Generalized Contagion

Principles of Complex Systems CSYS/MATH 300, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Generalized Model of Contagion

Outline

Generalized Model of Contagion

References

Generalized

Contagion

Generalized Model of Contagion

Generalized contagion model

Contagion

Generalized Model of

Generalized

References

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?

Generalized contagion model

Contagion

Generalized Model of

Generalized

References

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?

- How many types of contagion are there?
- How can we categorize real-world contagions?
- Can we connect models of disease-like and social contagion?

Generalized Contagion

- ► Threshold models only involve proportions: 3/10 ± 30/100.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
 Mean-field models neglect network structure
- Network effects only part of story:
 media, advertising, direct marketing

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- ► Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing

- Disease models assume independence of infectious events.
- Threshold models only involve proportions: $3/10 \equiv 30/100$.
- Threshold models ignore exact sequence of influences
- Threshold models assume immediate polling.
- Mean-field models neglect network structure
- Network effects only part of story: media, advertising, direct marketing.

- ► Incorporate memory of a contagious element [1, 2]
- Population of M individuals, each in state \$, I, or R
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t
- ➤ With probability p, contact with infective
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

- Incorporate memory of a contagious element [1, 2]
- ▶ Population of *N* individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of contact with infected individ
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

- ▶ Incorporate memory of a contagious element [1, 2]
- ▶ Population of *N* individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- φ_t = fraction infected at time t
 = probability of contact with infected individua
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

- ► Incorporate memory of a contagious element [1, 2]
- ▶ Population of *N* individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of contact with infected individual
- Vith probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

- ► Incorporate memory of a contagious element [1, 2]
- ▶ Population of *N* individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of contact with infected individual
- ► With probability *p*, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

- ► Incorporate memory of a contagious element [1, 2]
- Population of N individuals, each in state S, I, or R.
- Each individual randomly contacts another at each time step.
- ϕ_t = fraction infected at time t = probability of contact with infected individual
- With probability p, contact with infective leads to an exposure.
- If exposed, individual receives a dose of size d drawn from distribution f. Otherwise d = 0.

References

S ⇒ I

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

► Threshold *d*^{*} drawn from arbitrary distribution *g* at

Generalized Model of References

S⇒I

► Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i$$

Threshold *d*^{*} drawn from arbitrary distribution *g* at

$S \Rightarrow I$

▶ Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

Threshold d* drawn from arbitrary distribution g at

$S \Rightarrow I$

▶ Individuals 'remember' last T contacts:

$$D_{t,i} = \sum_{t'=t-T+1}^{t} d_i(t')$$

Infection occurs if individual i's 'threshold' is exceeded:

$$D_{t,i} \geq d_i^*$$

Threshold d_i^* drawn from arbitrary distribution g at t = 0.

Generalized Model

Generalized Contagion

References

 $\mathsf{I}\Rightarrow\mathsf{R}$

When $D_{t,i} < d_i^*$, individual i recovers to state R with probability r.

 $R \Rightarrow S$

Once in state R, individuals become susceptible again with probability ρ .

Contagion

Generalized Model of

Generalized

References

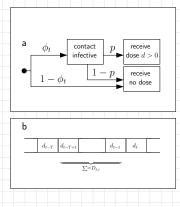
 $I \Rightarrow R$

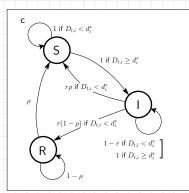
When $D_{t,i} < d_i^*$, individual i recovers to state R with probability r.

 $R \Rightarrow S$

Once in state R, individuals become susceptible again with probability ρ .

A visual explanation





Contagion

Generalized

Generalized Model

Contagion

$$t_{\infty}$$

$$P_k = \int_0^\infty \mathrm{d}d^*\, g(d^*) P\left(\sum_{j=1}^k d_j \geq d^*\right) \,\, ext{where } 1 \leq k \leq T.$$

Important quantities:

$$P_k = \int_0^\infty \mathrm{d}d^*\, g(d^*) P\left(\sum_{j=1}^k d_j \geq d^*
ight) \,\, ext{where 1} \leq k \leq T.$$

 P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

$$P_k = \int_0^\infty \mathrm{d}d^*\, g(d^*) P\left(\sum_{j=1}^k d_j \geq d^*
ight) \,\, ext{where 1} \leq k \leq T.$$

 P_k = Probability that the threshold of a randomly selected individual will be exceeded by k doses.

e.g.,

 P₁ = Probability that <u>one dose</u> will exceed the threshold of a random individual
 = Fraction of most vulnerable individuals.

Contagion

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Generalized Model of Beferences

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around $\phi^*=0$ to find Spread from single seed if

$$pP_1T \geq 1$$

Generalized Model of Beferences

Fixed point equation:

$$\phi^* = \sum_{k=1}^T \binom{T}{k} (p\phi^*)^k (1 - p\phi^*)^{T-k} \underline{P_k}$$

Expand around $\phi^*=0$ to find Spread from single seed if

$$pP_1T \geq 1$$

$$\Rightarrow p_c = 1/(TP_1)$$

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- ► Memory span: T = 10.
- Thresholds are uniformly set at

Spread of dose sizes matters, details are not important.

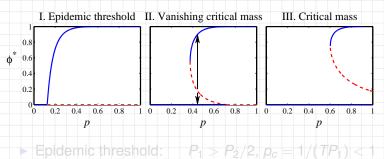
- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- Thresholds are uniformly set a

Spread of dose sizes matters, details are not important.

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- ► Thresholds are uniformly set at
 - 1. $d_* = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

- Dose sizes are lognormally distributed with mean 1 and variance 0.433.
- Memory span: T = 10.
- ► Thresholds are uniformly set at
 - 1. $d_* = 0.5$
 - 2. $d_* = 1.6$
 - 3. $d_* = 3$
- Spread of dose sizes matters, details are not important.

Heterogeneous case—Three universal classes

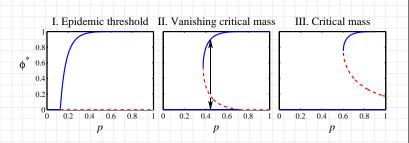


- Vanishing critical mass:
- Pure critical mass: $P_1 < P_2/2, p_c = 1/(TP_1) > 1$

Generalized Contagion

Generalized Model of

Heterogeneous case—Three universal classes



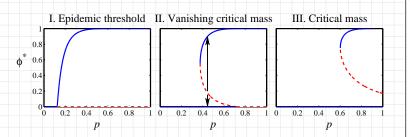
- ▶ Epidemic threshold: $P_1 > P_2/2$, $p_c = 1/(TP_1) < 1$

- Pure critical mass: $P_1 < P_2/2, p_c = 1/(TP_1) > 1$

Generalized Contagion

Generalized Model of

Heterogeneous case—Three universal classes



- ▶ Epidemic threshold: $P_1 > P_2/2$, $p_c = 1/(TP_1) < 1$
- Vanishing critical mass:

$$P_1 < P_2/2,$$

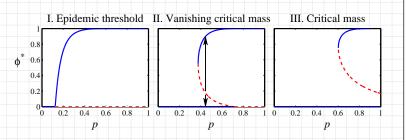
 $p_c = 1/(TP_1) < 1$

Pure critical mass: $P_1 < P_2/2, p_c = 1/(TP_1) > 1$

Generalized Contagion

Generalized Model

Heterogeneous case—Three universal classes



- Epidemic threshold: $P_1 > P_2/2$, $p_c = 1/(TP_1) < 1$
- Vanishing critical mass:
 - $p_c = 1/(TP_1) < 1$
- Pure critical mass:

 $P_1 < P_2/2, p_c = 1/(TP_1) > 1$

 $P_1 < P_2/2$

Generalized Contagion

Generalized Model of

Calculations—Fixed points for r < 1, $d^* = 2$, and T=3

References F.P. Eq: $\phi^* = \Gamma(p, \phi^*; r) + \sum_{i=-t}^{T} {T \choose i} (p\phi^*)^i (1 - p\phi^*)^{T-i}$.

Generalized Contagion

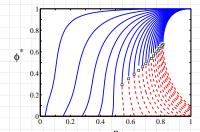
Generalized Model of

$$\Gamma(p,\phi^*;r) = (1-r)(p\phi)^2(1-p\phi)^2 + \sum_{m=1}^{\infty} (1-r)^m(p\phi)^2(1-p\phi)^2 \times \left[\chi_{m-1} + \chi_{m-2} + 2p\phi(1-p\phi)\chi_{m-3} + p\phi(1-p\phi)^2\chi_{m-4}\right]$$
where $\chi_m(p,\phi^*) = \sum_{k=0}^{\lfloor m/3 \rfloor} {m-2k \choose k} (1-p\phi^*)^{m-k} (p\phi^*)^k$.

 $\Gamma(p,\phi^*;r) = (1-r)(p\phi)^2(1-p\phi)^2 + \sum_{i=1}^{\infty} (1-r)^m(p\phi)^2(1-p\phi)^2 \times C_i(p,\phi^*;r)$

SIS model

Now allow r < 1:

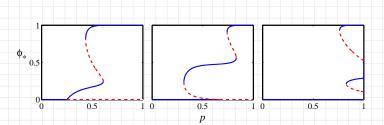


II-III transition generalizes: $p_c = 1/[P_1(T + \tau)]$ (I-II transition less pleasant analytically)

Generalized Contagion

Generalized Model

More complicated models



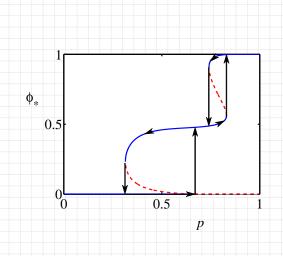
- ➤ Due to heterogeneity in individual thresholds.
- ➤ Same model classification holds: I, II, and III.

Generalized Contagion

Generalized Model

Hysteresis in vanishing critical mass models

Generalized Model of



Contagion

References

$$p_c = 1/[P_1(T+\tau)]$$

where $\tau = 1/r =$ expected recovery time

Memory is crucial ingredient.

- Three universal classes of contagion processes
 - I. Epidemic Threshold
 - II. Vanishing Critical Mass
 - III. Critical Mass
- Dramatic changes in behavior possible.
- fraction of vulnerable individuals $(7, r, \rho, P_1, and/or P_2)$.
- To change behavior given model: 'adjust' probabili of exposure (p) and/or initial number infected (φ₀).

- Memory is crucial ingredient.
- ► Three universal classes of contagion processes:
 - I. Epidemic Threshold
 - II. Vanishing Critical Mass
 - III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: adjust memory, recovery fraction of vulnerable individuals $(T, r, \rho, P_1, \text{ and/or } P_2)$.
- To change behavior given model: 'adjust' probability
 of exposure (p) and/or initial number infected (φ₀).

- Memory is crucial ingredient.
- ► Three universal classes of contagion processes:
 - I. Epidemic Threshold
 - II. Vanishing Critical Mass
 - III. Critical Mass
- Dramatic changes in behavior possible.
- To change kind of model: adjust memory, recovery fraction of vulnerable individuals $(T, r, \rho, P_1, \text{ and/or } P_2)$.
- To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (φ₀).

- Memory is crucial ingredient.
- ► Three universal classes of contagion processes:
 - I. Epidemic Threshold
 - II. Vanishing Critical Mass
 - III. Critical Mass
- Dramatic changes in behavior possible.
- ▶ To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals (T, r, ρ , P_1 , and/or P_2).
- To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (ϕ_0).

- Memory is crucial ingredient.
- ► Three universal classes of contagion processes:
 - I. Epidemic Threshold
 - II. Vanishing Critical Mass
 - III. Critical Mass
- Dramatic changes in behavior possible.
- ▶ To change kind of model: 'adjust' memory, recovery, fraction of vulnerable individuals $(T, r, \rho, P_1, \text{ and/or } P_2)$.
- To change behavior given model: 'adjust' probability of exposure (p) and/or initial number infected (ϕ_0) .

- If $pP_1(T + \tau) \ge 1$, contagion can spread from single seed.
- Key quantity: $\rho_c = 1/[P_1(T + \tau)]$
- Depends only or
 - 1. System Memory $(T + \tau)$
 - Details unimportant (Universality):
 - Many threshold and dose distributions give same
- Most vulnerable/gullible population may be more important than small group of super-spreaders or influentials.

- If $pP_1(T + \tau) \ge 1$, contagion can spread from single seed.
- Key quantity: $\rho_c = 1/[P_1(T+\tau)]$
- Depends only on:
 - 1. System Memory $(T + \tau)$.
- ▶ Details unimportant (Universality):

Many threshold and dose distributions give same P_{K}

 Most vulnerable/gullible population may be more important than small group of super-spreaders of influentials.

- If $pP_1(T + \tau) \ge 1$, contagion can spread from single seed.
- Key quantity: $\rho_c = 1/[P_1(T+\tau)]$
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant (Universality):
 Many threshold and dose distributions give same P_k
- Most vulnerable/gullible population may be more important than small group of super-spreaders or influentials

- If $pP_1(T + \tau) \ge 1$, contagion can spread from single seed.
- Key quantity: $p_c = 1/[P_1(T+\tau)]$
- Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant (Universality):
 Many threshold and dose distributions give same P_k.
- Most vulnerable/gullible population may be more important than small group of super-spreaders or influentials.

- If $pP_1(T + \tau) \ge 1$, contagion can spread from single seed.
- Key quantity: $p_c = 1/[P_1(T + \tau)]$
- ▶ Depends only on:
 - 1. System Memory $(T + \tau)$.
 - 2. Fraction of highly vulnerable individuals (P_1) .
- Details unimportant (Universality):
 Many threshold and dose distributions give same P_k.
- Most vulnerable/gullible population may be more important than small group of super-spreaders or influentials.

Future work/questions

Generalized Contagion

Generalized Model of Beferences

- Do any real diseases work like this?
- Examine model's behavior on networks
- ► Media/advertising + social networks mode
- Classify real-world contagions

Future work/questions

Generalized Model

References

Generalized Contagion

- Do any real diseases work like this?
- Examine model's behavior on networks
- ► Media/advertising + social networks mode
- Classify real-world contagions

- Do any real diseases work like this?
 - Examine model's behavior on networks
- ► Media/advertising + social networks model
- Classify real-world contagions

Generalized Contagion

- ▶ Do any real diseases work like this?
- Examine model's behavior on networks
- Media/advertising + social networks model
- Classify real-world contagions

contagion.

[1] P. S. Dodds and D. J. Watts. Universal behavior in a generalized model of

Phys. Rev. Lett., 92:218701, 2004. pdf (⊞)

[2] P. S. Dodds and D. J. Watts. A generalized model of social and biological contagion.

J. Theor. Biol., 232:587–604, 2005. pdf (⊞)

