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Mechanisms

A powerful story in the rise of complexity:

I structure arises out of randomness.
I Exhibit A: Random walks... (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Random_walk
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Random walks

The essential random walk:
I One spatial dimension.
I Time and space are discrete
I Random walker (e.g., a drunk) starts at origin x = 0.
I Step at time t is εt :

εt =

{
+1 with probability 1/2
−1 with probability 1/2

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks

Displacement after t steps:

xt =
t∑

i=1

εi

Expected displacement:

〈xt〉 =

〈
t∑

i=1

εi

〉
=

t∑
i=1

〈εi〉 = 0

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks

Variances sum: (�)∗

Var(xt) = Var

(
t∑

i=1

εi

)

=
t∑

i=1

Var (εi) =
t∑

i=1

1 = t

∗ Sum rule = a good reason for using the variance to measure
spread; only works for independent distributions.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Variance#Variance_of_the_sum_of_uncorrelated_variables


Power-Law
Mechanisms

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

Growth
Mechanisms
Random Copying

Words, Cities, and the Web

References

7 of 88

Random walks

So typical displacement from the origin scales as

σ = t1/2

⇒ A non-trivial power-law arises out of
additive aggregation or accumulation.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks

Random walks are weirder than you might think...

For example:

I ξr ,t = the probability that by time step t , a random
walk has crossed the origin r times.

I Think of a coin flip game with ten thousand tosses.
I If you are behind early on, what are the chances you

will make a comeback?
I The most likely number of lead changes is... 0.

See Feller, [3] Intro to Probability Theory, Volume I

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks

In fact:

ξ0,t > ξ1,t > ξ2,t > · · ·

Even crazier:
The expected time between tied scores = ∞!

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks—some examples
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Random walks—some examples
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Random walks

The problem of first return:

I What is the probability that a random walker in one
dimension returns to the origin for the first time after t
steps?

I Will our drunkard always return to the origin?
I What about higher dimensions?

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First returns

Reasons for caring:

1. We will find a power-law size distribution with an
interesting exponent

2. Some physical structures may result from random
walks

3. We’ll start to see how different scalings relate to
each other

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random Walks
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Again: expected time between ties = ∞...
Let’s find out why... [3]

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns
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First Returns

For random walks in 1-d:

I Return can only happen when t = 2n.
I Call Pfirst return(2n) = Pfr(2n) probability of first return

at t = 2n.
I Assume drunkard first lurches to x = 1.
I The problem

Pfr(2n) = 2Pr(xt ≥ 1, t = 1, . . . , 2n − 1, and x2n = 0)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns
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I A useful restatement: Pfr(2n) =
2 · 1

2Pr(xt ≥ 1, t = 1, . . . , 2n− 1, and x1 = x2n−1 = 1)

I Want walks that can return many times to x = 1.
I (The 1

2 accounts for stepping to 2 instead of 0 at
t = 2n.)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns

I Counting problem (combinatorics/statistical
mechanics)

I Use a method of images
I Define N(i , j , t) as the # of possible walks between

x = i and x = j taking t steps.
I Consider all paths starting at x = 1 and ending at

x = 1 after t = 2n − 2 steps.
I Subtract how many hit x = 0.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns

Key observation:
# of t-step paths starting and ending at x = 1
and hitting x = 0 at least once
= # of t-step paths starting at x = −1 and ending at x = 1
= N(−1, 1, t)

So Nfirst return(2n) = N(1, 1, 2n − 2)− N(−1, 1, 2n − 2)

See this 1-1 correspondence visually...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns
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First Returns

I For any path starting at x = 1 that hits 0,
there is a unique matching path starting at x = −1.

I Matching path first mirrors and then tracks.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns
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First Returns

I Next problem: what is N(i , j , t)?
I # positive steps + # negative steps = t .
I Random walk must displace by j − i after t steps.
I # positive steps - # negative steps = j − i .
I # positive steps = (t + j − i)/2.
I

N(i , j , t) =

(
t

# positive steps

)
=

(
t

(t + j − i)/2

)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns

We now have

Nfirst return(2n) = N(1, 1, 2n − 2)− N(−1, 1, 2n − 2)

where

N(i , j , t) =

(
t

(t + j − i)/2

)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns

Insert question from assignment 4 (�)
Find Nfirst return(2n) ∼ 22n−3/2

√
2πn3/2 .

I Normalized Number of Paths gives Probability
I Total number of possible paths = 22n

I

Pfirst return(2n) =
1

22n Nfirst return(2n)

' 1
22n

22n−3/2
√

2πn3/2

=
1√
2π

(2n)−3/2

http://www.uvm.edu
http://www.uvm.edu/~pdodds
http://www.uvm.edu/~pdodds/teaching/courses/2010-08UVM-300/docs/{2010-08UVM-300}assignment4.pdf
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First Returns

I Same scaling holds for continuous space/time walks.
I

P(t) ∝ t−3/2, γ = 3/2

I P(t) is normalizable
I Recurrence: Random walker always returns to origin
I Moral: Repeated gambling against an infinitely

wealthy opponent must lead to ruin.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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First Returns

Higher dimensions:

I Walker in d = 2 dimensions must also return
I Walker may not return in d ≥ 3 dimensions
I For d = 1, γ = 3/2 → 〈t〉 = ∞
I Even though walker must return, expect a long wait...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks

On finite spaces:

I In any finite volume, a random walker will visit every
site with equal probability

I Random walking ≡ Diffusion
I Call this probability the Invariant Density of a

dynamical system
I Non-trivial Invariant Densities arise in chaotic

systems.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Random walks on

On networks:
I On networks, a random walker visits each node with

frequency ∝ node degree
I Equal probability still present:

walkers traverse edges with equal frequency.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scheidegger Networks [11, 2]

I Triangular lattice
I ‘Flow’ is southeast or southwest with equal

probability.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Scheidegger Networks

I Creates basins with random walk boundaries
I Observe Subtracting one random walk from another

gives random walk with increments

εt =


+1 with probability 1/4
0 with probability 1/2
−1 with probability 1/4

I Basin length ` distribution: P(`) ∝ `−3/2

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between Exponents

I For a basin of length `, width ∝ `1/2

I Basin area a ∝ ` · `1/2 = `3/2

I Invert: ` ∝ a2/3

I d` ∝ d(a2/3) = 2/3a−1/3da
I Pr(basin area = a)da

= Pr(basin length = `)d`
∝ `−3/2d`
∝ (a2/3)−3/2a−1/3da
= a−4/3da
= a−τ da

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Power-Law
Mechanisms

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

Growth
Mechanisms
Random Copying

Words, Cities, and the Web

References

35 of 88

Connections between Exponents

I Both basin area and length obey power law
distributions

I Observed for real river networks
I Typically: 1.3 < τ < 1.5 and 1.5 < γ < 2
I Smaller basins more allometric (h > 1/2)
I Larger basins more isometric (h = 1/2)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between Exponents

I Generalize relationship between area and length
I Hack’s law [4]:

` ∝ ah

where 0.5 . h . 0.7
I Redo calc with γ, τ , and h.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between Exponents

I Given

` ∝ ah, P(a) ∝ a−τ , and P(`) ∝ `−γ

I d` ∝ d(ah) = hah−1da
I Pr(basin area = a)da

= Pr(basin length = `)d`
∝ `−γd`
∝ (ah)−γah−1da
= a−(1+h (γ−1))da

I

τ = 1 + h(γ − 1)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Connections between Exponents

With more detailed description of network structure,
τ = 1 + h(γ − 1) simplifies:

τ = 2− h

γ = 1/h

I Only one exponent is independent
I Simplify system description
I Expect scaling relations where power laws are found
I Characterize universality class with independent

exponents

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Other First Returns

Failure
I A very simple model of failure/death:
I xt = entity’s ‘health’ at time t
I x0 could be > 0.
I Entity fails when x hits 0.

Streams
I Dispersion of suspended sediments in streams.
I Long times for clearing.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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More than randomness

I Can generalize to Fractional Random Walks
I Levy flights, Fractional Brownian Motion
I In 1-d,

σ ∼ t α

α > 1/2 — superdiffusive
α < 1/2 — subdiffusive

I Extensive memory of path now matters...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Variable Transformation

Understand power laws as arising from

1. elementary distributions (e.g., exponentials)
2. variables connected by power relationships

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Variable Transformation

I Random variable X with known distribution Px

I Second random variable Y with y = f (x).

I Py (y)dy = Px(x)dx
=∑

y |f (x)=y Px(f−1(y)) dy
|f ′(f−1(y))|

I Often easier to do by
hand...

Figure...

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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General Example
Assume relationship between x and y is 1-1.

I Power-law relationship between variables:
y = cx−α, α > 0

I Look at y large and x small
I

dy = d
(
cx−α

)
= c(−α)x−α−1dx

invert: dx =
−1
cα

xα+1dy

dx =
−1
cα

(y
c

)−(α+1)/α

dy

dx =
−c1/α

α
y−1−1/αdy

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Power-Law
Mechanisms

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

Growth
Mechanisms
Random Copying

Words, Cities, and the Web

References

45 of 88

General Example
Now make transformation:

Py (y)dy = Px(x)dx

Py (y)dy = Px

(x)︷ ︸︸ ︷((y
c

)−1/α
) dx︷ ︸︸ ︷

c1/α

α
y−1−1/αdy

I If Px(x) → non-zero constant as x → 0 then

Py (y) ∝ y−1−1/α as y →∞.

I If Px(x) → xβ as x → 0 then

Py (y) ∝ y−1−1/α−β/α as y →∞.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Example

Exponential distribution
Given Px(x) = 1

λe−x/λ and y = cx−α, then

P(y) ∝ y−1−1/α + O
(

y−1−2/α
)

I Exponentials arise from randomness...
I More later when we cover robustness.

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Gravity

I Select a random point in the
universe ~x

I (possible all of space-time)
I Measure the force of gravity

F (~x)

I Observe that PF (F ) ∼ F−5/2.

http://www.uvm.edu
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Ingredients [13]

Matter is concentrated in stars:
I F is distributed unevenly
I Probability of being a distance r from a single star at

~x = ~0:
Pr (r)dr ∝ r2dr

I Assume stars are distributed randomly in space
(oops?)

I Assume only one star has significant effect at ~x .
I Law of gravity:

F ∝ r−2

I invert:
r ∝ F−1/2
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Transformation

I

dF ∝ d(r−2)

I

∝ r−3dr

I invert:
dr ∝ r3dF

I

∝ F−3/2dF
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Transformation

Using r ∝ F−1/2 , dr ∝ F−3/2dF and Pr (r) ∝ r2

I

PF (F )dF = Pr (r)dr

I

∝ Pr (F−1/2)F−3/2dF

I

∝
(

F−1/2
)2

F−3/2dF

I

= F−1−3/2dF

I

= F−5/2dF
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Gravity

PF (F ) = F−5/2dF

I

γ = 5/2

I Mean is finite
I Variance = ∞
I A wild distribution
I Random sampling of space usually safe

but can end badly...
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Caution!

I PLIPLO = Power law in, power law out
I Explain a power law as resulting from another

unexplained power law.
I Yet another homunculus argument (�)...
I Don’t do this!!! (slap, slap)
I We need mechanisms!
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Aggregation

I Random walks represent additive aggregation
I Mechanism: Random addition and subtraction
I Compare across realizations, no competition.
I Next: Random Additive/Copying Processes involving

Competition.
I Widespread: Words, Cities, the Web, Wealth,

Productivity (Lotka), Popularity (Books, People, ...)
I Competing mechanisms (trickiness)
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Work of Yore

I 1924: G. Udny Yule [14]:
# Species per Genus

I 1926: Lotka [6]:
# Scientific papers per author (Lotka’s law)

I 1953: Mandelbrot [8]:
Optimality argument for Zipf’s law; focus on
language.

I 1955: Herbert Simon [12, 15]:
Zipf’s law for word frequency, city size, income,
publications, and species per genus.

I 1965/1976: Derek de Solla Price [9, 10]:
Network of Scientific Citations.

I 1999: Barabasi and Albert [1]:
The World Wide Web, networks-at-large.
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Examples

Evidence for Zipf’s law...
tem and applications, which form a complex web of inter-
dependencies. A measure of the ‘‘centrality’’ of a given
package is the number of other packages that call it in their
routine, a measure we refer to as the number of in-directed
links or connections that other packages have to a given
package. We find that the distribution of in-directed links
of packages in successive Debian Linux distributions pre-
cisely obeys Zipf’s law over four orders of magnitudes. We
then verify explicitly that the growth observed between
successive releases of the number of in-directed links of
packages obeys Gibrat’s law with a good approximation.
As an additional critical test of the stochastic growth
process, we confirm empirically that the average growth
increment of the number of in-directed links of packages
over a time interval !t is proportional to !t, while its

standard deviation is proportional to
ffiffiffiffiffiffi
!t

p
, as predicted

from Gibrat’s law implemented in a standard stochastic
growth model. In addition, we verify that the distribution of
the number of in-directed links of new packages appearing
in evolving version of Debian Linux distributions has a tail
thinner than Zipf’s law, confirming that Zipf’s law in this
system is controlled by the growth process.

The Linux Kernel was created in 1991 by Linus Torvalds
as a clone of the proprietary Unix operating system
[25,26], and was licensed under GNU General Public
License. Its code and open source license had immediately
a strong appeal to the community of open source devel-
opers who started to run other open source programs on
this new operating system. In 1993, Debian Linux [27]
became the first noncommercial successful general distri-
bution of an open source operating system. While contin-
uously evolving, it remains up to the present the ‘‘mother’’
of a dominant Linux branch, competing with a growing
number of derived distributions (Ubuntu, Dreamlinux,
Damn Small Linux, Knoppix, Kanotix, and so on).

From a few tens to hundreds of packages (474 in 1996
(v1.1)), Debian has expanded to include more than about
18’000 packages in 2007, with many intricate dependen-
cies between them, that can be represented by complex
functional networks. Its evolution is recorded by a chrono-
logical series of stable and unstable releases: new packages
enter, some disappear, others gain or lose connectivity.
Here, we study the following sequence of Debian releases:
Woody: 19.07.2002; Sarge: 0.6.06.2005; Etch: 15.08.2007;
Lenny (unstable version): 15.12.2007; several other Lenny
versions from 18.03.2008 to 05.05.2008 in intervals of
7 days.

Figure 1 shows the number of packages in the first four
successive versions of Debian Linux with more than C in-
directed links, which is nothing but the un-normalized
complementary cumulative (or survival) distribution of
package numbers of in-directed links. Zipf’s law is con-
firmed over four full decades, for each of the four releases
(xmin ¼ 1 and xmax ’ 104 are the minimum and maximum
numbers of in-directed links). Notwithstanding the large
modifications between releases and the multiplication of

the number of packages by a factor of 3 between Woody
and Lenny, the distributions shown in Fig. 1 are all con-
sistent with Zipf’s law. It is remarkable that no noticeable
cutoff or change of regimes occurs neither at the left nor at
the right end-parts of the distributions shown in Fig. 1. Our
results extend those conjectured in Ref. [28] for Red Hat
Linux. By using Debian Linux, which is better suited for
the sampling of projects than the often used SourceForge
collaboration platform, we avoid biases and gather unique
information only available in an integrated environment
[29].
To understand the origin of this Zipf’s law, we use the

general framework of stochastic growth models, and we
track the time evolution of a given package via its number
C of in-directed links connecting it to other packages
within Debian Linux. The increment dC of the number
of in-directed links to a given package over a small time
interval dt is assumed to be the sum of two contributions,
defining a generalized diffusion process:

dC ¼ rðCÞdtþ !ðCÞdW; (2)

with rðCÞ is the average deterministic growth of the in-
directed link number, !ðCÞ is the standard deviation of the
stochastic component of the growth process and dW is the

FIG. 1 (color online). (Color Online) Log-log plot of the
number of packages in four Debian Linux Distributions with
more than C in-directed links. The four Debian Linux
Distributions are Woody (19.07.2002) (orange diamonds),
Sarge (06.06.2005) (green crosses), Etch (15.08.2007) (blue
circles), Lenny (15.12.2007) (blackþ’s). The inset shows the
maximum likelihood estimate (MLE) of the exponent" together
with two boundaries defining its 95% confidence interval (ap-
proximately given by 1% 2=

ffiffiffi
n

p
, where n is the number of data

points using in the MLE), as a function of the lower threshold.
The MLE has been modified from the standard Hill estimator to
take into account the discreteness of C.
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package is the number of other packages that call it in their
routine, a measure we refer to as the number of in-directed
links or connections that other packages have to a given
package. We find that the distribution of in-directed links
of packages in successive Debian Linux distributions pre-
cisely obeys Zipf’s law over four orders of magnitudes. We
then verify explicitly that the growth observed between
successive releases of the number of in-directed links of
packages obeys Gibrat’s law with a good approximation.
As an additional critical test of the stochastic growth
process, we confirm empirically that the average growth
increment of the number of in-directed links of packages
over a time interval !t is proportional to !t, while its

standard deviation is proportional to
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, as predicted

from Gibrat’s law implemented in a standard stochastic
growth model. In addition, we verify that the distribution of
the number of in-directed links of new packages appearing
in evolving version of Debian Linux distributions has a tail
thinner than Zipf’s law, confirming that Zipf’s law in this
system is controlled by the growth process.

The Linux Kernel was created in 1991 by Linus Torvalds
as a clone of the proprietary Unix operating system
[25,26], and was licensed under GNU General Public
License. Its code and open source license had immediately
a strong appeal to the community of open source devel-
opers who started to run other open source programs on
this new operating system. In 1993, Debian Linux [27]
became the first noncommercial successful general distri-
bution of an open source operating system. While contin-
uously evolving, it remains up to the present the ‘‘mother’’
of a dominant Linux branch, competing with a growing
number of derived distributions (Ubuntu, Dreamlinux,
Damn Small Linux, Knoppix, Kanotix, and so on).

From a few tens to hundreds of packages (474 in 1996
(v1.1)), Debian has expanded to include more than about
18’000 packages in 2007, with many intricate dependen-
cies between them, that can be represented by complex
functional networks. Its evolution is recorded by a chrono-
logical series of stable and unstable releases: new packages
enter, some disappear, others gain or lose connectivity.
Here, we study the following sequence of Debian releases:
Woody: 19.07.2002; Sarge: 0.6.06.2005; Etch: 15.08.2007;
Lenny (unstable version): 15.12.2007; several other Lenny
versions from 18.03.2008 to 05.05.2008 in intervals of
7 days.

Figure 1 shows the number of packages in the first four
successive versions of Debian Linux with more than C in-
directed links, which is nothing but the un-normalized
complementary cumulative (or survival) distribution of
package numbers of in-directed links. Zipf’s law is con-
firmed over four full decades, for each of the four releases
(xmin ¼ 1 and xmax ’ 104 are the minimum and maximum
numbers of in-directed links). Notwithstanding the large
modifications between releases and the multiplication of

the number of packages by a factor of 3 between Woody
and Lenny, the distributions shown in Fig. 1 are all con-
sistent with Zipf’s law. It is remarkable that no noticeable
cutoff or change of regimes occurs neither at the left nor at
the right end-parts of the distributions shown in Fig. 1. Our
results extend those conjectured in Ref. [28] for Red Hat
Linux. By using Debian Linux, which is better suited for
the sampling of projects than the often used SourceForge
collaboration platform, we avoid biases and gather unique
information only available in an integrated environment
[29].
To understand the origin of this Zipf’s law, we use the

general framework of stochastic growth models, and we
track the time evolution of a given package via its number
C of in-directed links connecting it to other packages
within Debian Linux. The increment dC of the number
of in-directed links to a given package over a small time
interval dt is assumed to be the sum of two contributions,
defining a generalized diffusion process:

dC ¼ rðCÞdtþ !ðCÞdW; (2)

with rðCÞ is the average deterministic growth of the in-
directed link number, !ðCÞ is the standard deviation of the
stochastic component of the growth process and dW is the

FIG. 1 (color online). (Color Online) Log-log plot of the
number of packages in four Debian Linux Distributions with
more than C in-directed links. The four Debian Linux
Distributions are Woody (19.07.2002) (orange diamonds),
Sarge (06.06.2005) (green crosses), Etch (15.08.2007) (blue
circles), Lenny (15.12.2007) (blackþ’s). The inset shows the
maximum likelihood estimate (MLE) of the exponent" together
with two boundaries defining its 95% confidence interval (ap-
proximately given by 1% 2=

ffiffiffi
n

p
, where n is the number of data
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Maillart et al., PRL, 2008:
“Empirical Tests of Zipf’s Law Mechanism in Open Source
Linux Distribution” [7]
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Essential Extract of a Growth Model

Random Competitive Replication (RCR):

1. Start with 1 element of a particular flavor at t = 1
2. At time t = 2, 3, 4, . . ., add a new element in one of

two ways:
I With probability ρ, create a new element with a new

flavor
ä Mutation/Innovation

I With probability 1− ρ, randomly choose from all
existing elements, and make a copy.
ä Replication/Imitation

I Elements of the same flavor form a group
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Random Competitive Replication

Example: Words in a text

I Consider words as they appear sequentially.
I With probability ρ, the next word has not previously

appeared
ä Mutation/Innovation

I With probability 1− ρ, randomly choose one word
from all words that have come before, and reuse this
word
ä Replication/Imitation
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Random Competitive Replication

I Competition for replication between elements is
random

I Competition for growth between groups is not
random

I Selection on groups is biased by size
I Rich-gets-richer story
I Random selection is easy
I No great knowledge of system needed

http://www.uvm.edu
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Random Competitive Replication

I Steady growth of system: +1 element per unit time.
I Steady growth of distinct flavors at rate ρ

I We can incorporate
1. Element elimination
2. Elements moving between groups
3. Variable innovation rate ρ
4. Different selection based on group size

(But mechanism for selection is not as simple...)

http://www.uvm.edu
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Random Competitive Replication

Definitions:
I ki = size of a group i
I Nk (t) = # groups containing k elements at time t .

Basic question: How does Nk (t) evolve with time?

First:
∑

k

kNk (t) = t = number of elements at time t

http://www.uvm.edu
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Random Competitive Replication

Pk (t) = Probability of choosing an element that belongs to
a group of size k :

I Nk (t) size k groups
I ⇒ kNk (t) elements in size k groups
I t elements overall

Pk (t) =
kNk (t)

t

http://www.uvm.edu
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Random Competitive Replication

Nk (t), the number of groups with k elements, changes at
time t if

1. An element belonging to a group with k elements is
replicated
Nk (t + 1) = Nk (t)− 1
Happens with probability (1− ρ)kNk (t)/t

2. An element belonging to a group with k − 1 elements
is replicated
Nk (t + 1) = Nk (t) + 1
Happens with probability (1− ρ)(k − 1)Nk−1(t)/t
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Random Competitive Replication

Special case for N1(t):

1. The new element is a new flavor:
N1(t + 1) = N1(t) + 1
Happens with probability ρ

2. A unique element is replicated.
N1(t + 1) = N1(t)− 1
Happens with probability (1− ρ)N1/t

http://www.uvm.edu
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Random Competitive Replication

Put everything together:
For k > 1:

〈Nk (t + 1)− Nk (t)〉 = (1−ρ)

(
(k − 1)

Nk−1(t)
t

− k
Nk (t)

t

)

For k = 1:

〈N1(t + 1)− N1(t)〉 = ρ− (1− ρ)1 · N1(t)
t

http://www.uvm.edu
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Random Competitive Replication

Assume distribution stabilizes: Nk (t) = nk t

(Reasonable for t large)

I Drop expectations
I Numbers of elements now fractional
I Okay over large time scales
I nk/ρ = the fraction of groups that have size k .

http://www.uvm.edu
http://www.uvm.edu/~pdodds


Power-Law
Mechanisms

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

Growth
Mechanisms
Random Copying

Words, Cities, and the Web

References

69 of 88

Random Competitive Replication
Stochastic difference equation:

〈Nk (t + 1)− Nk (t)〉 = (1−ρ)

(
(k − 1)

Nk−1(t)
t

− k
Nk (t)

t

)
becomes

nk (t + 1)− nk t = (1− ρ)

(
(k − 1)

nk−1t
t

− k
nk t
t

)

nk (�t + 1− �t) = (1− ρ)

(
(k − 1)

nk−1�t
�t

− k
nk�t
�t

)
⇒ nk = (1− ρ) ((k − 1)nk−1 − knk )

⇒ nk (1 + (1− ρ)k) = (1− ρ)(k − 1)nk−1
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Random Competitive Replication

We have a simple recursion:

nk

nk−1
=

(k − 1)(1− ρ)

1 + (1− ρ)k

I Interested in k large (the tail of the distribution)
I Can be solved exactly.

Insert question from assignment 4 (�)
I To get at tail: Expand as a series of powers of 1/k

Insert question from assignment 4 (�)

http://www.uvm.edu
http://www.uvm.edu/~pdodds
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Power-Law
Mechanisms

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

Growth
Mechanisms
Random Copying

Words, Cities, and the Web

References

71 of 88

Random Competitive Replication

I We (okay, you) find

nk

nk−1
' (1− 1

k
)

(2−ρ)
(1−ρ)

I

nk

nk−1
'
(

k − 1
k

) (2−ρ)
(1−ρ)

I

nk ∝ k−
(2−ρ)
(1−ρ) = k−γ

γ =
(2− ρ)

(1− ρ)
= 1 +

1
(1− ρ)

http://www.uvm.edu
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Random Competitive Replication

γ =
(2− ρ)

(1− ρ)
= 1 +

1
(1− ρ)

I Observe 2 < γ < ∞ as ρ varies.
I For ρ ' 0 (low innovation rate):

γ ' 2

I Recalls Zipf’s law: sr ∼ r−α

(sr = size of the r th largest element)
I We found α = 1/(γ − 1)

I γ = 2 corresponds to α = 1

http://www.uvm.edu
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Random Competitive Replication

I We (roughly) see Zipfian exponent [15] of α = 1 for
many real systems: city sizes, word distributions, ...

I Corresponds to ρ → 0 (Krugman doesn’t like it) [5]

I But still other mechanisms are possible...
I Must look at the details to see if mechanism makes

sense... more later.
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Random Competitive Replication

We had one other equation:
I

〈N1(t + 1)− N1(t)〉 = ρ− (1− ρ)1 · N1(t)
t

I As before, set N1(t) = n1t and drop expectations
I

n1(t + 1)− n1t = ρ− (1− ρ)1 · n1t
t

I

n1 = ρ− (1− ρ)n1

I Rearrange:
n1 + (1− ρ)n1 = ρ

I

n1 =
ρ

2− ρ

http://www.uvm.edu
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Random Competitive Replication

So... N1(t) = n1t =
ρt

2− ρ

I Recall number of distinct elements = ρt .
I Fraction of distinct elements that are unique (belong

to groups of size 1):

N1(t)
ρt

=
1

2− ρ

(also = fraction of groups of size 1)
I For ρ small, fraction of unique elements ∼ 1/2
I Roughly observed for real distributions
I ρ increases, fraction increases
I Can show fraction of groups with two elements ∼ 1/6
I Model does well at both ends of the distribution
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http://www.uvm.edu/~pdodds


Power-Law
Mechanisms

Random Walks
The First Return Problem

Examples

Variable
transformation
Basics

Holtsmark’s Distribution

PLIPLO

Growth
Mechanisms
Random Copying

Words, Cities, and the Web

References

77 of 88

Words

From Simon [12]:

Estimate ρest = # unique words/# all words

For Joyce’s Ulysses: ρest ' 0.115

N1 (real) N1 (est) N2 (real) N2 (est)
16,432 15,850 4,776 4,870
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Evolution of catch phrases

I Yule’s paper (1924) [14]:
“A mathematical theory of evolution, based on the
conclusions of Dr J. C. Willis, F.R.S.”

I Simon’s paper (1955) [12]:
“On a class of skew distribution functions” (snore)

From Simon’s introduction:
It is the purpose of this paper to analyse a class of
distribution functions that appear in a wide range of
empirical data—particularly data describing sociological,
biological and economoic phenomena.
Its appearance is so frequent, and the phenomena so
diverse, that one is led to conjecture that if these
phenomena have any property in common it can only be
a similarity in the structure of the underlying probability
mechanisms.
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Evolution of catch phrases

More on Herbert Simon (1916–2001):

I Political scientist
I Involved in Cognitive Psychology, Computer Science,

Public Administration, Economics, Management,
Sociology

I Coined ‘bounded rationality’ and ‘satisficing’
I Nearly 1000 publications
I An early leader in Artificial Intelligence, Information

Processing, Decision-Making, Problem-Solving,
Attention Economics, Organization Theory, Complex
Systems, And Computer Simulation Of Scientific
Discovery.

I Nobel Laureate in Economics
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Evolution of catch phrases

I Derek de Solla Price was the first to study network
evolution with these kinds of models.

I Citation network of scientific papers
I Price’s term: Cumulative Advantage
I Idea: papers receive new citations with probability

proportional to their existing # of citations
I Directed network
I Two (surmountable) problems:

1. New papers have no citations
2. Selection mechanism is more complicated
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Evolution of catch phrases

I Robert K. Merton: the Matthew Effect (�)
I Studied careers of scientists and found credit flowed

disproportionately to the already famous

From the Gospel of Matthew:
“For to every one that hath shall be given...
(Wait! There’s more....)
but from him that hath not, that also which he
seemeth to have shall be taken away.
And cast the worthless servant into the outer
darkness; there men will weep and gnash their teeth.”

I (Hath = unit of purchasing power.)
I Matilda effect: (�) women’s scientific achievements

are often overlooked
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Evolution of catch phrases

Merton was a catchphrase machine:
1. self-fulfilling prophecy
2. role model
3. unintended (or unanticipated) consequences
4. focused interview → focus group

And just to be clear...

Merton’s son, Robert C. Merton, won the Nobel Prize for
Economics in 1997.
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Evolution of catch phrases

I Barabasi and Albert [1]—thinking about the Web
I Independent reinvention of a version of Simon and

Price’s theory for networks
I Another term: “Preferential Attachment”
I Considered undirected networks (not realistic but

avoids 0 citation problem)
I Still have selection problem based on size

(non-random)
I Solution: Randomly connect to a node (easy)
I + Randomly connect to the node’s friends (also easy)
I Scale-free networks = food on the table for physicists
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