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Benoît Mandelbrot (�)

Nassim Taleb’s tribute:

10/18/10 5:04 PMNassim Nicholas Taleb

Page 1 of 2http://www.fooledbyrandomness.com/

Nassim Nicholas Taleb's Home Page
 

 

 

 

Benoit Mandelbrot, 1924-2010

A Greek among Romans

I Mandelbrot = father of fractals
I Mandelbrot = almond bread
I Bonus Mandelbrot set action: here (�).
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Another approach

Benoît Mandelbrot
I Derived Zipf’s law through optimization [14]

I Idea: Language is efficient
I Communicate as much information as possible for as

little cost
I Need measures of information (H) and average cost

(C)...
I Language evolves to maximize H/C, the amount of

information per average cost.
I Equivalently: minimize C/H.
I Recurring theme: what role does optimization play in

complex systems?
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Not everyone is happy...

Mandelbrot vs. Simon:
I Mandelbrot (1953): “An Informational Theory of the

Statistical Structure of Languages” [14]

I Simon (1955): “On a class of skew distribution
functions” [20]

I Mandelbrot (1959): “A note on a class of skew
distribution function: analysis and critique of a paper
by H.A. Simon” [15]

I Simon (1960): “Some further notes on a class of
skew distribution functions” [21]
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Not everyone is happy... (cont.)

Mandelbrot vs. Simon:
I Mandelbrot (1961): “Final note on a class of skew

distribution functions: analysis and critique of a
model due to H.A. Simon” [17]

I Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot” [23]

I Mandelbrot (1961): “Post scriptum to ‘final note”’ [17]

I Simon (1961): “Reply to Dr. Mandelbrot’s post
scriptum” [22]
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Not everyone is happy... (cont.)

Mandelbrot:
“We shall restate in detail our 1959 objections to Simon’s
1955 model for the Pareto-Yule-Zipf distribution. Our
objections are valid quite irrespectively of the sign of p-1,
so that most of Simon’s (1960) reply was irrelevant.” [16]

Simon:
“Dr. Mandelbrot has proposed a new set of objections to
my 1955 models of the Yule distribution. Like his earlier
objections, these are invalid.” [23]
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Zipfarama via Optimization

Mandelbrot’s Assumptions

I Language contains n words: w1, w2, . . . , wn.
I i th word appears with probability pi

I Words appear randomly according to this distribution
(obviously not true...)

I Words = composition of letters is important
I Alphabet contains m letters
I Words are ordered by length (shortest first)
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Zipfarama via Optimization

Word Cost
I Length of word (plus a space)
I Word length was irrelevant for Simon’s method

Objection

I Real words don’t use all letter sequences

Objections to Objection

I Maybe real words roughly follow this pattern (?)
I Words can be encoded this way
I Na na na-na naaaaa...
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Zipfarama via Optimization

Binary alphabet plus a space symbol
i 1 2 3 4 5 6 7 8

word 1 10 11 100 101 110 111 1000
length 1 2 2 3 3 3 3 4

1 + ln2 i 1 2 2.58 3 3.32 3.58 3.81 4

I Word length of 2k th word: = k + 1 = 1 + log2 2k

I Word length of i th word ' 1 + log2 i
I For an alphabet with m letters,

word length of i th word ' 1 + logm i .
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Zipfarama via Optimization

Total Cost C
I Cost of the i th word: Ci ' 1 + logm i
I Cost of the i th word plus space: Ci ' 1 + logm(i + 1)

I Subtract fixed cost: C′
i = Ci − 1 ' logm(i + 1)

I Simplify base of logarithm:

C′
i ' logm(i + 1) =

loge(i + 1)

loge m
∝ ln(i + 1)

I Total Cost:

C ∼
n∑

i=1

piC′
i ∝

n∑
i=1

pi ln(i + 1)
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Zipfarama via Optimization

Information Measure
I Use Shannon’s Entropy (or Uncertainty):

H = −
n∑

i=1

pi log2 pi

I (allegedly) von Neumann suggested ‘entropy’...
I Proportional to average number of bits needed to

encode each ‘word’ based on frequency of
occurrence

I − log2 pi = log2 1/pi = minimum number of bits
needed to distinguish event i from all others

I If pi = 1/2, need only 1 bit (log21/pi = 1)
I If pi = 1/64, need 6 bits (log21/pi = 6)
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Zipfarama via Optimization

Information Measure
I Use a slightly simpler form:

H = −
n∑

i=1

pi loge pi/ loge 2 = −g
n∑

i=1

pi ln pi

where g = 1/ ln 2
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Zipfarama via Optimization

I Minimize
F (p1, p2, . . . , pn) = C/H

subject to constraint

n∑
i=1

pi = 1

I Tension:
(1) Shorter words are cheaper
(2) Longer words are more informative (rarer)
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Zipfarama via Optimization

Time for Lagrange Multipliers:

I Minimize
Ψ(p1, p2, . . . , pn) =

F (p1, p2, . . . , pn) + λG(p1, p2, . . . , pn)

where

F (p1, p2, . . . , pn) =
C
H

=

∑n
i=1 pi ln(i + 1)

−g
∑n

i=1 pi ln pi

and the constraint function is

G(p1, p2, . . . , pn) =
n∑

i=1

pi − 1 = 0

Insert question from assignment 5 (�)
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Zipfarama via Optimization

Some mild suffering leads to:

I

pj = e−1−λH2/gC(j + 1)−H/gC ∝ (j + 1)−H/gC

I A power law appears [applause]: α = H/gC

I Next: sneakily deduce λ in terms of g, C, and H.
I Find

pj = (j + 1)−H/gC
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Zipfarama via Optimization

Finding the exponent

I Now use the normalization constraint:

1 =
n∑

j=1

pj =
n∑

j=1

(j + 1)−H/gC =
n∑

j=1

(j + 1)−α

I As n →∞, we end up with ζ(H/gC) = 2
where ζ is the Riemann Zeta Function

I Gives α ' 1.73 (> 1, too high)
I If cost function changes (j + 1 → j + a) then

exponent is tunable
I Increase a, decrease α
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Zipfarama via Optimization

All told:
I Reasonable approach: Optimization is at work in

evolutionary processes
I But optimization can involve many incommensurate

elements: monetary cost, robustness, happiness,...
I Mandelbrot’s argument is not super convincing
I Exponent depends too much on a loose definition of

cost
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More

Reconciling Mandelbrot and Simon

I Mixture of local optimization and randomness
I Numerous efforts...

1. Carlson and Doyle, 1999:
Highly Optimized Tolerance
(HOT)—Evolved/Engineered Robustness [6, 8]

2. Ferrer i Cancho and Solé, 2002:
Zipf’s Principle of Least Effort [10]

3. D’Souza et al., 2007:
Scale-free networks [9]
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More

Other mechanisms:
Much argument about whether or not monkeys typing
could produce Zipf’s law... (Miller, 1957) [18]
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Others are also not happy

Krugman and Simon

I “The Self-Organizing Economy” (Paul Krugman,
1995) [12]

I Krugman touts Zipf’s law for cities, Simon’s model
I “Déjà vu, Mr. Krugman” (Berry, 1999)
I Substantial work done by Urban Geographers
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Who needs a hug?

From Berry [4]

I Déjà vu, Mr. Krugman. Been there, done that. The
Simon-Ijiri model was introduced to geographers in
1958 as an explanation of city size distributions, the
first of many such contributions dealing with the
steady states of random growth processes, ...

I But then, I suppose, even if Krugman had known
about these studies, they would have been
discounted because they were not written by
professional economists or published in one of the
top five journals in economics!
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Who needs a hug?

From Berry [4]

I ... [Krugman] needs to exercise some humility, for his
world view is circumscribed by folkways that militate
against recognition and acknowledgment of
scholarship beyond his disciplinary frontier.

I Urban geographers, thank heavens, are not so
afflicted.
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So who’s right?

Empirical Tests of Zipf’s Law Mechanism in Open Source Linux Distribution

T. Maillart,1 D. Sornette,1 S. Spaeth,2 and G. von Krogh2

1Chair of Entrepreneurial Risks, Department of Management, Technology and Economics, ETH Zurich, CH-8001 Zurich, Switzerland
2Chair of Strategic Management and Innovation, Department of Management, Technology and Economics,

ETH Zurich, CH-8001 Zurich, Switzerland
(Received 30 June 2008; published 19 November 2008)

Zipf’s power law is a ubiquitous empirical regularity found in many systems, thought to result from

proportional growth. Here, we establish empirically the usually assumed ingredients of stochastic growth

models that have been previously conjectured to be at the origin of Zipf’s law. We use exceptionally

detailed data on the evolution of open source software projects in Linux distributions, which offer a

remarkable example of a growing complex self-organizing adaptive system, exhibiting Zipf’s law over

four full decades.

DOI: 10.1103/PhysRevLett.101.218701 PACS numbers: 89.75.Da, 02.50.Ey, 89.20.Ff

Power law distributions are ubiquitous statistical fea-
tures of physical, natural and social systems [1,2].
Specifically, the probability density function (PDF) pðxÞ
of some physical variable x, usually a size or frequency,
exhibits the power law dependence when

pðxÞ # 1=x1þ! with !> 0: (1)

To qualify as a suitable description of a data set, such a
PDF should hold within a range xmin % x % xmax of at least
2–3 decades (xmax=xmin & 102–3), and one should under-
stand the origin of the deviations that often appear at both
ends x < xmin and x > xmax. After claims of universality
[3], it is now understood that many different physical
mechanisms may be at the origin of power laws in different
systems, with possibly widely different exponents ! (see
for instance [4–6]).

However, among all power law distributions, one of
them, that we refer to as Zipf’s law, plays a special role,
as it corresponds to the particular value ! ¼ 1, which is at
the borderline between converging and diverging uncondi-
tional mean hxi. Historically, Zipf’s law described the
inverse proportionality between the variable and its rank
in a rank-frequency plot [7], which is just another way to
state that the distribution of the data follows a power law
with the special value ! ¼ 1. Zipf’s law has been docu-
mented empirically to describe the distribution of the
frequency of words in natural languages [7], the distribu-
tion of city sizes [8] as well as firm sizes [9–11] all over the
world, several distributions characterizing Web access sta-
tistics and Internet traffic characteristics [12,13] as well as
in bibliometrics, infometrics, scientometrics, and library
science (see [14] and references therein). One key chal-
lenge is to find and validate the mechanism(s) underlying
this universality class ! ¼ 1.

Yule’s theory of the power law distribution of the num-
ber of species in a genus, family or other taxonomic group
[15] and Champernowne’s theory of stochastic recurrence
equations [16] showed that there are important links be-

tween Zipf’s law and stochastic growth. On this basis,
Simon [17] articulated a simple mechanism for Zipf’s
law based on Gibrat’s law of proportionate effect [18]
implemented in a stochastic growth model with new en-
trants. A modern formulation of Gibrat’s law is that growth
is a random process, with successive stochastic realizations
of the growth rates that are independent of the size of the
entity (genera, city, firm, website popularity and so on).
This model has recently been rediscovered under the name
‘‘preferential attachment’’ to explain the scale-free net-
works found in social communities, the World Wide
Web, or networks of proteins reacting with each other in
biological cells [13,19]. The existence of new entrants in
the growth process is one of the additional ingredients
complementing Gibrat’s law that yields Zipf’s law
[8,16,20,21]. Gabaix has argued that the special value! ¼
1 emerges as a result of the condition of stationarity [8].
Malevergne et al. [22] showed recently that Gibrat’s law of
proportionate growth does not need to be strictly satisfied
in the presence of the birth and death of entities following a
stochastic growth process: as long as the standard deviation
of the growth rate increases asymptotically proportionally
to the size and that the average growth rate increases not
faster than the standard deviation, the distribution of sizes
follows Zipf’s law.
However, early on, Mandelbrot confronted Simon in a

heated debate over whether the idea of proportional growth
has any validity [23]. Surprisingly, the issue is still not
settled [4], as proportional growth has not been verified
directly in the same systems exhibiting Zipf’s law. Here,
we empirically verify the constitutive elements entering in
the mechanism operating to create the observed universal
Zipf’s law distribution. For this, we provide an analysis of
the growth of packages in open source softwares, as a
proxy for the evolution of complex adaptive systems
[24]. We study the operating system (Debian Linux).
Large Linux distributions typically contain tens of thou-
sands of connected packages, including the operating sys-
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So who’s right?

tem and applications, which form a complex web of inter-
dependencies. A measure of the ‘‘centrality’’ of a given
package is the number of other packages that call it in their
routine, a measure we refer to as the number of in-directed
links or connections that other packages have to a given
package. We find that the distribution of in-directed links
of packages in successive Debian Linux distributions pre-
cisely obeys Zipf’s law over four orders of magnitudes. We
then verify explicitly that the growth observed between
successive releases of the number of in-directed links of
packages obeys Gibrat’s law with a good approximation.
As an additional critical test of the stochastic growth
process, we confirm empirically that the average growth
increment of the number of in-directed links of packages
over a time interval !t is proportional to !t, while its

standard deviation is proportional to
ffiffiffiffiffiffi
!t

p
, as predicted

from Gibrat’s law implemented in a standard stochastic
growth model. In addition, we verify that the distribution of
the number of in-directed links of new packages appearing
in evolving version of Debian Linux distributions has a tail
thinner than Zipf’s law, confirming that Zipf’s law in this
system is controlled by the growth process.

The Linux Kernel was created in 1991 by Linus Torvalds
as a clone of the proprietary Unix operating system
[25,26], and was licensed under GNU General Public
License. Its code and open source license had immediately
a strong appeal to the community of open source devel-
opers who started to run other open source programs on
this new operating system. In 1993, Debian Linux [27]
became the first noncommercial successful general distri-
bution of an open source operating system. While contin-
uously evolving, it remains up to the present the ‘‘mother’’
of a dominant Linux branch, competing with a growing
number of derived distributions (Ubuntu, Dreamlinux,
Damn Small Linux, Knoppix, Kanotix, and so on).

From a few tens to hundreds of packages (474 in 1996
(v1.1)), Debian has expanded to include more than about
18’000 packages in 2007, with many intricate dependen-
cies between them, that can be represented by complex
functional networks. Its evolution is recorded by a chrono-
logical series of stable and unstable releases: new packages
enter, some disappear, others gain or lose connectivity.
Here, we study the following sequence of Debian releases:
Woody: 19.07.2002; Sarge: 0.6.06.2005; Etch: 15.08.2007;
Lenny (unstable version): 15.12.2007; several other Lenny
versions from 18.03.2008 to 05.05.2008 in intervals of
7 days.

Figure 1 shows the number of packages in the first four
successive versions of Debian Linux with more than C in-
directed links, which is nothing but the un-normalized
complementary cumulative (or survival) distribution of
package numbers of in-directed links. Zipf’s law is con-
firmed over four full decades, for each of the four releases
(xmin ¼ 1 and xmax ’ 104 are the minimum and maximum
numbers of in-directed links). Notwithstanding the large
modifications between releases and the multiplication of

the number of packages by a factor of 3 between Woody
and Lenny, the distributions shown in Fig. 1 are all con-
sistent with Zipf’s law. It is remarkable that no noticeable
cutoff or change of regimes occurs neither at the left nor at
the right end-parts of the distributions shown in Fig. 1. Our
results extend those conjectured in Ref. [28] for Red Hat
Linux. By using Debian Linux, which is better suited for
the sampling of projects than the often used SourceForge
collaboration platform, we avoid biases and gather unique
information only available in an integrated environment
[29].
To understand the origin of this Zipf’s law, we use the

general framework of stochastic growth models, and we
track the time evolution of a given package via its number
C of in-directed links connecting it to other packages
within Debian Linux. The increment dC of the number
of in-directed links to a given package over a small time
interval dt is assumed to be the sum of two contributions,
defining a generalized diffusion process:

dC ¼ rðCÞdtþ !ðCÞdW; (2)

with rðCÞ is the average deterministic growth of the in-
directed link number, !ðCÞ is the standard deviation of the
stochastic component of the growth process and dW is the

FIG. 1 (color online). (Color Online) Log-log plot of the
number of packages in four Debian Linux Distributions with
more than C in-directed links. The four Debian Linux
Distributions are Woody (19.07.2002) (orange diamonds),
Sarge (06.06.2005) (green crosses), Etch (15.08.2007) (blue
circles), Lenny (15.12.2007) (blackþ’s). The inset shows the
maximum likelihood estimate (MLE) of the exponent" together
with two boundaries defining its 95% confidence interval (ap-
proximately given by 1% 2=

ffiffiffi
n

p
, where n is the number of data

points using in the MLE), as a function of the lower threshold.
The MLE has been modified from the standard Hill estimator to
take into account the discreteness of C.
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tem and applications, which form a complex web of inter-
dependencies. A measure of the ‘‘centrality’’ of a given
package is the number of other packages that call it in their
routine, a measure we refer to as the number of in-directed
links or connections that other packages have to a given
package. We find that the distribution of in-directed links
of packages in successive Debian Linux distributions pre-
cisely obeys Zipf’s law over four orders of magnitudes. We
then verify explicitly that the growth observed between
successive releases of the number of in-directed links of
packages obeys Gibrat’s law with a good approximation.
As an additional critical test of the stochastic growth
process, we confirm empirically that the average growth
increment of the number of in-directed links of packages
over a time interval !t is proportional to !t, while its

standard deviation is proportional to
ffiffiffiffiffiffi
!t

p
, as predicted

from Gibrat’s law implemented in a standard stochastic
growth model. In addition, we verify that the distribution of
the number of in-directed links of new packages appearing
in evolving version of Debian Linux distributions has a tail
thinner than Zipf’s law, confirming that Zipf’s law in this
system is controlled by the growth process.

The Linux Kernel was created in 1991 by Linus Torvalds
as a clone of the proprietary Unix operating system
[25,26], and was licensed under GNU General Public
License. Its code and open source license had immediately
a strong appeal to the community of open source devel-
opers who started to run other open source programs on
this new operating system. In 1993, Debian Linux [27]
became the first noncommercial successful general distri-
bution of an open source operating system. While contin-
uously evolving, it remains up to the present the ‘‘mother’’
of a dominant Linux branch, competing with a growing
number of derived distributions (Ubuntu, Dreamlinux,
Damn Small Linux, Knoppix, Kanotix, and so on).

From a few tens to hundreds of packages (474 in 1996
(v1.1)), Debian has expanded to include more than about
18’000 packages in 2007, with many intricate dependen-
cies between them, that can be represented by complex
functional networks. Its evolution is recorded by a chrono-
logical series of stable and unstable releases: new packages
enter, some disappear, others gain or lose connectivity.
Here, we study the following sequence of Debian releases:
Woody: 19.07.2002; Sarge: 0.6.06.2005; Etch: 15.08.2007;
Lenny (unstable version): 15.12.2007; several other Lenny
versions from 18.03.2008 to 05.05.2008 in intervals of
7 days.

Figure 1 shows the number of packages in the first four
successive versions of Debian Linux with more than C in-
directed links, which is nothing but the un-normalized
complementary cumulative (or survival) distribution of
package numbers of in-directed links. Zipf’s law is con-
firmed over four full decades, for each of the four releases
(xmin ¼ 1 and xmax ’ 104 are the minimum and maximum
numbers of in-directed links). Notwithstanding the large
modifications between releases and the multiplication of

the number of packages by a factor of 3 between Woody
and Lenny, the distributions shown in Fig. 1 are all con-
sistent with Zipf’s law. It is remarkable that no noticeable
cutoff or change of regimes occurs neither at the left nor at
the right end-parts of the distributions shown in Fig. 1. Our
results extend those conjectured in Ref. [28] for Red Hat
Linux. By using Debian Linux, which is better suited for
the sampling of projects than the often used SourceForge
collaboration platform, we avoid biases and gather unique
information only available in an integrated environment
[29].
To understand the origin of this Zipf’s law, we use the

general framework of stochastic growth models, and we
track the time evolution of a given package via its number
C of in-directed links connecting it to other packages
within Debian Linux. The increment dC of the number
of in-directed links to a given package over a small time
interval dt is assumed to be the sum of two contributions,
defining a generalized diffusion process:

dC ¼ rðCÞdtþ !ðCÞdW; (2)

with rðCÞ is the average deterministic growth of the in-
directed link number, !ðCÞ is the standard deviation of the
stochastic component of the growth process and dW is the

FIG. 1 (color online). (Color Online) Log-log plot of the
number of packages in four Debian Linux Distributions with
more than C in-directed links. The four Debian Linux
Distributions are Woody (19.07.2002) (orange diamonds),
Sarge (06.06.2005) (green crosses), Etch (15.08.2007) (blue
circles), Lenny (15.12.2007) (blackþ’s). The inset shows the
maximum likelihood estimate (MLE) of the exponent" together
with two boundaries defining its 95% confidence interval (ap-
proximately given by 1% 2=

ffiffiffi
n

p
, where n is the number of data

points using in the MLE), as a function of the lower threshold.
The MLE has been modified from the standard Hill estimator to
take into account the discreteness of C.
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Maillart et al., PRL, 2008:
“Empirical Tests of Zipf’s Law Mechanism in Open Source
Linux Distribution” [13]
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increment of the Wiener process (with hdWi ¼ 0 and
hdW2i ¼ dt where the brackets denote performing the
statistical average). Zipf’s law has been shown to arise
under a variety of conditions associated with Gibrat’s
law. The simplest implementation of Gibrat’s law writes
that both rðCÞ and !ðCÞ are proportional to C,

rðCÞ ¼ r$ C; !ðCÞ ¼ !$ C; (3)

with proportionality coefficients r and ! obeying the fol-
lowing inequality r < !. This later inequality expresses
that the proportional growth is dominated by its stochastic
component [22]. Accordingly, the heavy tail structure of
Zipf’s law can be thought of as the result of large stochastic
multiplicative excursions. The rest of the Letter is devoted
to testing and validating this model.

First, we measure the time evolution of the in-directed
links of all packages in the successive Debian releases, by
retrieving the network of dependencies following the meth-
odology explained in Ref. [29]. For packages which are
common to successive releases, we find that their connec-
tivity, measured for instance by their number C of in-
directed links, increases on average albeit with consider-
able fluctuations. Consider for instance the update from
Etch (15.08.2007) to the latest Lenny version (05.05.2008).
For each package iwhich is common to these two versions,
we measure the increment !Ci of the number Ci of in-
directed links to that package from Etch to the latest Lenny
version. The left panel of Fig. 2 plots these increments!Ci

as a function of Ci. This figure is typical of the results
obtained on the increments !Ci between other pairs of
Debian releases. The scatter plot confirms the existence of
an approximate proportionality between !Ci and Ci, es-
pecially for the largest Ci values, in agreement with the
first equation of (3). The right panel of Fig. 2 shows the
standard deviation of!C as a function of C, confirming the
second equation of (3). These two panels are nothing but
direct evidence of Gibrat’s law for package connectivities,
which constitutes an essential ingredient of stochastic
growth models of Zipf’s law [8,16,20,21]. Notice that the

large scatter decorating the approximate proportionality
between !Ci and Ci observed in Fig. 2 and quantified in
the right panel of Fig. 2 is an essential ingredient for Zipf’s
law to appear [22].
We then combine (2) and (3) to predict that, over a not

too large time interval !t, (i) the average growth rate
Rð!tÞ % h!C=Ci should be given by

Rð!tÞ ¼ r$ !t; (4)

and (ii) the standard deviation of the growth rate

"ð!tÞ % h½!C=C'2i1=2 (5)

should be equal to

"ð!tÞ ¼ !$
ffiffiffiffiffiffi
!t

p
: (6)

This last result derives from the properties of the Wiener
process increments dW. We test these two predictions (4)
and (6) as follows. Out of the four major Debian releases
from 19.07.2002 to 15.12.2007 as well as the several Lenny
releases from 18.03.2008 to 05.05.2008 in intervals of 7
days, 66 different time intervals can be formed. For each
time interval, we calculate the average growth rate defined
by Rð!tÞ % h!C=Ci and its standard deviation defined by
(5). Technically, we estimate Rð!tÞ [respectively"ð!tÞ] as
the slope (respectively the standard deviation of the resid-
uals) of the linear regression of!C as a function of C. This
method allows us to construct confidence bounds by boot-
strapping (we reshuffle 1000 times the linear regression
residuals). The left [right] panel of Fig. 3 shows the 66
values of Rð!tÞ ["ð!tÞ] as a function of their correspond-
ing time interval !t (respectively, square-root of !t),

FIG. 2. Left panel: Plots of !C versus C from the Etch release
(15.08.2007) to the latest Lenny version (05.05.2008) in double
logarithmic scale. Only positive values are displayed. The linear
regression !C ¼ R$ Cþ C0 is significant at the 95% confi-
dence level, with a small value C0 ¼ 0:3 at the origin and R ¼
0:09. Right panel: same as left panel for the standard deviation of
!C.
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FIG. 3. Dependence of Rð!tÞ and "ð!tÞ defined, respectively,
by Rð!tÞ % h!C=Ci and (5) as a function of their time interval
!t for the 66 time intervals that can be formed between all the
Debian releases in our database (which includes the four major
Debian releases from 19.07.2002 to 15.12.2007 as well as the
several Lenny releases from 18.03.2008 to 05.05.2008 in inter-
vals of 7 days). The error bars show the 95% confidence
intervals, obtained by shuffling 1000 times the linear regression
residuals. The straight lines represent the best linear fits. The
existence of a genuine linear dependence of R as a function of!t
cannot be rejected (p < 0:05) and has a high significance level
(square of correlation coefficient R2 ¼ 0:93). The regression of
" versus

ffiffiffiffiffiffi
!t

p
enjoys the same high statistical confidence (p <

0:05 and R2 ¼ 0:97).
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I Rough, approximately linear relationship between C

number of in-links and ∆C.
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Bornholdt and Ebel (PRE), 2001:
“World Wide Web scaling exponent from Simon’s 1955
model” [5].

I Show Simon’s model fares well.
I Recall ρ = probability new flavor appears.
I Alta Vista (�) crawls in approximately 6 month period

in 1999 give ρ ' 0.10
I Leads to γ = 1 + 1

1−ρ ' 2.1 for in-link distribution.
I Cite direct measurement of γ at the time: 2.1± 0.1

and 2.09 in two studies.
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So who’s right?

Nutshell:
I Simonish random ‘rich-get-richer’ models agree in

detail with empirical observations.
I Power-lawfulness: Mandelbrot’s optimality is still

apparent.
I Optimality arises for free in Random Competitive

Replication models.
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Robustness

I Many complex systems are prone to cascading
catastrophic failure: exciting!!!

I Blackouts
I Disease outbreaks
I Wildfires
I Earthquakes

I But complex systems also show persistent
robustness (not as exciting but important...)

I Robustness and Failure may be a power-law story...
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Robustness

I System robustness may result from
1. Evolutionary processes
2. Engineering/Design

I Idea: Explore systems optimized to perform under
uncertain conditions.

I The handle:
‘Highly Optimized Tolerance’ (HOT) [6, 7, 8, 24]

I The catchphrase: Robust yet Fragile
I The people: Jean Carlson and John Doyle (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/AltaVista
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.cds.caltech.edu/~doyle/home.htm
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Robustness

Features of HOT systems: [7, 8]

I High performance and robustness
I Designed/evolved to handle known stochastic

environmental variability
I Fragile in the face of unpredicted environmental

signals
I Highly specialized, low entropy configurations
I Power-law distributions appear (of course...)
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Robustness

HOT combines things we’ve seen:

I Variable transformation
I Constrained optimization

I Need power law transformation between variables:
(Y = X−α)

I Recall PLIPLO is bad...
I MIWO is good: Mild In, Wild Out
I X has a characteristic size but Y does not
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Robustness

Forest fire example: [7]

I Square N × N grid
I Sites contain a tree with probability ρ = density
I Sites are empty with probability 1− ρ

I Fires start at location (i , j) according to some
distribution Pij

I Fires spread from tree to tree (nearest neighbor only)
I Connected clusters of trees burn completely
I Empty sites block fire
I Best case scenario:

Build firebreaks to maximize average # trees left
intact given one spark
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Robustness

Forest fire example: [7]

I Build a forest by adding one tree at a time
I Test D ways of adding one tree
I D = design parameter
I Average over Pij = spark probability
I D = 1: random addition
I D = N 2: test all possibilities

Measure average area of forest left untouched

I f (c) = distribution of fire sizes c (= cost)
I Yield = Y = ρ− 〈c〉
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Robustness

Specifics:

I

Pij = Pi;ax ,bx Pj;ay ,by

where
Pi;a,b ∝ e−[(i+a)/b]2

I In the original work, by > bx

I Distribution has more width in y direction.
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HOT Forests

[7]

N = 64

(a) D = 1
(b) D = 2
(c) D = N
(d) D = N2

Pij has a
Gaussian decay

I Optimized forests do well on average (robustness)
I But rare extreme events occur (fragility)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu
http://www.uvm.edu/~pdodds
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HOT Forests
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design are distinguished by different algorithms for choos-

ing the next site for addition based on yield, reminiscent

of systems in biology and engineering where incremental

changes occur through natural selection or design modifi-

cations favoring higher yields. As we increase the density

we obtain a yield curve Y !r". At a given density the maxi-

mum possible yield is trivially bounded by r (no loss). In

the thermodynamic limit, whenever Y !r" falls below the

maximum yield the mean event size #f$ is of the same or-

der as the size of the system.

We first consider random percolation with no design.

Sequences of configurations are generated by randomly

occupying sites. At a given density all possible configura-

tions are equally likely, and sites are independently occu-

pied with probability p ! r, and vacant with probability

1 2 p. By translation invariance, in the thermodynamic

limit, results for the random case are independent of the

distribution of sparks P!i, j". For finite systems edge ef-

fects modify the distribution.

The yield curve is depicted by the lowest curve in

Fig. 2a. At low densities the results coincide with the

maximum yield. Near r ! pc % 0.6 there is a crossover,

and Y !r" begins to decrease monotonically with r,

approaching zero at high density. The crossover becomes

sharp as N ! ` and is an immediate consequence of

the percolation transition, marking the emergence of

an infinite cluster at p ! pc. In the thermodynamic

limit only events involving the infinite cluster result in a

macroscopic loss and Y !r" ! r 2 P2
`!p". Here P`!p"

is the percolation order parameter, i.e., the probability

a given site is in the infinite cluster. A typical random

configuration at peak yield is illustrated in Fig. 1a. The

fractal appearance of the clusters is a key signature of

criticality. The distribution of fires F!c" is asymptotically

a power law, illustrated for N ! 64 in Fig. 3a.

The goal of design is to push the yield towards the up-

per bound for densities which exceed the critical point.

This requires selecting nongeneric (measure zero) con-

figurations, which we refer to as tolerant states. We define
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FIG. 2. Yield vs density Y !r": (a) for design parameters D !
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)

with N ! 64, and (b) for D ! 2 and N ! 2, 22, . . . , 27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L ! log&#f$'!1 2 #f$"(, on a scale which more
clearly differentiates between the curves.

HOT states to be those which specifically optimize yield in

the presence of a constraint (see Figs. 1b–1d). As the level

of design increases, the connected clusters become increas-

ingly regular in shape and separated by well-defined bar-

riers consisting of closed contours of unoccupied sites. A

HOT state corresponds to a forest which is densely planted

to maximize the timber yield, with fire breaks arranged to

minimize the spread of damage.

To determine HOT states we specify constraints on the

optimization, defined here in terms of a modification of

the random percolation model which incorporates design.

At each increment in density, we generate a set of test

configurations. A test configuration at density r !
!n 1 1"'N2 is generated from the previous configuration

at density r ! n'N2 (where n is the number of occupied

sites) by adding a grain to a previously unoccupied site.

In the limiting case, all possible test configurations are

explored. Then, in a manner reminiscent of evolution by

natural selection, the next configuration in the sequence

is taken to be the test configuration which produces the

highest yield upon averaging over P!i, j". If there is

degeneracy, one of the highest yield configurations is

selected at random. We define the design parameter to be

the number D of test configurations which are initially

examined. Thus D lies between D ! 1 (random percola-

tion) and D ! N2 (all possible configurations associated

with the addition of one occupied site are tested).

While the choice of P!i, j" is irrelevant at large N for

random configurations, for designed states knowledge of

P!i, j" can be exploited to produce better designs. For our

numerical examples we use

P!i, j" ! P!i"P!j" ,

P!x" ~ 22)&mx1!x'N"('sx *2
, (1)

where mi ! 1, si ! 0.4, mj ! 0.5, and sj ! 0.2. In

Fig. 1 the maximum value of P!i, j" coincides with the

upper left hand corner i ! j ! 1, while the minimum

value is in the lower right corner i ! j ! N . We choose

the tail of a Gaussian to dramatize that power laws emerge

through design even when the external distribution is far

from a power law. We choose an asymmetric distribution

to lift all degeneracies in the maximally designed case
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FIG. 3. Cumulative distributions of events F!c": (a) at peak
yield for D ! 1, 2, N , and N2 with N ! 64, and (b) for D !
N2, and N ! 64 at equal density increments of 0.1, ranging at
r ! 0.1 (bottom curve) to r ! 0.9 (top curve).
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design are distinguished by different algorithms for choos-

ing the next site for addition based on yield, reminiscent

of systems in biology and engineering where incremental

changes occur through natural selection or design modifi-

cations favoring higher yields. As we increase the density

we obtain a yield curve Y !r". At a given density the maxi-

mum possible yield is trivially bounded by r (no loss). In

the thermodynamic limit, whenever Y !r" falls below the

maximum yield the mean event size #f$ is of the same or-

der as the size of the system.

We first consider random percolation with no design.

Sequences of configurations are generated by randomly

occupying sites. At a given density all possible configura-

tions are equally likely, and sites are independently occu-

pied with probability p ! r, and vacant with probability

1 2 p. By translation invariance, in the thermodynamic

limit, results for the random case are independent of the

distribution of sparks P!i, j". For finite systems edge ef-

fects modify the distribution.

The yield curve is depicted by the lowest curve in

Fig. 2a. At low densities the results coincide with the

maximum yield. Near r ! pc % 0.6 there is a crossover,

and Y !r" begins to decrease monotonically with r,

approaching zero at high density. The crossover becomes

sharp as N ! ` and is an immediate consequence of

the percolation transition, marking the emergence of

an infinite cluster at p ! pc. In the thermodynamic

limit only events involving the infinite cluster result in a

macroscopic loss and Y !r" ! r 2 P2
`!p". Here P`!p"

is the percolation order parameter, i.e., the probability

a given site is in the infinite cluster. A typical random

configuration at peak yield is illustrated in Fig. 1a. The

fractal appearance of the clusters is a key signature of

criticality. The distribution of fires F!c" is asymptotically

a power law, illustrated for N ! 64 in Fig. 3a.

The goal of design is to push the yield towards the up-

per bound for densities which exceed the critical point.

This requires selecting nongeneric (measure zero) con-

figurations, which we refer to as tolerant states. We define
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FIG. 2. Yield vs density Y !r": (a) for design parameters D !
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)

with N ! 64, and (b) for D ! 2 and N ! 2, 22, . . . , 27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L ! log&#f$'!1 2 #f$"(, on a scale which more
clearly differentiates between the curves.

HOT states to be those which specifically optimize yield in

the presence of a constraint (see Figs. 1b–1d). As the level

of design increases, the connected clusters become increas-

ingly regular in shape and separated by well-defined bar-

riers consisting of closed contours of unoccupied sites. A

HOT state corresponds to a forest which is densely planted

to maximize the timber yield, with fire breaks arranged to

minimize the spread of damage.

To determine HOT states we specify constraints on the

optimization, defined here in terms of a modification of

the random percolation model which incorporates design.

At each increment in density, we generate a set of test

configurations. A test configuration at density r !
!n 1 1"'N2 is generated from the previous configuration

at density r ! n'N2 (where n is the number of occupied

sites) by adding a grain to a previously unoccupied site.

In the limiting case, all possible test configurations are

explored. Then, in a manner reminiscent of evolution by

natural selection, the next configuration in the sequence

is taken to be the test configuration which produces the

highest yield upon averaging over P!i, j". If there is

degeneracy, one of the highest yield configurations is

selected at random. We define the design parameter to be

the number D of test configurations which are initially

examined. Thus D lies between D ! 1 (random percola-

tion) and D ! N2 (all possible configurations associated

with the addition of one occupied site are tested).

While the choice of P!i, j" is irrelevant at large N for

random configurations, for designed states knowledge of

P!i, j" can be exploited to produce better designs. For our

numerical examples we use

P!i, j" ! P!i"P!j" ,

P!x" ~ 22)&mx1!x'N"('sx *2
, (1)

where mi ! 1, si ! 0.4, mj ! 0.5, and sj ! 0.2. In

Fig. 1 the maximum value of P!i, j" coincides with the

upper left hand corner i ! j ! 1, while the minimum

value is in the lower right corner i ! j ! N . We choose

the tail of a Gaussian to dramatize that power laws emerge

through design even when the external distribution is far

from a power law. We choose an asymmetric distribution

to lift all degeneracies in the maximally designed case
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FIG. 3. Cumulative distributions of events F!c": (a) at peak
yield for D ! 1, 2, N , and N2 with N ! 64, and (b) for D !
N2, and N ! 64 at equal density increments of 0.1, ranging at
r ! 0.1 (bottom curve) to r ! 0.9 (top curve).
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Random Forests

D = 1: Random forests = Percolation [25]

I Randomly add trees
I Below critical density ρc , no fires take off
I Above critical density ρc , percolating cluster of trees

burns
I Only at ρc , the critical density, is there a power-law

distribution of tree cluster sizes
I Forest is random and featureless
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HOT forests

HOT forests nutshell:
I Highly structured
I Power law distribution of tree cluster sizes for ρ > ρc

I No specialness of ρc

I Forest states are tolerant
I Uncertainty is okay if well characterized
I If Pij is characterized poorly, failure becomes highly

likely
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HOT forests—Real data: [8]

across long distances as an adaptive, emergent, self-organizing,
far-from-equilibrium, nonlinear phenomenon. What is both an
attraction and a potential weakness of this perspective is that it
could be applied to a tornado as well. The HOT view is quite
different. Our examples all have high performances and yields
and high densities of interconnection (Table 1.3), as well as
robustness and reliability. We want to sharpen the distinction not
only between the likely short and fatal ride of a tornado with the
much faster but relatively boring 777 experience but, more
importantly between the 777 design and alternatives that might
have worse, or even better, performance, robustness, and
reliability.

Are All These Features of Complexity Necessary? That is, must
systems be broadly robust if they are to successfully function and
persist, must this robustness entail highly structured internal com-
plexity, and is fragility a necessary risk? In this sense, is complexity
in engineering and biological systems qualitatively the same? We
believe that the answer to these questions is largely affirmative, and
the examples briefly examined in this section support this, as do
numerous other studies of this issue (e.g., see ref. 10). The remain-
der of this paper offers a thin slice through the HOT theoretical
framework that is emerging to systematically address these ques-
tions. The concept of HOT was introduced to focus attention on
exactly these issues. Tolerance emphasizes that robustness in com-
plex systems is a constrained and limited quantity that must be
carefully managed and protected. Highly optimized emphasizes that
this is achieved by highly structured, rare, nongeneric configura-
tions that are products either of deliberate design or evolution. The
characteristics of HOT systems are high performance, highly struc-
tured internal complexity, and apparently simple and robust exter-
nal behavior, with the risk of hopefully rare but potentially cata-
strophic cascading failure events initiated by possibly quite small
perturbations.

Power Laws and Complexity
Recently a great deal of attention has been given to the fact that
statistics of events in many complex interconnected systems
share a common attribute: the distributions of sizes are described
by power laws. Several examples are illustrated in Fig. 1, where
we plot the cumulative probability !(l!li) of events greater than
or equal to a given size li. Power laws !(l ! li) ! {li}"" are
associated with straight lines of slope "" in a log(!) vs. log(l)
plot, and describe all of the data sets reasonably well, with the
exception of data compression (DC), which is exponential.
Whether the other distributions are power laws exactly we will
not attempt to resolve, because this is not important for HOT.
What is clear is that these distributions have heavy tails and are
far from exponential or Gaussian.

In this regard, the 777 has boring but fortunate statistics, as
there have been no crashes or fatalities so far. More generally,
the deaths and dollars lost in all disasters from either techno-
logical or natural causes is a power law with " # 1. Forest fires
and power outages have among the most striking and well-kept
statistics, but similar, although less heavy tailed, plots can be
made for species extinction, social conflict, automotive traffic
jams, air traffic delays, and financial market volatility. Other
examples that are not event sizes per se involve Web and Internet
traffic and various bibliometric statistics.

Although power law statistics is one of many characteristics we
might consider, our focus on this property provides a meaningful
quantitative point of departure for contrasting HOT with SOC. Of
course, SOC and HOT are two of many possible mechanisms for
power laws. Statistics alone can be responsible (11). What differ-
entiates SOC and HOT from statistical mechanisms are their
broader claims suggesting links between power laws and internal
structure, as summarized in Table 1. If SOC were the underlying
mechanism leading to complexity in a given system, power laws

would be one signature of an internal self-sustaining critical state.
The details associated with the initiation of events would be a
statistically inconsequential factor in determining their size. Large
events would be the result of chance random internal fluctuations
characteristic of the self-similar onset of systemwide connectivity at
the critical state. In contrast, for HOT power law, statistics are just
one symptom of ‘‘robust, yet fragile,’’ which we suggest is central to
complexity. Heavy tails reflect tradeoffs in systems characterized by
high densities and throughputs, where many internal variables have
been tuned to favor small losses in common events, at the expense
of large losses when subject to rare or unexpected perturbations,
even if the perturbations are infinitesimal.

The Forest Fire Models
In this section, we review the lattice models that have served as
the primary template for introducing SOC and HOT. Our story
begins with percolation (12), the simplest model in statistical
mechanics, which exhibits a critical phase transition. We focus on
site percolation on a two-dimensional N $ N square lattice.
Individual sites are independently occupied with probability #
and vacant with probability (1 " #). Properties of the system are
determined by ensemble averages in which all configurations at
density # are equally likely. Contiguous sets of nearest-neighbor
occupied sites define connected clusters. The percolation forest
fire model includes a coupling to external disturbances repre-
sented by ‘‘sparks’’ that impact individual sites on the lattice.
Sparks initiate ‘‘fires’’ when they hit an occupied site, burning
through the associated connected cluster. Fires are the rapid
cascading failure events analogous to individual events, which
comprise the statistical distributions in the previous section.

Sparks are all of equal size (one lattice site) but may initiate
fires of a wide range of sizes, depending on the configuration and
the site that is hit. The impact site (i, j) is drawn from a
probability distribution P(i, j). The most realistic cases involve
variable risk, where ignitions are common in some regions and
rare in others and are represented by P(i, j)s that are skewed. In

Fig. 1. Log–log (base 10) comparison of DC, WWW, CF, and FF data (symbols)
with PLR models (solid lines) (for $ % 0, 0.9, 0.9, 1.85, or " % 1!$ % &, 1.1,1.1, 0.054,
respectively) and the SOC FF model (" % 0.15, dashed). Reference lines of " % 0.5,
1 (dashed) are included. The cumulative distributions of frequencies !(l ! li) vs. li
describe the areas burned in the largest 4,284 fires from 1986 to 1995 on all of the
U.S. Fish and Wildlife Service Lands (FF) (17), the '10,000 largest California
brushfires from 1878 to 1999 (CF) (18), 130,000 web file transfers at Boston
University during 1994 and 1995 (WWW) (19), and code words from DC. The size
units [1,000 km2 (FF and CF), megabytes (WWW), and bytes (DC)] and the loga-
rithmic decimation of the data are chosen for visualization.

2540 " www.pnas.org!cgi!doi!10.1073!pnas.012582499 Carlson and Doyle
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HOT theory

The abstract story:

I Given yi = x−α
i , i = 1, . . . , Nsites

I Design system to minimize 〈y〉
subject to a constraint on the xi

I Minimize cost:

C =

Nsites∑
i=1

Pr(yi)yi

Subject to
∑Nsites

i=1 xi = constant
I Drag out the Lagrange Multipliers, battle away and

find:
pi ∝ y−γ

i
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HOT theory
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HOT Theory—Two costs:

1. Expected size of fire

Cfire ∝
Nsites∑
i=1

(piai)ai =

Nsites∑
i=1

pia 2
i

I ai = area of i th site’s region
I pi = avg. prob. of fire at site in i th site’s region
I Nsites = total number of sites

2. Cost of building and maintaining firewalls

Cfirewalls ∝
Nsites∑
i=1

a1/2
i a−1

i

I We are assuming isometry.
I In d dimensions, 1/2 is replaced by (d − 1)/d
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HOT theory

Extra constraint:
I Total area is constrained:

Nsites∑
i=1

ai = N2.

Nsites∑
i=1

1
ai

= Nregions

where Nregions = number of cells.
I Can ignore in calculation...
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HOT theory

I Minimize Cfire given Cfirewalls = constant.
I

0 =
∂

∂aj
(Cfire − λCfirewalls)

∝ ∂

∂aj

(
N∑

i=1

pia 2
i − λ′a(d−1)/d

i a−1
i

)

I

pi ∝ a−γ
i = a−(2+1/d)

i

I

For d = 2, γ = 5/2
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HOT theory

Summary of designed tolerance [8]

I Build more firewalls in areas where sparks are likely
I Small connected regions in high-danger areas
I Large connected regions in low-danger areas
I Routinely see many small outbreaks (robust)
I Rarely see large outbreaks (fragile)
I Sensitive to changes in the environment (Pij )
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Avalanches of Sand and Rice...
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SOC theory

SOC = Self-Organized Criticality

I Idea: natural dissipative systems exist at ‘critical
states’

I Analogy: Ising model with temperature somehow
self-tuning

I Power-law distributions of sizes and frequencies
arise ‘for free’

I Introduced in 1987 by Bak, Tang, and
Weisenfeld [3, 2, 11]:
“Self-organized criticality - an explanation of 1/f
noise” (PRL, 1987).

I Problem: Critical state is a very specific point
I Self-tuning not always possible
I Much criticism and arguing...
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Robustness

HOT versus SOC
I Both produce power laws
I Optimization versus self-tuning
I HOT systems viable over a wide range of high

densities
I SOC systems have one special density
I HOT systems produce specialized structures
I SOC systems produce generic structures
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HOT theory—Summary of designed
tolerance [8]

Colloquium

Complexity and robustness
J. M. Carlson*† and John Doyle‡

*Department of Physics, University of California, Santa Barbara, CA 93106; and ‡Control and Dynamical Systems, California Institute of Technology,
Pasadena, CA 91125

Highly optimized tolerance (HOT) was recently introduced as a
conceptual framework to study fundamental aspects of complex-
ity. HOT is motivated primarily by systems from biology and
engineering and emphasizes, (i) highly structured, nongeneric,
self-dissimilar internal configurations, and (ii) robust yet fragile
external behavior. HOT claims these are the most important fea-
tures of complexity and not accidents of evolution or artifices of
engineering design but are inevitably intertwined and mutually
reinforcing. In the spirit of this collection, our paper contrasts HOT
with alternative perspectives on complexity, drawing on real-
world examples and also model systems, particularly those from
self-organized criticality.

A vision shared by most researchers in complex systems is that
certain intrinsic, perhaps even universal, features capture

fundamental aspects of complexity in a manner that transcends
specific domains. It is in identifying these features that sharp
differences arise. In disciplines such as biology, engineering,
sociology, economics, and ecology, individual complex systems
are necessarily the objects of study, but there often appears to be
little common ground between their models, abstractions, and
methods. Highly optimized tolerance (HOT) (1–6) is one recent
attempt, in a long history of efforts, to develop a general
framework for studying complexity. The HOT view is motivated
by examples from biology and engineering. Theoretically, it
builds on mathematics and abstractions from control, commu-
nications, and computing. In this paper, we retain the motivating
examples but avoid theories and mathematics that may be
unfamiliar to a nonengineering audience. Instead, we aim to
make contact with the models, concepts, and abstractions that
have been loosely collected under the rubric of a ‘‘new science
of complexity’’ (NSOC) (7) or ‘‘complex adaptive systems’’ (CAS),
and particularly the concept of self-organized criticality (SOC)
(8, 9). SOC is only one element of NSOC!CAS but is a useful
representative, because it has a well-developed theory and broad
range of claimed applications.

In Table 1, we contrast HOT’s emphasis on design and rare
configurations with the perspective provided by NSOC!CAS!
SOC, which emphasizes structural complexity as ‘‘emerging
between order and disorder,’’ (i) at a bifurcation or phase
transition in an interconnection of components that is (ii)
otherwise largely random. Advocates of NSOC!CAS!SOC are
inspired by critical phenomena, fractals, self-similarity, pattern
formation, and self-organization in statistical physics, and bifur-
cations and deterministic chaos from dynamical systems. Moti-
vating examples vary from equilibrium statistical mechanics of
interacting spins on a lattice to the spontaneous formation of
spatial patterns in systems far from equilibrium. This approach
suggests a unity from apparently wildly different examples,
because details of component behavior and their interconnec-
tion are seen as largely irrelevant to system-wide behavior.

Table 1 shows that SOC and HOT predict not just different but
exactly opposite features of complex systems. HOT suggests that
random interconnections of components say little about the
complexity of real systems, that the details can matter enor-

mously, and that generic (e.g., low codimension) bifurcations and
phase transitions play a peripheral role. In principle, Table 1
could have a separate column for Data, by which we mean the
observable features of real systems. Because HOT and Data turn
out to be identical for these features, we can collapse the table
as shown. This is a strong claim, and the remainder of this paper
is devoted to justifying it in as much detail as space permits.

What Do We Mean By Complexity?
To motivate the theoretical discussion of complex systems, we
briefly discuss concrete and hopefully reasonably familiar ex-
amples and begin to fill in the ‘‘Data’’ part of Table 1. We start
with biological cells and their modern technological counterparts
such as very large-scale integrated central processing unit (CPU)
chips. Each is a complex system, composed of many components,
but is also itself a component in a larger system of organs or
laptop or desktop personal computers or embedded in control
systems of vehicles such as automobiles or commercial jet
aircraft like the Boeing 777. These are again components of the
even larger networks that make up organisms and ecosystems,

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, ‘‘Self-Organized Complexity in the Physical, Biological, and Social Sciences,’’ held
March 23–24, 2001, at the Arnold and Mabel Beckman Center of the National Academies
of Science and Engineering in Irvine, CA.

Abbreviations: NSOC, new science of complexity; CAS, complex adaptive systems; SOC,
self-organized criticality; HOT, highly optimized tolerance; CPU, central processing unit;
DC, data compression; DDOF, design degree of freedom; CF, California brushfires; FF, U.S.
Fish and Wildlife Service land fires; PLR, probability-loss-resource; WWW, World Wide Web.
†To whom reprint requests should be addressed. E-mail: carlson@physics.ucsb.edu.

Table 1. Characteristics of SOC, HOT, and data

Property SOC HOT and Data

1 Internal
configuration

Generic,
homogeneous,

self-similar

Structured,
heterogeneous,
self-dissimilar

2 Robustness Generic Robust, yet
fragile

3 Density and yield Low High

4 Max event size Infinitesimal Large

5 Large event shape Fractal Compact

6 Mechanism for
power laws

Critical internal
fluctuations

Robust
performance

7 Exponent ! Small Large

8 ! vs. dimension d ! ! (d " 1)!10 ! ! 1!d

9 DDOFs Small (1) Large (#)

10 Increase model
resolution

No change New structures,
new sensitivities

11 Response to
forcing

Homogeneous Variable

2538–2545 " PNAS " February 19, 2002 " vol. 99 " suppl. 1 www.pnas.org!cgi!doi!10.1073!pnas.012582499
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COLD forests

Avoidance of large-scale failures

I Constrained Optimization with Limited Deviations [19]

I Weight cost of larges losses more strongly
I Increases average cluster size of burned trees...
I ... but reduces chances of catastrophe
I Power law distribution of fire sizes is truncated
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Cutoffs

Aside:
I Power law distributions often have an exponential

cutoff
P(x) ∼ x−γe−x/xc

where xc is the approximate cutoff scale.
I May be Weibull distributions:

P(x) ∼ x−γe−ax−γ+1
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Robustness

And we’ve already seen this...

I network robustness.
I Albert et al., Nature, 2000:

“Error and attack tolerance of complex networks” [1]

I Similar robust-yet-fragile story...
I See Networks Overview, Frame 67ish (�)
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