

Thesaurus deliciousness:	Overview of Complex Networks
	Basic definitions Examples of Complex Networks
network	Properties of Complex Networks Nutshell
noun 1 a network of arteries WEB, lattice, net, matrix, mesh, crisscross, grid, reticulum, reticulation; Anatomy plexus.	Basic models of complex networks Generalized random networks Scale-free networks
 2 a network of lanes MAZE, labyrinth, warren, tangle. 3 a network of friends SYSTEM, complex, nexus, web, webwork. 	Small-world networks Generalized affiliation networks References
	Rest
	Vermont 0
	わくひ 4 of 128

Outline	Overview of Complex Networks
Basic definitions	Basic definitions Examples of
Examples of Complex Networks	Complex Networks Properties of Complex Networks
Properties of Complex Networks	Nutshell Basic models of
Nutshell	Generalized random networks Scale-free networks
Basic models of complex networks	Generalized affiliation networks
Generalized random networks Scale-free networks	References
Small-world networks Generalized affiliation networks	
References	TINVERSITY 12
	A WATER MONT

net•work |'net,wərk|

noun

Basic definitions
Examples of Complex Network
Properties of Complex Network
Nutshell
Basic models of
complex networks
Generalized random networks
Scale-free networks
Small-world networks
Generalized affiliation networks

Overview of Complex Net

わくひ 2 of 128		の Q (℃ 5 of 128
Overview of Complex Networks	Ancestry:	Overview of Complex Networks
Basic definitions		Basic definitions
Examples of Complex Networks	First known use: Geneva Bible, 1560	Examples of Complex Networks
Properties of Complex Networks	'And thou shalt make unto it a grate like networke of	Properties of Complex Networks
Nutshell	brass (Exodus xxvii 4).'	Nutshell
Basic models of complex networks Generalized random networks	From the OED via Briggs:	Basic models of complex networks Generalized random networks
Scale-free networks Small-world networks	1658–: reticulate structures in animals	Scale-free networks Small-world networks
Generalized attiliation networks	1839–: rivers and canals	networks
References	► 1869–: railways	References
$\frac{1}{2}$	1883–: distribution network of electrical cables	=
心是行	1914–: wireless broadcasting networks	心气
We		Wet
VERMONT		
わへで 3 of 128		の へ C 6 of 128

Key Observation:

- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ... largely due to your typical theoretical physicist:
 - Piranha physicus Hunt in packs.

 - Feast on new and interesting ideas (see chaos, cellular automata, ...)

わみで 7 of 128

Overview of Complex Networks

Basic definitions

Examples of Complex Net

Properties of Complex Netwo

Basic models of complex networl

Vutshell

Scale-free

leferences

VERMONT

Popularity (according to ISI)	Overview of Complex Networks
	Basic definitions
Review esticles:	Examples of Complex Networks
	Properties of Complex Networks
S. Boccaletti et al. "Complex networks: structure and dynamics" [6]	Nutshell
Times cited: 1,028 (as of June 7, 2010)	Basic models of complex networks
M. Newman	Scale-free networks
"The structure and function of complex networks" ^[21]	Small-world networks Generalized affiliation networks
Times cited: 2,559 (as of June 7, 2010)	References
 R. Albert and AL. Barabási "Statistical mechanics of complex networks" ^[2] Times cited: 3,995 (as of June 7, 2010) 	N.
	Je.
	うくで 10 of 128

Popularity according to textbooks:	Overview of Complex Networks
	Basic definitions
	Examples of Complex Networks
	Properties of Complex Networks
lextbooks:	Nutshell
Mark Newman (Physics, Michigan) "Networks: An Introduction" (⊞)	Basic models of complex networks Generalized random
David Easley and Jon Kleinberg (Economics and	Scale-free networks Small-world networks
Computer Science, Cornell)	Generalized affiliation networks
Highly Connected World" (⊞)	References
	「ふくう
	W.
	VERMONT

Popularit	y according to books:	Overview of Complex Networks
		Basic definitions
The The		Examples of Complex Networks
TIPPING POINT	The Tipping Point: How Little Things can	Properties of Complex Networks
Robe & Big Difference	make a Big Difference—Malcolm Gladwell ^[14]	Nutshell
MALCOLM GLADWELL Well-self-test for and a self-self-		Basic models of complex networks
		networks Scale-free networks
Mark Bechanan		Small-world networks Generalized affiliation
		References
	Nexus: Small Worlds and the Groundbreaking	
SIGALL WORLD'S and the	Science of Networks-Mark Buchanan	$-\tilde{O}$
Encode Breaking The core of the The Walks		一次
		N.
		VERMONT
		• ク へ ベ 12 of 128

Popularit	y according to books:	Overview of Complex Networks
		Basic definitions
Here Europhing In Controlled to Descyloring Elite and When in Manue for Datation, Science, and Descylor Life		Examples of Complex Networks
Linked	Linked: How Everything Is Connected to	Properties of
	Everything Else and What It	Nutshell
Table and a first second state	Means—Albert-Laszlo Barabási	Basic models of complex networks
Albert-Lészlé Berebési		Generalized random networks
		Scale-free networks
SIX		Small-world networks Generalized affiliation networks
DEGREES		References
ALC: NO	Six Degrees: The Science of a Connected	Nº-
	Age—Duncan Watts ^[28]	-
THE SCIENCE OF		-17/-

More observations	Overview of Complex Networks
	Basic definitions
Web-scale data sets can be overly exciting.	Examples of Complex Networks
Witness	Properties of Complex Networks
	Nutshell
► The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired) (⊞)	Basic models of complex networks Generalized random networks
 "The Unreasonable Effectiveness of Data," Halevy et al.^[15]. 	Scale-free networks Small-world networks Generalized affiliation networks
	References
But:	
 For scientists, description is only part of the battle. 	一次的
We still need to understand.	est all
	UNIVERSITY

の q で 16 of 128

n a (~ 17 of 128

Super Basic definitions	Overview of Complex Network
Nodes = A collection of entities which have properties that are somehow related to each other	Basic definitions Examples of Complex Network Properties of Complex Network
 e.g., people, forks in rivers, proteins, webpages, organisms, 	Nutshell Basic models of complex networks Generalized random networks Scale-tree networks
Links = Connections between nodes	Small-world networks Generalized affiliation networks
 Links may be directed or undirected. Links may be binary or weighted. Other spiffing words: vertices and edges. 	References

Super Basic definitions	Complex Network
	Basic definitions
Node degree = Number of links per node	Examples of Complex Network
▶ Notation: Node <i>i</i> 's degree = k_i .	Properties of Complex Network
 k_i = 0,1,2, Notation: the average degree of a network = (k) (and sometimes z) 	Basic models of complex network Generalized random networks Scale-free networks Small-world networks
Connection between number of edges <i>m</i> and average degree: $\langle k \rangle = \frac{2m}{1}.$	Generalized affiliation networks References
► Defn: \mathcal{N}_i = the set of <i>i</i> 's k_i neighbors	No.
	UNIVERSITY CERMONT
	• クママ 18 of 12

More observations

Mendes^[13]

Numerous others:

But surely networks aren't new...

Bornholdt and H. G. Schuster^[8]

- Graph theory is well established...
- Study of social networks started in the 1930's...

Complex Social Networks—F. Vega-Redondo [27]

Rodríguez-Iturbe and A. Rinaldo [22]

Random Graph Dynamics—R. Durette

Scale-Free Networks—Guido Caldarelli

Alessandro Vespignani

Kathleen Faust

► Fractal River Basins: Chance and Self-Organization—I.

Evolution and Structure of the Internet: A Statistical

Physics Approach-Romu Pastor-Satorras and

Social Network Analysis—Stanley Wasserman and

Handbook of Graphs and Networks—Eds: Stefan

Evolution of Networks—S. N. Dorogovtsev and J. F. F.

Complex Graphs and Networks—Fan Chung

- So why all this 'new' research on networks?
- Answer: Oodles of Easily Accessible Data.
- We can now inform (alas) our theories with a much more measurable reality.*
- A worthy goal: establish mechanistic explanations.

* If this is upsetting, maybe string theory is for you...

Examples of Complex Networks

Nutshell Basic models of complex networks

VERMONT •) q (マ 15 of 128

Overview of Complex Networks Basic definitions

Properties of Complex Netwo

VERMONT •୨ < C + 14 of 128

Examples of Complex Netv Properties of Complex Networks Nutshell Basic models of complex network

neralized randon works Scale-free ne Small-world netwo leferences

VERMONT • 𝔍 𝔍 13 of 128

Overview of Complex Networks

Basic definitions

Properties	Overview of Complex Networks
 9. Network distances: (c) Network diameter d_{max}: 	Basic definitions Examples of Complex Networks Properties of Complex N Nutshell Basic models of
 Maximum shortest path length in network. (d) Closeness d_{cl} = [∑_{ij} d_{ij}⁻¹/ (ⁿ₂)]⁻¹: 	complex networks Generalized random networks Scale-free networks Smail-world networks Generalized affiliation networks
 Average 'distance' between any two nodes. Closeness handles disconnected networks (d_{ij} = ∞) d_{cl} = ∞ only when all nodes are isolated. 	References

Nutshell:	Overview of Complex Networks
 Overview Key Points (cont.): Obvious connections with the vast extant field of graph theory. 	Basic definitions Examples of Complex Networks Properties of Complex Networks
 But focus on dynamics is more of a physics/stat-mech/comp-sci flavor. Two main areas of focus: Description: Characterizing very large networks Explanation: Micro story ⇒ Macro features 	Nutshell Basic models of complex networks Generative random networks Scale-free networks Small-work networks Generatized attiliation networks
 Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure, 	References
 Still much work to be done, especially with respect to dynamics 	

Properties

10. Centrality:

Nutshell:

Overview Key Points:

the late 1990s.

and (crucially) measurable.

Three main (blurred) categories: 1. Physical (e.g., river networks), 2. Interactional (e.g., social networks),

3. Abstract (e.g., thesauri).

- Many such measures of a node's 'importance.'
- ex 1: Degree centrality: k_i .
- ex 2: Node i's betweenness
 - = fraction of shortest paths that pass through *i*.
- ex 3: Edge l's betweenness = fraction of shortest paths that travel along ℓ .

Explosion of papers and interest since 1998/99.

Specific focus on networks that are large-scale,

Hardened up much thinking about complex systems.

sparse, natural or man-made, evolving and dynamic,

ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg^[17])

Overview of

Complex Networks

Basic definitions

Examples of Complex Networks

complex networks

2 VERMONT • 𝔍 𝔄 37 of 128

Overview of Complex Networks

Basic definitions

Examples of Complex Networks

Basic models of complex networks

eneralized randor tworks

Scale-free net Small-world networks

Nutshell

Properties of Complex Net

Models

3. small-world networks 4. statistical generative models (p*) 5. generalized affiliation networks

Some important models:

2. scale-free networks

1. generalized random networks

Overview of Models Complex Networks Basic definitions Examples of Complex Networks Properties of Complex Networks Generalized random networks: Nutshell Arbitrary degree distribution P_k. Basic models of omplex networks Create (unconnected) nodes with degrees sampled Generalized random net from P_k . Wire nodes together randomly. References Create ensemble to test deviations from randomness. UNIVERSITY

Nutshell

Properties of Complex Networks The field of complex networks came into existence in Basic models of

VERMONT

かへで 39 of 128

Properties of Complex Networks Nutshell Basic models of complex netwo mall-world Seneralized affiliatio

୬ ର. ୦୦ 40 of 128

Overview of Complex Networks

Basic definitions

Examples of Complex Network:

VIVERSITY VERMONT

୬ ର. ୦୦ 41 of 128

わくで 43 of 128

Scale-free networks	Overview of Complex Networks	Approx
	Basic definitions	► Wh
	Examples of Complex Networks	incr
The big deal:	Properties of Complex Networks	
We move beyond describing networks to finding	Nutshell	
mechanisms for why certain networks are the way	Basic models of complex networks	
they are.	Generalized random networks	Ass
A big deal for scale-free networks:	Scale-ree reworks Small-world networks Generalized affiliation	Disj ove
	References	smo
How does the exponent γ depend on the mechanism?		App
Do the mechanism details matter?		
	University Vermont	whe
	わくひ 52 of 128	
BA model	Overview of Complex Networks	Approx

Approximate analysis	Overview of Complex Networks
When (N + 1)th node is added, the expected increase in the degree of node <i>i</i> is k _{i N}	Basic definitions Examples of Complex Networks Properties of
$E(k_{i,N+1}-k_{i,N})\simeq m \frac{N_{i,N}}{\sum_{j=1}^{N(t)} k_j(t)}.$	Complex Networks Nutshell
 Assumes probability of being connected to is small. 	Generalized random networks
 Dispense with Expectation by assuming (hoping) that over longer time frames, degree growth will be smooth and stable. 	Scale-free networks Small-world networks Generalized affiliation networks References
Approximate $k_{i,N+1} - k_{i,N}$ with $\frac{d}{dt}k_{i,t}$:	
$\frac{\mathrm{d}}{\mathrm{d}t}k_{i,t} = m \frac{N(t)}{\sum_{j=1}^{N(t)} k_j(t)}$	W.
where $t = N(t) - m_0$.	VERMONT
	_ ୬ ୯.୯ 55 of 128

Approximate analysis	Overview of Complex Networks
Deal with denominator: each added node brings m	Pagia definitions
new edges. $\therefore \sum_{j=1}^{N(t)} k_j(t) = 2tm$	Examples of Complex Networks Properties of Complex Networks Nutshell
► The node degree equation now simplifies: $\frac{d}{dt}k_{i,t} = m \frac{k_i(t)}{\sum^{N(t)}k_i(t)} = m \frac{k_i(t)}{2mt} = \frac{1}{2t}k_i(t)$	Basic models of complex networks Generalized random networks State-free networks Smail-world networks Generalized affiliation networks
Rearrange and solve:	References
$\frac{\mathrm{d}\kappa_i(t)}{\kappa_i(t)} = \frac{\mathrm{d}t}{2t} \Rightarrow \boxed{k_i(t) = c_i t^{1/2}}.$ Next find c_i	UNIVERSITY OF

Things to do and questions	Overview of Complex Networks
 Vary attachment kernel. Vary mechanisms: 	Basic definitions Examples of Complex Networks
 Add edge deletion Add node deletion Add edge rewiring 	Complex Networks Nutshell Basic models of complex networks
 Deal with directed versus undirected networks. Important Q.: Are there distinct universality classes 	Generalized random networks Scale-free networks Small-world networks
for these networks? ► Q.: How does changing the model affect γ?	References
 Q.: Do we need preferential attachment and growth? Q.: Do model details matter? 	
► The answer is (surprisingly) yes. More later re Zipf.	
	クヘマ 64 of 128
Preferential attachment	Overview of Complex Networks
	Basic definitions
	Complex Networks

Let's look at preferential attachment (PA) a little more closely.

- PA implies arriving nodes have complete knowledge of the existing network's degree distribution.
- For example: If $P_{\text{attach}}(k) \propto k$, we need to determine the constant of proportionality.
- We need to know what everyone's degree is...
- PA is .: an outrageous assumption of node capability.
- But a very simple mechanism saves the day...

Properties of

Nutshell

Complex Netwo

Basic models of complex networks

Scale-free networks

References

VERMONT

かへで 65 of 128

Overview of Complex Networks

つへで 66 of 128

VIVERSITY VERMONT

わへで 67 of 128

Preferential attachment through randomness

Robustness

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

leferences

Basic definitions

Examples of Complex Netv

Properties of

Basic models of complex networl

Scale-free networks

Nutshell

mplex Network

Overview of

Complex Networks

Target person =

Boston stockbroker.

Basic definitions

Examples of Complex Networks

Complex Networks

Basic models of complex network

Generalized randor networks

Small-world network

References

VIVERSITY VERMONT

Properties of

Nutshell

People thinking about people: How are social networks structured?

- How do we define and measure connections?
- Methods/issues of self-report and remote sensing.

What about the dynamics of social networks?

- How do social networks/movements begin & evolve?
- How does collective problem solving work?
- How does information move through social networks?
- Which rules give the best 'game of society?'

Sociotechnical phenomena and algorithms:

- What can people and computers do together? (google)
- Use Play + Crunch to solve problems. Which problems?

• 𝔍 𝔍 𝒛 𝔅 06 f 128

Overview of Complex Networks

Basic definitions Examples of Complex Networks

Properties of Complex Networks

Basic models of complex networks Generalized random networks Scale-free networks Smal-world networks Generalized affiliation networks References

VERMONT

わへで 77 of 128

Complex Networks

Overview of

Nutshell

わへで 80 of 128

"An Experimental study of Search in Global Social Networ P. S. Dodds, R. Muhamad, and D. J. Watts, *Science*, Vol. 301, pp. 827–829, 2003.^[11]

Social search-the Columbia experiment

	Basic definitions
	Examples of Complex Networks
60,000+ participants in 166 countries	Properties of Complex Networks
18 targets in 13 countries including	Nutshell
 a professor at an Ivy League university, an archival inspector in Estonia, a technology consultant in India, a policeman in Australia, and a veterinarian in the Norwegian army. 	Basic models of complex networks Generalized random networks State here networks Strail word networks Generalized afficien networks References
24,000+ chains	
	UNIVERSITY S
	うへで 78 of 128

Social search—the Columbia experiment	Overview of Complex Networks
	Basic definitions Examples of Complex Networks
Motivation/Incentives/Perception matter.	Properties of Complex Networks
 If target seems reachable ⇒ participation more likely. 	Basic models of complex networks
Small changes in attrition rates ⇒ large changes in completion rates	networks Scale-free networks Small-world networks Generalized affiliation networks
• e.g., \searrow 15% in attrition rate $\Rightarrow \nearrow 800\%$ in completion rate	References
	N. N

Social search—the Columbia experiment	Overview of Complex Networks
Successful chains disproportionately used weak ties (Granovetter) professional ties (34% vs. 13%) ties originating at work/college target's work (65% vs. 40%) and disproportionately avoided hubs (8% vs. 1%) (+ no evidence of funnels) 	Basic definitions Examples of Complex Networks Properties of Complex Networks Nutshell Basic models of complex networks Generatand antion retworks Scale the networks Generatand attitution retworks References
 ▶ family/friendship ties (60% vs. 83%) Geography → Work 	

Social search—the Columbia experiment	Overview of Complex Networks
	Basic definitions
Senders of successful messages showed	Complex Networks
little absolute dependency on	Complex Networks
▶ age. gender	Nutshell
Country of residence	Basic models of complex networks
 income 	Generalized random networks Scale-free networks
 religion 	Generalized affiliation
 relationship to recipient 	References
Range of completion rates for subpopulations:	
30% to 40%	A CONTRACTOR
	-0.0.0.92 of 129

Social search—the Columbia experiment

Nevertheless, some weak discrepencies do exist...

An above average connector:

Norwegian, secular male, aged 30-39, earning over \$100K, with graduate level education working in mass media or science, who uses relatively weak ties to people they met in college or at work.

A below average connector:

profession as target.)

Italian, Islamic or Christian female earning less than \$2K, with elementary school education and retired, who uses strong ties to family members.

Overview of

Nutshell Basic models of complex networks

Complex Networks Basic definitions Examples of Complex Networks Properties of Complex Networks

Overview of

Complex Networks

Basic definitions

Examples of Complex Netv

Nutshell

Properties of Complex Networks

Basic models of complex network

eneralized randor /tworks

Small-world netw

leferences

Mildly bad for continuing chain:
choosing recipients because "they have lots of friends" or
because they will "likely continue the chain."
Why:
Specificity important
 Successful links used relevant information. (e.g. connecting to someone who shares same

Small-world network

A C 84 of 128

Social search—the Columbia experiment	Overview of Complex Networks
	Basic definitions
	Examples of Complex Networks
Basic results:	Properties of Complex Networks
\blacktriangleright $\langle L \rangle = 4.05$ for all completed chains	Nutshell
 L_* = Estimated 'true' median chain length (zero attrition) 	Basic models of complex networks Generalized random networks
▶ Intra-country chains: $L_* = 5$	Scale-free networks Small-world networks Generalized affiliation
▶ Inter-country chains: $L_* = 7$	networks References
All chains: $L_* = 7$	Therefore the second se
▶ Milgram: L _* ≃ 9	No.
	n n n n n n n n n n n n n n n n n n n

Overview of Complex Network **Usefulness:** Basic definitions Harnessing social search: Examples of Complex Network Can distributed social search be used for something Properties of Complex Networks big/good? Nutshell What about something evil? (Good idea to check.) Basic models of complex network What about socio-inspired algorithms for information Seneralized randor networks search? (More later.) cale-free Small-world netwo For real social search, we have an incentives problem. References Which kind of influence mechanisms/algorithms would help propagate search? Fun, money, prestige, ... ? Must be 'non-gameable.' VERMONT

Red balloons:	Overview of Complex Networks
 A Grand Challenge: ▶ 1969: The Internet is born (⊞) (the ARPANET (⊞)—four nodes!). 	Basic definitions Examples of Complex Networks Properties of Complex Networks
 Originally funded by DARPA who created a grand Network Challenge (⊞) for the 40th anniversary. Saturday December 5, 2009: DARPA puts 10 red weather balloons up during the day. 	Nutshell Basic models of complex networks Generalized random networks Scale-free networks Small-world networks
 Each 8 foot diameter balloon is anchored to the ground somewhere in the United States. Challenge: Find the latitude and longitude of each balloon 	References
 Dalloon. Prize: \$40,000. *DARPA = Defense Advanced Research Projects Agency (⊞). 	
	わへで 87 of 128

わへで 86 of 128

The social world appears to be small why?	Overview of Complex Networks
	Basic definitions
	Examples of Complex Networks
Theory: how do we understand the small world	Properties of Complex Networks
property:	Nutshell
 Connected random networks have short average path lengths: 	Basic models of complex networks Generalized random networks
$\langle d_{AB} angle \sim \log(N)$	Scale-free networks Small-world networks
N = population size,	Generalized affiliation networks
d_{AB} = distance between nodes A and B.	References
 But: social networks aren't random 	R
	all a
	UNIVERSITY S
	うくで 91 of 128

Overview of Complex Networks

Basic definitions

Examples of Complex Network:

Complex Networks

Basic models of complex network

Seneralized randor etworks

Small-world networks

References

VINIVERSITY

わへで 92 of 128

Properties of

Nutshell

cale-free

Finding red balloons:

The winning team and strategy:

- ▶ MIT's Media Lab (⊞) won in less that 9 hours.
- People were virally recruited online to help out.
- Idea: Want people to both (1) find the balloons and (2) involve more people.
- Recursive incentive structure with exponentially decaying payout:
 - \$2000 for correctly reporting the coordinates of a balloon.
 - \$1000 for recruiting a person who finds a balloon.
 - \$500 for recruiting a person who recruits the balloon finder.
 - etc.

Finding balloons:

Clever scheme:

- Max payout = \$4000 per balloon.
- Individuals have clear incentives to both 1. involve/source more people (spread), and 2. find balloons (goal action).
- Gameable?
- Limit to how much money a set of bad actors can extract.

Extra notes:

- MIT's brand helped greatly.
- MIT group first heard about the competition a few days before. Ouch.
- ► A number of other teams did well (⊞).
- Worthwhile looking at these competing strategies.

Overview of Complex Networks

VERMONT

わへで 89 of 128

Overview of

Complex Networks

Basic definitions

Examples of Complex Netv

Properties of

Small-world networks

leferences

Nutshell Basic models of complex network

Complex Networks

Basic definitions Examples of Complex Networks Properties of Complex Networks Nutshell Basic models of

VERMONT

かへで 90 of 128

Small-world networks

Introduced by Watts and Strogatz (Nature, 1998)^[30] "Collective dynamics of 'small-world' networks." Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

VERMONT

Overview of

Need a more sophisticated model...

Overview of Complex Networks

Basic definitions

Examples of Complex Networks

Complex Networks

Basic models of complex network

Properties of

Nutshell

Previous work—finding short paths	Overview of Complex Networks
	Basic definitions
	Examples of Complex Networks
Jon Kleinberg (Nature, 2000) [16]	Properties of Complex Networks
"Navigation in a small world."	Nutshell
	Basic models of complex networks
Allowed to vary:	Generalized random networks
1. local search algorithm	Scale-free networks Small-world networks Generalized affiliation networks
and	References
2. network structure.	N. C.
	2 WINVERSITY
	ታ ዓ ር የ 100 of 128

Previous work—finding short paths	Overview of Complex Networks
 If networks have hubs can also search well: Adamic 	Basic definitions Examples of Complex Networks Properties of Complex Networks Nutshell
$P(k_i) \propto k_i^{-\gamma}$ where k = degree of node i (number of friends).	Basic models of complex networks Generalized random networks Scale-free networks Small-world networks
 Basic idea: get to hubs first (airline networks). But: hubs in social networks are limited. 	References

•୨ < C + 103 of 128

• 𝔍 𝔄 106 of 128

Previous work-finding short paths

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance q.
- 3. Add *m* short cuts per node.
- 4. Connect i to j with probability

 $p_{ij} \propto x_{ij}^{-lpha}$

Overview of Complex Networks

Basic definitions

Examples of Complex Netwo

Nutshell

Properties of Complex Networks

Basic models of complex network

Small-world network

- $\mathbf{r} \alpha = \mathbf{0}$: random connections.
- $\triangleright \alpha$ large: reinforce local connections.
- $\sim \alpha = d$: connections grow logarithmically in space.

	Basic definitions
One approach: incorporate identity.	Examples of Complex Networks
Identity is formed from attributes such as:	Properties of Complex Networks
Geographic location	Nutshell
	Basic models of complex networks
Iype of employment	Generalized random
Beligious beliefs	Scale-free networks
	Small-world networks
 Recreational activities. 	References
Groups are formed by people with at least one similar attribute.	
$\label{eq:Attributes} \mbox{\Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.}$	A CUR
	VERMONT

VERMONT •୨ < ເ∾ 101 of 128

q = probability an arbitrary message chain reaches a target.

- A few dimensions help.
- Searchability decreases as population increases.
- Precise form of hierarchy largely doesn't matter.

Dec 115 of 128

ferences

information objects.

Folksonomy: collaborative creation of metadata

eferences

UNIVERSITY

の q (マ 118 of 128

Social Search—Real world uses	Overview of Complex Networks
	Basic definitions
	Complex Networks
	Properties of Complex Networks
Recommender systems:	Nutshell
 Amazon uses people's actions to build effective connections between books. Conflict between 'expert judgments' and tagging of the hoi polloi. 	Basic models of complex networks deemstant random meterical Scale-the networks Simal-work networks References
	الم المراجع الم

NI		
INFILLE	neu	
TNULO		

_					
Bare	networ	ks are	typical	lv unse	archable.

- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

ታ ዓ ር 120 of 128

Overview of Complex Networks

Basic definitions Examples of Complex Networks Properties of Complex Networks Nutshell

Basic models of complex networks Generalized random networks

Generalized affiliation networks References

Scale-free networks Small-world networks

Ref	References I			
[1]	L. Adamic, R. Lukose, A. Puniyani, and B. Huberman. Search in power-law networks. Phys. Rev. E, 64:046135, 2001. pdf (⊞)	Basic definitions Examples of Complex Networks Properties of Complex Networks Nutshell		
[2]	R. Albert and AL. Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–97, 2002. pdf (⊞)	Basic models of complex networks Generalized random networks Scale-free networks Small-world networks Generalized affiliation		
[3]	R. Albert, H. Jeong, and AL. Barabási. Error and attack tolerance of complex networks. <u>Nature</u> , 406:378–382, 2000. pdf (⊞)	References		
[4]	AL. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf (⊞)			

Refe	Overview of Complex Networks	
[5]	P. M. Blau and J. E. Schwartz. Crosscutting Social Circles. Academic Press, Orlando, FL, 1984.	Basic definitions Examples of Complex Networks Properties of Complex Networks
[6]	S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and DU. Hwang. Complex networks: Structure and dynamics. Physics Reports, 424:175–308, 2006. pdf (⊞)	Nutshell Basic models of complex networks Generalized random networks Scale-free networks Small-world networks Generalized atfiliation
[7]	J. Bollen, H. Van de Sompel, A. Hagberg, L. Bettencourt, R. Chute, M. A. Rodriguez, and B. Lyudmila. Clickstream data yields high-resolution maps of science. PLoS ONE, 4:e4803, 2009. pdf (⊞)	Pederences

Refe	Overview of Complex Networks	
[8]	S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and Networks. Wiley-VCH, Berlin, 2003.	Basic definitions Examples of Complex Networks Properties of Complex Networks
[9]	R. L. Breiger. The duality of persons and groups. Social Forces, 53(2):181–190, 1974. pdf (⊞)	Nutshell Basic models of complex networks Generalized random networks Scale-free networks
[10]	A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf (⊞)	Small-work networks Generalized affiliation networks References
[11]	P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in global social networks.	W. W.
	<u>science</u> , 301.627–629, 2003. p <u>u</u> i (⊞)	Diviversity VERMONT

References IV	Overview of Complex Networks
 P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf (⊞) 	Basic definitions Examples of Complex Networks Properties of
[13] S. N. Dorogovtsev and J. F. F. Mendes. <u>Evolution of Networks</u> . Oxford University Press, Oxford, UK, 2003.	Complex Networks Nutshell Basic models of complex networks
[14] M. Gladwell. <u>The Tipping Point.</u> Little, Brown and Company, New York, 2000.	Generalized random networks Scale-free networks Small-world networks Generalized atfiliation networks References
 [15] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE Intelligent Systems, 24:8–12, 2009. pdf (⊞) 	Ň
[16] J. Kleinberg. Navigation in a small world. <u>Nature</u> , 406:845, 2000. pdf (⊞)	DQ C 124 of 128

Refe	erences V	Overview of Complex Networks
[17]	J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf (⊞)	Basic definitions Examples of Complex Networks Properties of Complex Networks
[18]	M. Kretzschmar and M. Morris. Measures of concurrency in networks and the spread of infectious disease. Math. Biosci., 133:165–95, 1996. pdf (⊞)	Nutshell Basic models of complex networks Generalized random networks Scale-free networks Smail-work detworks Generalized attifiation
[19]	R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon. On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf (⊞)	References
[20]	M. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002. pdf (⊞)	Diversity Vermont 8

References VI

[21]	M. E. J. Newman. The structure and function of complex networks. <u>SIAM Review</u> , 45(2):167–256, 2003. pdf (⊞)
[22]	I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization.
	Cambridge University Press, Cambrigde, UK, 1997.
[23]	S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of <i>Escherichia coli</i> . Nature Genetics, pages 64–68, 2002. pdf (⊞)
[24]	G. Simmel. The number of members as determining the sociological form of the group. I.

sociological form of the group. I. American Journal of Sociology, 8:1–46, 1902.

References VII

[25]	E. Tokunaga.	Basic definitions
	The composition of drainage network in Toyohira	Examples of Complex Networks
	River Basin and the valuation of Horton's first law. Geophysical Bulletin of Hokkaido University,	Properties of Complex Networks Nutshell
[26]	J. Travers and S. Milgram. An experimental study of the small world problem. Sociometry, 32:425–443, 1969. pdf (⊞)	Basic models of complex networks Generalized random networks Scale-free networks Small-world networks Generalized affiliation networks
[27]	F. Vega-Redondo. Complex Social Networks. Cambridge University Press, 2007.	References
[27]	F. Vega-Redondo. <u>Complex Social Networks</u> . Cambridge University Press, 2007. D. J. Watts. <u>Six Degrees</u> . Norton, New York, 2003.	References
[27]	F. Vega-Redondo. Complex Social Networks. Cambridge University Press, 2007. D. J. Watts. Six Degrees. Norton, New York, 2003.	References

References VIII	Overview of Complex Networks
[29] D. I. Watte, P. S. Dodds, and M. E. J. Newman	Basic definitions Examples of Complex Networks Properties of Complex Networks
Identity and search in social networks. Science, 296:1302–1305, 2002. pdf (⊞)	Basic models of complex networks Generalized random networks Scale-free patervice
[30] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. <u>Nature</u> , 393:440–442, 1998. pdf (⊞)	Scale for femores Small world methods Generalized atfliation networks References
	VERMONT

Overview of Complex Networks

Basic definitions Examples of Complex Networks Properties of Complex Networks Nutshell

Overview of Complex Networks