definitions Constant Here relevants Containen References Networks are invariant. Assume sinks are invariant. Assume some cap on flow speed of mater See network as a bundle of virtual vessels Image: Construct Bill	. ^[9] <s a<br="" in="">e.</s>
					Nature (1999) Flow ra argume Ignore impeda Very ge attemp most e transpo networ	ate ent ance eneral t to find fficient ortation ks	Definitions Example Hardward	. ^[9] <s a<br="" in="">e.</s>
aple supp Banavar e		d 'mos		ent' netv	Nature (1999) Flow ra argume Ignore impeda Very ge attemp most e transpo networ	ate ent ance eneral t to find fficient ortation ks	Definition Networks." Dodds, Phys. Rev. Lett., 2010. Networks." Dodds, Phys. Rev. Lett., 2010. Consider one source supplying many sinks drawing many sinks d-dim. volume in a D-dim. ambient space. Networks." Assume sinks are invariant. Assume sinks are invariant. Assume some cap on flow speed of mater Scaling Scaling-at-large Allometry	. ^[9] <s a<br="" in="">e.</s>
	<i>et al.</i> fin	d 'mos P ∝	t efficie ⊂ M ^{d/(a}	ent' netv (+1)	Nature (1999) Flow ra argume Ignore impeda Very ge attemp most e transpo networ	ate ent ance eneral t to find fficient ortation ks	Definition Networks." Dodds, Phys. Rev. Lett., 2010. Version Consider one source supplying many sinks definition - dim. volume in a D-dim. ambient space. Assume sinks are invariant. - Assume sinks are invariant. Assume some cap on flow speed of mater - See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vess	.(9) (s in a p. rrial. s: 1 1 inks N _{sinks}
Banavar e	<i>et al.</i> fin	d 'mos P ∝	st efficie	ent' netv (+1)	Nature (1999) Flow ra argume Ignore impeda Very ge attemp most e transpo networ	ate ent ance eneral t to find fficient ortation ks	Defensions Networks." Dodds, Phys. Rev. Lett., 2010. Mataching symmet Consider one source supplying many sinks d-dim. volume in a D-dim. ambient space. Monorations Contacter References Assume sinks are invariant. Assume some cap on flow speed of mater See network as a bundle of virtual vessels Image: Second Secon	(9) (s in a). rrial. s: 1 1 inks N _{sinks} network
Banavar e	<i>et al.</i> fin	d 'mos $P\propto V_{ m networl}$	t efficie $M^{d/(a)}$ $_{ m k} \propto M^{(a)}$	ent' netv (+1)/d	Nature (1999) Flow ra argume Ignore impeda Very ge attemp most e transpo networ	ate ent ance eneral t to find fficient ortation ks	Definition Networks." Dodds, Phys. Rev. Lett., 2010. Version Consider one source supplying many sinks definition - dim. volume in a D-dim. ambient space. Assume sinks are invariant. - Assume sinks are invariant. Assume some cap on flow speed of mater - See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vessels Image: State of the sphere Image: See network as a bundle of virtual vess	(9) (s in a). rrial. s: 1 1 inks N _{sinks} network
Banavar <i>e</i> but also	et al. fin o find a 3 g st	d 'mos $P\propto V_{ m networl}$	t efficie $\propto M^{d/(a)}$ $_{\rm k} \propto M^{(a)}$ $_{\rm rood} \propto M$ <i>r</i> ith V _{blo}	ent' netv (+1)/d (+4/3) od = 0.1	Nature (1999) Flow ra argumo Ignore impeda Very go attemp most e transpo networ	ate ent ance eneral t to find fficient ortation ks	Defensions Networks." Dodds, Phys. Rev. Lett., 2010. Mataching symmet Consider one source supplying many sinks d-dim. volume in a D-dim. ambient space. Monorations Contacter References Assume sinks are invariant. Assume some cap on flow speed of mater See network as a bundle of virtual vessels Image: Second Secon	(9) (s in a). rrial. s: 1 1 inks N _{sinks} network

Yet more theoretical madness from the Quarterologists:	Scaling
	Scaling-at-large Allometry
	Definitions Examples History: Metabolism Measuring exponents
Banavar et al., 2010, PNAS:	History: River networks Earlier theories
"A general basis for quarter-power scaling in animals." [2]	Geometric argument Blood networks River networks Conclusion
"It has been known for decades that the metabolic	References
rate of animals scales with body mass with an	
exponent that is almost always $< 1, > 2/3$, and often very close to $3/4$."	
Cough, cough, cough, hack, wheeze, cough.	- AR
	W.

-	1	5	
21	(5		11
1	F	1	
	Xa	2	
	×		

VINIVERSITY VERMONT ୬ ର.୦~ 112 of 126

Scaling

Conclusion

Reference

Scaling-at-large Allometry

Conclusion

Supply network story consistent with dimensional analysis.

- Isometrically growing regions can be more efficiently supplied than allometrically growing ones.
- Ambient and region dimensions matter $(D = d \text{ versus } \overline{D} > d).$
- Deviations from optimal scaling suggest inefficiency (e.g., gravity for organisms, geological boundaries).
- Actual details of branching networks not that important.
- Exact nature of self-similarity varies.

の q (マ 115 of 126

Scaling **References** I Scaling-at-large [1] J. R. Banavar, A. Maritan, and A. Rinaldo. Allometry Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf (⊞) [2] J. R. Banavar, M. E. Moses, J. H. Brown, J. Damuth, A. Rinaldo, R. M. Sibly, and A. Maritan. A general basis for quarter-power scaling in animals. References Proc. Natl. Acad. Sci., 107:15816-15820, 2010. pdf (⊞) [3] P. Bennett and P. Harvey. Active and resting metabolism in birds-allometry, phylogeny and ecology. J. Zool., 213:327–363, 1987. pdf (⊞) VERMONT

Ref	erences II	Scaling
[4]	L. M. A. Bettencourt, J. Lobo, D. Helbing, Kühnhert, and G. B. West. Growth, innovation, scaling, and the pace of life in cities. <u>Proc. Natl. Acad. Sci.</u> , 104(17):7301–7306, 2007. pdf (⊞)	Scaling-at-large Allometry Definitors Examples Hatary: River retevoria Earlier theories Geometric argument Biood networks River networks
[5]	K. L. Blaxter, editor. Energy Metabolism; Proceedings of the 3rd symposium held at Troon, Scotland, May 1964. Academic Press, New York, 1965.	References
[6]	J. J. Blum. On the geometry of four-dimensions and the relationship between metabolism and body mass. J. Theor. Biol., 64:599–601, 1977.	CALVERSITY IS DOC 116 of 126

Ref	erences III	Scaling
[7]	S. Brody. Bioenergetics and Growth. Reinhold, New York, 1945. reprint, .	Scaling-at-large Allometry Definitions Examples History: Metabolism Measuring exponents
[8]	M. H. DeGroot. <u>Probability and Statistics</u> . Addison-Wesley, Reading, Massachusetts, 1975.	History: River networks Earlier theories Geometric argument Blood networks Piver networks Conclusion References
[9]	P. S. Dodds. Optimal form of branching supply and collection networks. Phys. Rev. Lett., 104(4):048702, 2010. pdf (⊞)	
[10]	P. S. Dodds and D. H. Rothman. Scaling, universality, and geomorphology. Annu. Rev. Earth Planet. Sci., 28:571–610, 2000. pdf (⊞)	

Refe	erences IV	Scaling
[11]	P. S. Dodds, D. H. Rothman, and J. S. Weitz. Re-examination of the "3/4-law" of metabolism. Journal of Theoretical Biology, 209:9–27, 2001. pdf (⊞)	Scaling-at-large Allometry Definitions Examples History: Metabolism Measuring exponents History: River networks Earlier theories Geometric aroument
[12]	A. E. Economos. Elastic and/or geometric similarity in mammalian design. Journal of Theoretical Biology, 103:167–172, 1983. gdf (⊞)	Blod networks River networks Conclusion References
[13]	G. Galilei. Dialogues Concerning Two New Sciences. Kessinger Publishing, 2010. Translated by Henry Crew and Alfonso De Salvio.	DAGE 1186 126

References V	/	Scaling
Shape and	er and M. E. J. Newman. efficiency in spatial distribution networks. ch.: Theor. & Exp., 1:P01015, 2006.	Scaling-at-large Allometry Definitions Examples History: Metabolism Measuring exponents History: Fiver networks Earlier theories
	er. ''3/4-power law': variation in the intra- ecific scaling of metabolic rate in animals.	Geometric argument Blood networks Rilver networks Conclusion References
[16] D. S. Glazie The 3/4-pov	30:611–662, 2005. pdf (⊞) er. wer law is not universal: Evolution of ontogenetic metabolic scaling in pelagic	No.
BioScience	, 56:325–332, 2006. pdf (⊞)	Dec 119 of 126

References VI

Scaling

		Scaling-at-large
[17]	J. T. Hack. Studies of longitudinal stream profiles in Virginia and	Allometry Definitions Examples History: Metabolism
	Maryland. United States Geological Survey Professional Paper, 294-B:45–97, 1957.	Measuring exponents History: River networks Earlier theories Geometric argument Blood networks
[18]	A. Hemmingsen. The relation of standard (basal) energy metabolism to total fresh weight of living organisms.	River networks Conclusion References
[19]	Rep. Steno Mem. Hosp., 4:1–58, 1950. pdf (⊞) A. Hemmingsen.	

Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep. Steno Mem. Hosp., 9:1–110, 1960. pdf (⊞)

DQC 120 of 126

References VII	Scaling
[20] A. A. Heusner. Size and power in mammals. Journal of Experimental Biology, 160:2 pdf (⊞)	History: River networks Earlier theories
[21] J. S. Huxley and G. Teissier. Terminology of relative growth. Nature, 137:780–781, 1936. pdf (⊞)	Geometric argument Blood networks River networks Conclusion References
[22] M. Kleiber. Body size and metabolism. <u>Hilgardia</u> , 6:315–353, 1932. pdf (⊞)	
[23] L. B. Leopold. <u>A View of the River</u> . Harvard University Press, Cambridge,	MA, 1994.

References VIII	Scaling
[24] T. McMahon. Size and shape in biology. Science, 179:1201–1204, 1973. pdf (⊞)	Scaling-at-large Allometry Definitions Examples
 [25] T. A. McMahon. Allometry and biomechanics: Limb bones in adult ungulates. <u>The American Naturalist</u>, 109:547–563, 1975. pdf (⊞) 	History: Melabolism Measuring exponents History: River networks Earlier theories Geometric argument Blood networks River networks Conclusion References
[26] T. A. McMahon and J. T. Bonner. On Size and Life. Scientific American Library, New York, 1983.	
[27] D. R. Montgomery and W. E. Dietrich. Channel initiation and the problem of landscape scale. <u>Science</u> , 255:826–30, 1992. pdf (⊞)	D. Q. C. 122 of 126

References IX	Scaling
 [28] C. D. Murray. A relationship between circumference and weight in trees and its bearing on branching angles. J. Gen. Physiol., 10:725–729, 1927. pdf (⊞) 	Scaling-at-large Allometry Definitions Examples History: River networks History: River networks Earlier theories Geometric argument
 [29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. <u>Numerical Recipes in C.</u> Cambridge University Press, second edition, 1992. 	Blood networks Piver networks Conclusion References
[30] J. M. V. Rayner. Linear relations in biomechanics: the statistics of scaling functions. J. Zool. Lond. (A), 206:415–439, 1985.	No.

•⊃ < C + 123 of 126

References X	Scaling
 [31] M. Rubner. Ueber den einfluss der körpergrösse auf stoffund kraftwechsel. Z. Biol., 19:535–562, 1883. pdf (⊞) 	Scaling-at-large Allometry Definitions Examples History: Metabolism Measuring exponents
[32] P. A. Samuelson. A note on alternative regressions. Econometrica, 10:80–83, 1942. pdf (⊞)	History: River networks Earlier theories Geometric argument Blood networks River networks Conclusion References
 [33] Sarrus and Rameaux. Rapport sur une mémoire adressé à l'Académie de Médecine. Bull. Acad. R. Méd. (Paris), 3:1094–1100, 1838–39. 	
[34] V. M. Savage, E. J. Deeds, and W. Fontana. Sizing up allometric scaling theory. PLoS Computational Biology, 4:e1000171, 2008. pdf (⊞)	DAC 124 of 126

[35] J. Speakman.	Scaling-at-large
On Blum's four-dimensional geometric explanat	ion Allometry
for the 0.75 exponent in metabolic allometry.	Definitions
J. Theor. Biol., 144(1):139–141, 1990. pdf (⊞)	History: Metabolism
$\underline{\mathbf{5.111601. D101.}}, 144(1).139 = 141, 1990. \underline{pu1}(11)$	Measuring exponents History: River networks
[36] W. R. Stahl.	Earlier theories Geometric aroument
Scaling of respiratory variables in mammals.	Blood networks
Journal of Applied Physiology, 22:453–460, 196	River networks Conclusion
Journal of Applied Physiology, 22.433–400, 190	References
[37] D. L. Turcotte, J. D. Pelletier, and W. I. Newman.	
Networks with side branching in biology.	
Journal of Theoretical Biology, 193:577-592, 19	998
	- Ci-
p₫f (⊞)	-15/-
[38] G. B. West, J. H. Brown, and B. J. Enquist.	
A general model for the origin of allometric scali	ing 🖉
laws in biology.	e e
0,	VERMONT S
<u>Science</u> , 276:122–126, 1997. pdf (⊞)	
	ク < C 125 of 126

Refe	erences XII	Scaling
[39]	C. R. White, P. Cassey, and T. M. Blackburn. Allometric exponents do not support a universal metabolic allometry. Ecology, 88:315–323, 2007. pdf (⊞)	Scaling-at-large Allometry Definitions Examples History: Metabolism Massuring exponents History: River network Earlier theories
[40]	C. R. White and R. S. Seymour. Allometric scaling of mammalian metabolism. J. Exp. Biol., 208:1611–1619, 2005. pdf (⊞)	Geometric argume Blood networks River networks Conclusion References
[41]	K. Zhang and T. J. Sejnowski. A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Sciences, 97:5621–5626, 2000. pdf (⊞)	
		Dec 126

