Lognormals and friends Principles of Complex Systems CSYS/MATH 300, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with
Variable Lifespan

Outline

Lognormals and friends

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

Lognormals

Empirical Confusability
Random Multiplicative Growth Model
Random Growth with Variable Lifespan

There are other 'heavy-tailed' distributions:

1. The Log-normal distribution (⊞)

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

2. Weibull distributions (⊞)

$$P(x)dx = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{\mu-1} e^{-(x/\lambda)^{\mu}} dx$$

 $CCDF = stretched exponential (<math>\square$).

3. Gamma distributions (\boxplus), and more.

The lognormal distribution:

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

- In x is distributed according to a normal distribution with mean μ and variance σ .
- Appears in economics and biology where growth increments are distributed normally.

$$P(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$

For lognormals:

$$\mu_{ ext{lognormal}} = e^{\mu + rac{1}{2}\sigma^2}, \qquad ext{median}_{ ext{lognormal}} = e^{\mu},$$
 $\sigma_{ ext{lognormal}} = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}, \qquad ext{mode}_{ ext{lognormal}} = e^{\mu - \sigma^2}.$

► All moments of lognormals are finite.

Lognormals

Empirical Confusability

Random Multiplicative
Growth Model

Random Growth with

Variable Lifespan
References

Derivation from a normal distribution

Take *Y* as distributed normally:

$$P(y)dy = \frac{1}{\sqrt{2\pi}\sigma}dy \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Set $Y = \ln X$:

► Transform according to P(x)dx = P(y)dy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1/x \Rightarrow \mathrm{d}y = \mathrm{d}x/x$$

$$\Rightarrow P(x)dx = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) dx$$

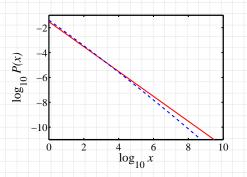
Lognormals and friends

Lognormals Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable Lifespan

Confusion between lognormals and pure power laws



Near agreement over four orders of magnitude!

- ▶ For lognormal (blue), $\mu = 0$ and $\sigma = 10$.
- For power law (red), $\gamma = 1$ and c = 0.03.

Lognormals and friends

Lognormals

Empirical Confusability
Random Multiplicative
Growth Model

Random Growth with Variable Lifespan

Confusion

Lognormals and friends

What's happening:

Lognormals

Empirical Confusability Random Multiplicative Growth Model Random Growth with

Variable Lifespan

$$\ln P(x) = \ln \left\{ \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \right\}$$

$$= -\ln x - \ln \sqrt{2\pi} - \frac{(\ln x - \mu)^2}{2\sigma^2}$$

$$= -\frac{1}{2\sigma^2} (\ln x)^2 + \left(\frac{\mu}{\sigma^2} - 1\right) \ln x - \ln \sqrt{2\pi} - \frac{\mu^2}{2\sigma^2}.$$

ightharpoonup \Rightarrow If $\sigma^2 \gg 1$ and μ ,

$$\ln P(x) \sim -\ln x + \text{const.}$$

- ► Expect -1 scaling to hold until $(\ln x)^2$ term becomes significant compared to $(\ln x)$.
- ► This happens when (roughly)

$$-\frac{1}{2\sigma^2}(\ln x)^2 \simeq 0.05 \left(\frac{\mu}{\sigma^2} - 1\right) \ln x$$

$$\Rightarrow \log_{10} x \lesssim 0.05 \times 2(\sigma^2 - \mu) \log_{10} e$$

$$\simeq 0.05 (\sigma^2 - \mu)$$

→ If you find a -1 exponent, you may have a lognormal distribution...

Generating lognormals:

Random multiplicative growth:

-

$$x_{n+1} = rx_n$$

where r > 0 is a random growth variable

- (Shrinkage is allowed)
- ► In log space, growth is by addition:

$$\ln x_{n+1} = \ln r + \ln x_n$$

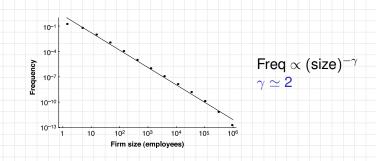
- ightharpoonup \Rightarrow In x_n is normally distributed
- $ightharpoonup \Rightarrow x_n$ is lognormally distributed

Lognormals Empirical Confusability

Random Multiplicative Growth Random Growth with Variable Lifespan

Lognormals or power laws?

- ▶ Gibrat [2] (1931) uses preceding argument to explain lognormal distribution of firm sizes ($\gamma \simeq 1$).
- ▶ But Robert Axtell [1] (2001) shows a power law fits the data very well with $\gamma = 2$, not $\gamma = 1$ (!)
- Problem of data censusing (missing small firms).



 One mechanistic piece in Gibrat's model seems okay empirically: Growth rate r appears to be independent of firm size. [1]. Lognormals and friends

Lognormals

Empirical Confusability

Random Multiplicative Growth

Bandom Growth with

Variable Lifespan

- ► The set up: N entities with size $x_i(t)$
- Generally:

$$x_i(t+1)=rx_i(t)$$

where r is drawn from some happy distribution

- Same as for lognormal but one extra piece.
- ► Each *x_i* cannot drop too low with respect to the other sizes:

$$x_i(t+1) = \max(rx_i(t), c\langle x_i\rangle)$$

Lognormals

Empirical Confusability

Random Multiplicative Growth
Random Growth with
Variable Lifespan

Lognormals

Empirical Confusability Bandom Multiplicative Growtl Random Growth with Variable Lifeenan

Lognormals and

friends

References

Find $P(x) \sim x^{-\gamma}$

• where γ is implicitly given by

6 (⊞)

$$N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{(c/N)^{\gamma - 1} - 1}{(c/N)^{\gamma - 1} - (c/N)} \right]$$

$$N = \text{total number of firms.}$$

Now, if
$$c/N \ll 1$$
, $N = \frac{(\gamma - 2)}{(\gamma - 1)} \left[\frac{-1}{-(c/N)} \right]$

Which gives $\gamma \sim 1 + \frac{1}{1-c}$

• Groovy... c small $\Rightarrow \gamma \simeq 2$

- Allow the number of updates for each size x_i to vary
- **Example:** $P(t)dt = ae^{-at}dt$ where t = age.
- Back to no bottom limit: each x_i follows a lognormal
- Sizes are distributed as [6]

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x - \mu)^2}{2t}\right) dt$$

(Assume for this example that $\sigma \sim t$ and $\mu = \ln m$)

Now averaging different lognormal distributions.

Lognormals
Empirical Confusability
Random Multiplicative

Growth Model

Random Growth with Variable

Averaging lognormals

Lognormals and friends

Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with Variable

References

Lognormals

$$P(x) = \int_{t=0}^{\infty} ae^{-at} \frac{1}{x\sqrt{2\pi t}} \exp\left(-\frac{(\ln x/m)^2}{2t}\right) dx$$

- ► Insert question from assignment 6 (⊞)
- Some enjoyable suffering leads to:

$$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$$

The second tweak

$P(x) \propto x^{-1} e^{-\sqrt{2\lambda(\ln x/m)^2}}$

Depends on sign of $\ln x/m$, i.e., whether x/m > 1 or x/m < 1.

$$P(x) \propto \left\{ egin{array}{ll} x^{-1+\sqrt{2\lambda}} & \mbox{if } x/m < 1 \ x^{-1-\sqrt{2\lambda}} & \mbox{if } x/m > 1 \end{array}
ight.$$

- 'Break' in scaling (not uncommon)
- ▶ Double-Pareto distribution (⊞)
- ► First noticed by Montroll and Shlesinger [7, 8]
- ► Later: Huberman and Adamic [3, 4]: Number of pages per website

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with Variable

Summary of these exciting developments:

- Lognormals and power laws can be awfully similar
- Random Multiplicative Growth leads to lognormal distributions
- Enforcing a minimum size leads to a power law tail
- With no minimum size but a distribution of lifetimes, the double Pareto distribution appears
- ► Take-home message: Be careful out there...

Lognormals and friends

Lognormals

Empirical Confusability

Random Multiplicative Growth Model

Random Growth with Variable

References I

- [1] R. Axtell.

 Zipf distribution of U.S. firm sizes.

 Science, 293(5536):1818–1820, 2001. pdf (H)
- [2] R. Gibrat.
 Les inégalités économiques.
 Librairie du Recueil Sirey, Paris, France, 1931.
- [3] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the World Wide Web. Technical report, Xerox Palo Alto Research Center, 1999.
- [4] B. A. Huberman and L. A. Adamic. The nature of markets in the World Wide Web. Quarterly Journal of Economic Commerce, 1:5–12, 2000.

Lognormals and friends

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with
Variable Lifespan

References II

Lognormals and friends

[5] O. Malcai, O. Biham, and S. Solomon.
Power-law distributions and lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements.
Phys. Rev. E, 60(2):1299–1303, 1999. pdf (H)

Lognormals
Empirical Confusability
Random Multiplicative
Growth Model
Random Growth with

Variable Lifespan
References

[6] M. Mitzenmacher.

A brief history of generative models for power law and lognormal distributions.

Internet Mathematics, 1:226–251, 2003. pdf (⊞)

[7] E. W. Montroll and M. W. Shlesinger.
 On 1/f noise aned other distributions with long tails.
 Proc. Natl. Acad. Sci., 79:3380–3383, 1982. pdf (⊞)

References III

Lognormals and friends

Lognormals Empirical Confusability

Random Multiplicative Growth Model Random Growth with Variable Lifespan

References

[8] E. W. Montroll and M. W. Shlesinger. Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys., 32:209–230, 1983.

