Chapter 6: Lecture 28

Linear Algebra MATH 124, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Ch 6: Lec 28

Approximating

Algebra

matrices with SVD

Outline

The Fundamental

Ch. 6: Lec. 28

Theorem of Linear Algebra

Approximating

matrices with SVD

The Fundamental Theorem of Linear Algebra

Fundamental Theorem of Linear Algebra

- ▶ Applies to any $m \times n$ matrix A.
- ▶ Symmetry of A and A^T.

Where \vec{x} lives:

- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ► dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

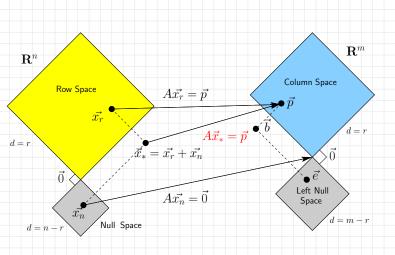
Where \vec{b} lives:

- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^T) \subset R^m$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$

Ch. 6: Lec. 28

The Fundamental Theorem of Linear Algebra

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:



Ch. 6: Lec. 28

The Fundamental Theorem of Linear Algebra

Fundamental Theorem of Linear Algebra

Now we see:

- Each of the four fundamental subspaces has a 'best' orthonormal basis
- ▶ The \hat{v}_i span R^n
- ▶ We find the \hat{v}_i as eigenvectors of A^TA .
- ▶ The \hat{u}_i span R^m
- ▶ We find the \hat{u}_i as eigenvectors of AA^{T} .

Happy bases

- $\{\hat{v}_1, \dots, \hat{v}_r\}$ span Row space
- $\{\hat{v}_{r+1}, \dots, \hat{v}_n\}$ span Null space
- $\{\hat{u}_1, \dots, \hat{u}_r\}$ span Column space
- $\{\hat{u}_{r+1}, \dots, \hat{u}_m\}$ span Left Null space

Ch. 6: Lec. 28

The Fundamental Theorem of Linear Algebra

How $A\vec{x}$ works:

$$A\hat{\mathbf{v}}_i = \sigma_i \hat{\mathbf{u}}_i$$
 for $i = 1, \ldots, r$.

and

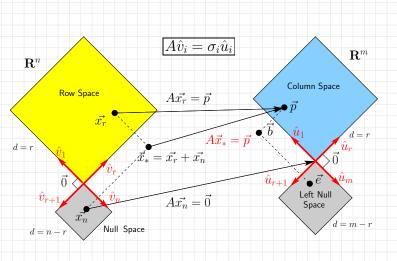
$$\mathbf{A}\hat{\mathbf{v}}_i = \hat{\mathbf{0}} | \text{for } i = r+1,\ldots,n.$$

Matrix version:

$$A = U\Sigma V^{\mathrm{T}}$$

- ▶ A sends each $\hat{v}_i \in C(A^T)$ to its partner $\hat{u}_i \in C(A)$ with a positive stretch/shrink factor $\sigma_i > 0$.
- A is diagonal with respect to these bases.
- When viewed in the right way, every A is a diagonal matrix Σ.

The complete big picture:



Ch. 6: Lec. 28

The Fundamental Theorem of Linear Algebra

From assignment 10

The Fundamental

Ch. 6: Lec. 28

Theorem of Linear Algebra
Approximating

matrices with SVD

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right]$$

$$A = U\Sigma V^{\mathrm{T}} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

From assignment 10 Бû, /AV, = 53 Û, A V 3 = 3 Àû=ta[-1] AV = 1.V2 χz OR nullspace AV, = 0. E col space でををしま A V.= 1.0. vow space

Ch. 6: Lec. 28

The Fundamental Theorem of Linear Algebra

Approximating matrices with SVD

୬५२ 9 of 10

Algebra

Idea: use SVD to approximate images

- Interpret elements of matrix A as color values of an image.
- ► Truncate series SVD representation of *A*:

$$A = U\Sigma V^{\mathrm{T}} = \sum_{i=1}^{r} \sigma_{i} \hat{u}_{i} \hat{v}_{i}^{\mathrm{T}}$$

- Use fact that $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$.
- Rank $r = \min(m, n)$.
- ▶ Rank r = # of pixels on shortest side (usually).
- ► For color: approximate 3 matrices (RGB).

