











Show $a > 0$, $ac - b^2 > 0 \Leftrightarrow \lambda_1$, $\lambda_2 > 0$:	Positive Definite Matrices (PDMs)
 Show ":": Given ac - b² > 0 then λ₁ · λ₂ > 0, so both eigenvalues are positive or both are negative. Given a > 0 then c > 0 b/c otherwise ac - b² < 0. This means a + c = λ₁ + λ₂ > 0 → both eigenvalues 	Lecture 26 Molivation What a PDM is Identifying PDMs Completing the square 4-5 Gaussian elimination Principle Avia Theorem Nutshell Optional readerial
are positive. Show " \Leftarrow ": Given λ_1 , $\lambda_2 > 0$, then $ac - b^2 = \lambda_1 \cdot \lambda_2 > 0$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Know a + c = λ₁ + λ₂ > 0, so either a, c > 0, or one is negative. But again, ac - b² > 0 implies a, c must have same 	N.
sign, $\rightarrow a > 0$.	UNIVERSITY O

Finding PDMs...

 Upshot: We can compute determinants instead of eigenvalues to find signs.

- But: Computing determinants still isn't a picnic either...
- A much better way is to use the connection between pivots and eigenvalues.
- Another weird connection.

Positive Definite Matrices (PDMs)

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the st Gaussian elimina

Optional material

References I

Lecture 26 Motivation... What a PDM is... Identifying PDMs Completing the square ← Gaussian elimination Principle Axis Theorem Nutshel

