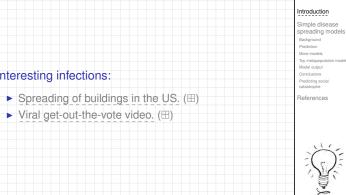


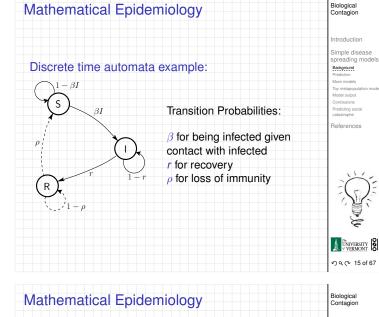
The spread of fanaticism		Biological Contagion	Conta
 Hoffer's acclaimed work: "The Tru Thoughts On The Nature Of Mas: Quotes-aplenty: "We can be absolutely certai do not understand." "Mass movements can rise a in a God, but never without b "Where freedom is real, equal 	s Movements" (1951) ^[3] n only about things we and spread without belief elief in a devil." ality is the passion of the	Introduction Simple disease spreading models Background Prediction More models Toy metapopulation models Model output Canduations Predicting social catastrophen References	Defini (1 in (2 th Frr C Ju
masses. Where equality is repassion of a small minority."	eal, freedom is the	DAC 7 of 67	► B
Imitation		Biological Contagion Introduction Simple disease spreading models Background Prediction More models	Exam
CONFORMETS A CONFORMETS A CONFORMETS A CONFORMATION A CONF	"When people are free to do as they please, they usually imitate each other." —Eric Hoffer "The Passionate State of Mind" ^[4]	Toy metapopulation models Mode output Conclusions Predicting social calastinghe References	Intere
		Devermont Port	
The collective We depair.com	"Never Underestimate the Power of Stupid People in Large Groups."	Biological Contagion Introduction Simple disease spreading models Backgrand Prediction More models More models Conclusion Prediction gool Conclusion References	Two n 1. In tu 2. S fa
		UNIVERSITY 8	

わへで 9 of 67

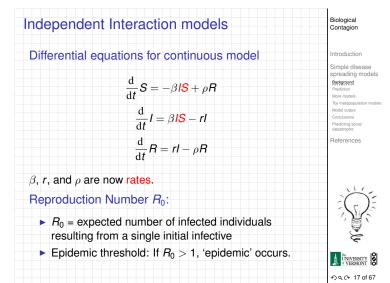

Contagion	Biological Contagion
	Introduction
Definitions	Simple disease spreading models Background Prediction
 (1) The spreading of a quality or quantity between individuals in a population. 	More models Toy metapopulation models Model output Conclusions
 (2) A disease itself: the plague, a blight, the dreaded lurgi, 	Predicting social catastrophe References
from Latin: con = 'together with' + tangere 'to touch.'	
Contagion has unpleasant overtones	
Just Spreading might be a more neutral word	- ČÚ-
But contagion is kind of exciting	N.
	VINVERSITY S

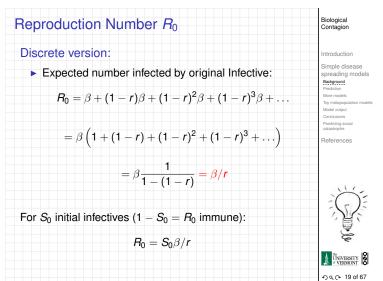
୬ < ៚ 10 of 67

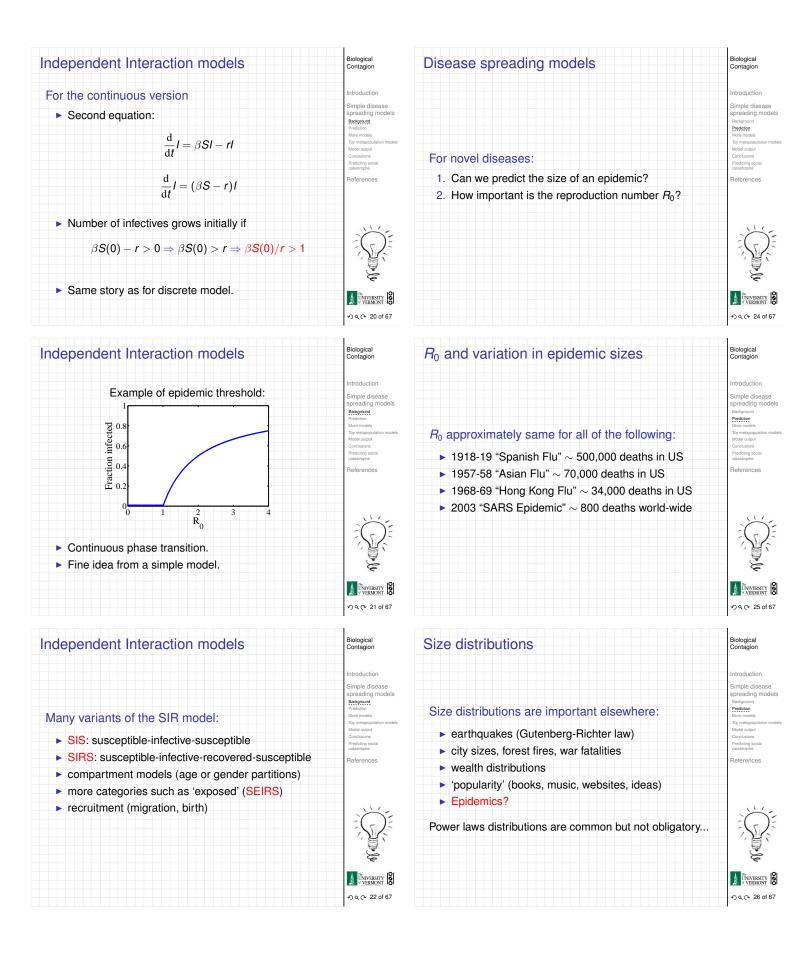
VERMONT 2

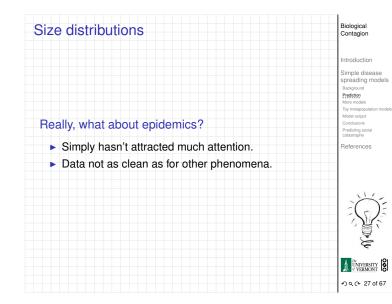

Biological Contagion

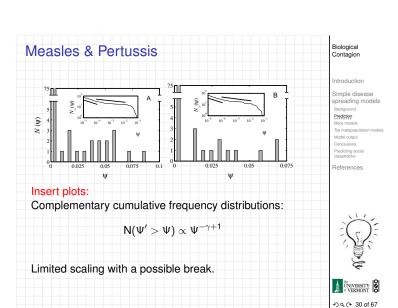
mples of non-disease spreading:

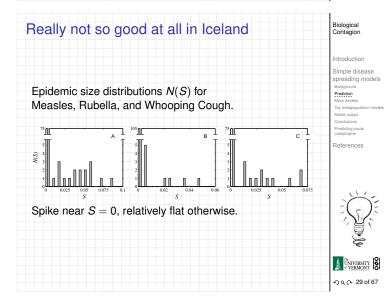


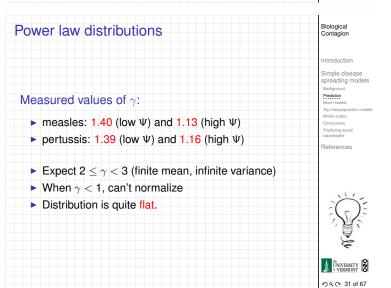

Mathematical Epidemiology	Biological Contagion
	Introduction
The standard SIR model ^[8]	Simple disease spreading models
= basic model of disease contagion	Prediction More models
Three states:	Toy metapopulation models Model output
1. S = Susceptible	Conclusions Predicting social catastrophe
2. I = Infective/Infectious 3. R = Recovered or Removed or Refractory	References
rightarrow S(t) + I(t) + R(t) = 1	
 Presumes random interactions (mass-action principle) 	
 Interactions are independent (no memory) 	$\Xi(\tau)$
 Discrete and continuous time versions 	、見、
	all a
	- ማ ዓ ር የ 14 of 67

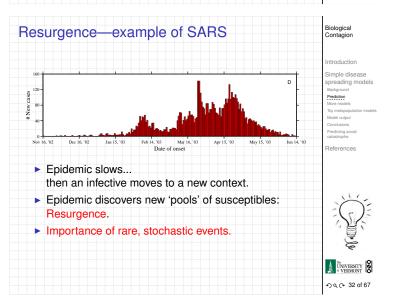

	Introduction
	Simple disease spreading models Background Prediction
Original models attributed to	More models Toy metapopulation mode Model output Conclusions
1920's: Reed and Frost	Predicting social catastrophe
▶ 1920's/1930's: Kermack and McKendrick ^[5, 7, 6]	References
 Coupled differential equations with a mass-action 	
principle	
	N. C.
	•ጋ ዓ. ር. 16 of 67

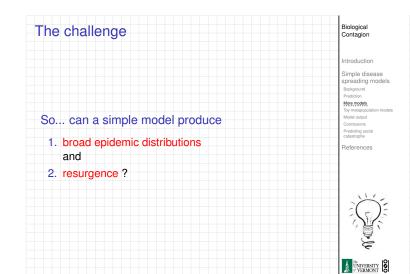



Reproduction Number R ₀	Biological Contagion
	Introduction
Discrete version:	Simple disease spreading models Background
 Set up: One Infective in a randomly mixing population of Susceptibles 	Prediction More models Toy metapopulation models Model output Conclusions
At time t = 0, single infective random bumps into a Susceptible	Predicting social catastrophe References
• Probability of transmission = β	
At time t = 1, single Infective remains infected with probability 1 - r	
At time t = k, single Infective remains infected with probability (1 − r) ^k	N.
	VERMONT







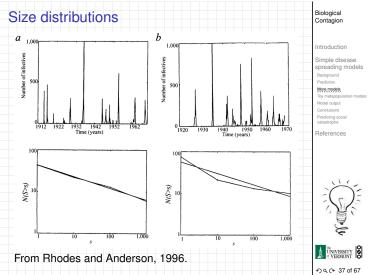


Biological Contagion Feeling III in Iceland Introduction Simple disease spreading models Caseload recorded monthly for range of diseases in Iceland, 1888-1990 Prediction 0.03 celand: measle 0.02 Guố 년 10.01 0 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 Date Treat outbreaks separated in time as 'novel' diseases. VERMONT わへで 28 of 67

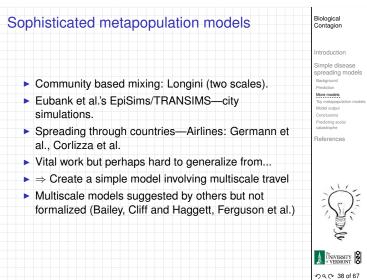
Introduction

More models

Reference

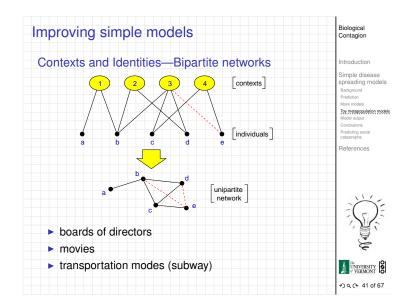

A UNIVERSITY

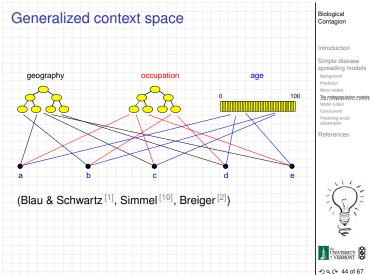
わくひ 35 of 67


୬ < ୯ 36 of 67

1

Simple disease spreading models




Biological Contagion Size distributions 2000 А R₀=3 1500 Simple models $N(\psi)$ 1000 typically produce bimodal or unimodal 500 size distributions. 0<u>`</u>0 0.25 0.5 0.75 -1 Ψ This includes network models: random, small-world, scale-free, ... Exceptions: 1. Forest fire models 2. Sophisticated metapopulation models

Burning through the population	Biological Contagion
Forest fire models: ^[9]	Introduction Simple disease
 Rhodes & Anderson, 1996 The physicist's approach: "if it works for magnets, it'll work for people" 	spreading models Bacground Prediction More models Toy metapopulation models Model output Conclusions Predicting social catastroote
A bit of a stretch:	References
 Epidemics ≡ forest fires spreading on 3-d and 5-d lattices. 	
 Claim Iceland and Faroe Islands exhibit power law distributions for outbreaks. 	
3. Original forest fire model not completely understood.	
	VERMONT 8

Size distributions	Biological Contagion
 Very big question: What is N? Should we model SARS in Hong Kong as spreading in a neighborhood, in Hong Kong, Asia, or the world? For simple models, we need to know the final size 	Introduction Simple disease spreading models Background Prediction Mar prodes Thy metapopulation models Model cuty Conclusions Predicting social catastrophe References
beforehand	

Improving simple models

Idea for social networks: incorporate identity.
Identity is formed from attributes such as:
 Geographic location
Type of employment
► Age

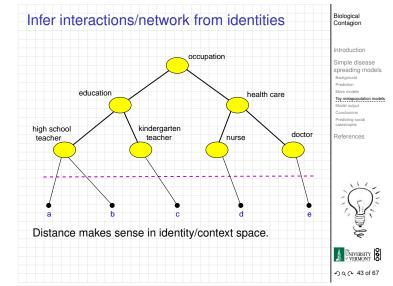
Recreational activities

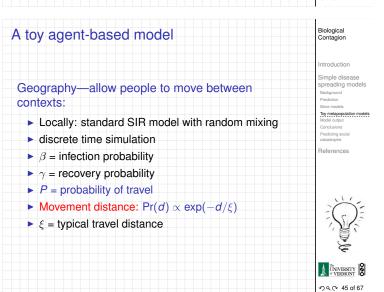
Groups are crucial...

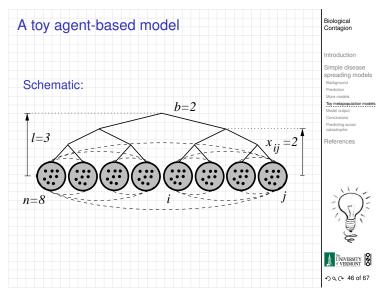
- formed by people with at least one similar attribute
- Attributes
 ⇔ Contexts
 ⇔ Interactions
 ⇔
 Networks.^[11]

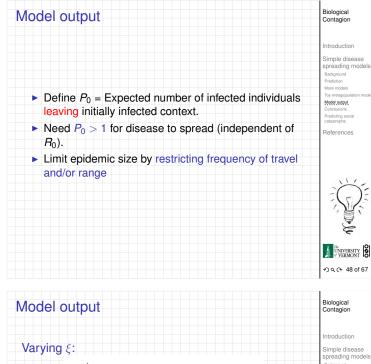
わへで 42 of 67

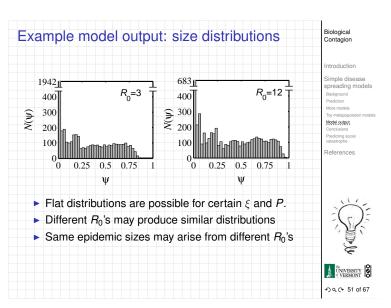
Biological Contagion

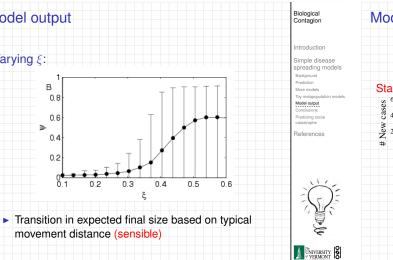

Introduction

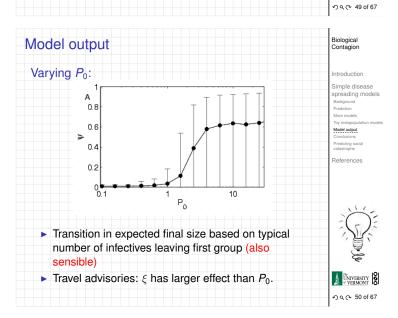

Toy metapopu

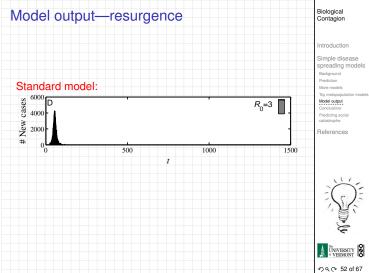

Reference

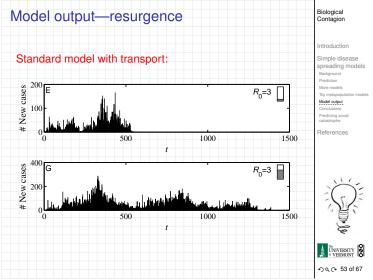

cting so


Simple disease spreading models









The upshot	Biological Contagion
Simple multiscale population structure + stochasticity	Introduction Simple disease spreading models Bakground Prediction More models Toy metapopulation models Mode output Conclusions Predicting social
leads to	References
resurgence + broad epidemic size distributions	N.
	A De

Biological Contagion

ntroduction Simple disease spreading models

Conclusions

- For this model, epidemic size is highly unpredictable
- Model is more complicated than SIR but still simple
- We haven't even included normal social responses such as travel bans and self-quarantine. The reproduction number R₀ is not terribly useful.

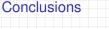
Conclusions Predicting so

- R₀, however measured, is not informative about 1. how likely the observed epidemic size was,
 - 2. and how likely future epidemics will be.
- Problem: R₀ summarises one epidemic after the fact and enfolds movement, the price of bananas, everything.

•

クへで 56 of 67

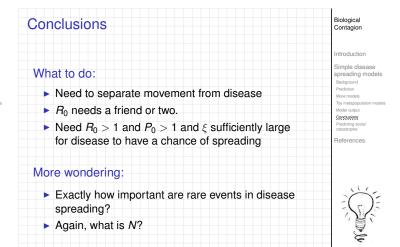
Biological Contagion


ntroductior

Conclusions

References

Simple disease


spreading model

- Disease spread highly sensitive to population structure
- Rare events may matter enormously (e.g., an infected individual taking an international flight)
- More support for controlling population movement (e.g., travel advisories, quarantine)

Simple disease spreading models	Biological Contagion
 Valiant attempts to use SIR and co. elsewhere: Adoption of ideas/beliefs (Goffman & Newell, 1964) Spread of rumors (Daley & Kendall, 1965) Diffusion of innovations (Bass, 1969) Spread of fanatical behavior (Castillo-Chávez & Song, 2003) 	Introduction Simple disease spreading models Backgrund Prediction More models Tory metapopulation models Mode output Corclusion Predicting social catastrophe References
 Spread of Feynmann diagrams (Bettencourt et al., 2006) 	N.

VERMONT

୬ < ୧୦ 58 of 67

S

VERMONT • 𝔍 𝔍 𝔅 59 of 67 Biological Contagior Predicting social catastrophe isn't easy... "Greenspan Concedes Error on Regulation" ntroduction imple diseas preading models ... humbled Mr. Greenspan admitted that he had put too much faith in the self-correcting power of free markets ... "Those of us who have looked to the self-interest of Predicting social of lending institutions to protect shareholders' equity, References myself included, are in a state of shocked disbelief" Rep. Henry A. Waxman: "Do you feel that your ideology pushed you to make decisions that you wish you had not made?" Mr. Greenspan conceded: "Yes, I've found a flaw. I don't know how significant or permanent it is. But I've been very distressed by that fact." UNIVERSITY New York Times, October 23, 2008 (⊞)

Economics, Schmeconomics	Biological Contagion
Alan Greenspan (September 18, 2007): "I've been dealing with these big mathematical models of forecasting the	Introduction Simple disease spreading models Background Prediction More models Toy metapopulation models Model output Conclusions
economy If I could figure out a way to determine whether or not people are more fearful or changing to more euphoric,	Predicting social catastrophe References
I don't need any of this other stuff. I could forecast the economy better than http://wikipedia.org any way I know."	No.
	€
Economics, Schmeconomics	Biological Contagion

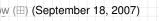
Economics, Schmeconomics

Greenspan continues:

"The trouble is that we can't figure that out. I've been in the forecasting business for 50 years. I'm no better than I ever was, and nobody else is. Forecasting 50 years ago was as good or as bad as it is today. And the reason is that human nature hasn't changed. We can't improve ourselves."

Jon Stewart:

"You just bummed the @*!# out of me."



- From the Daily Show (⊞) (September 18, 2007)
- ► The full inteview is here (⊞).

Economics, Schmeconomics

James K. Galbraith: NYT But there are at least 15,000 professional economists in this country, and you're saying only two or three of them foresaw the mortgage crisis? [JKG] Ten or 12 would be closer than two or three. NYT What does that say about the field of economics, which claims to be a science? [JKG] It's an enormous blot on the reputation of the profession. There are thousands of economists. Most of them teach. And most of them teach a theoretical framework that has been shown to be fundamentally useless. From the New York Times, 11/02/2008 (⊞)

家
N.
UNIVERSITY S

Introduction

Aore mode

References

Simple disease spreading models

Predicting social catastrophe

\	Se
)	Zeniversity

わくで 63 of 67	
Biological Contagion	
Introduction	
Simple disease spreading models Background	

ferences

つへへ 64 of 67

References I		Contagion
[1]	P. M. Blau and J. E. Schwartz. Crosscutting Social Circles. Academic Press, Orlando, FL, 1984.	Introduction Simple disease spreading models Background Prediction
[2]	R. L. Breiger. The duality of persons and groups. Social Forces, 53(2):181–190, 1974. pdf (⊞)	More models Toy metapopulation models Model output Conclusions Predicting social catastrophe References
[3]	E. Hoffer. <u>The True Believer: On The Nature Of Mass</u> <u>Movements.</u> <u>Harper and Row, New York, 1951.</u>	
[4]	E. Hoffer. The Passionate State of Mind: And Other Aphorisms. Buccaneer Books, 1954.	

Deference I Biological

References II		Biological Contagion
[5]	W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A, 115:700–721, 1927. pdf (⊞)	Introduction Simple disease spreading models Background Prediction More models Toy metapopulation models
[6]	W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. III. Further studies of the problem of endemicity. Proc. R. Soc. Lond. A, 141(843):94–122, 1927. pdf (III)	Model output Conclusions Predicting social catastrophe References
[7]	W. O. Kermack and A. G. McKendrick. Contributions to the mathematical theory of epidemics. II. The problem of endemicity. Proc. R. Soc. Lond. A, 138(834):55–83, 1927. pdf (⊞)	

References III	Biological Contagion
[8] J. D. Murray. <u>Mathematical Biology</u> . Springer, New York, Third edition, 2002.	Introduction Simple disease spreading models Background Prediction
 [9] C. J. Rhodes and R. M. Anderson. Power laws governing epidemics in isolated populations. <u>Nature</u>, 381:600–602, 1996. pdf (⊞) 	More models Toy metapopulation models Model output Conclusions Predicting social catastrophe References
 [10] G. Simmel. The number of members as determining the sociological form of the group. I. American Journal of Sociology, 8:1–46, 1902. 	
[11] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. <u>Science</u> , 296:1302–1305, 2002. pdf (⊞)	DAC 67 of 67