Chapter 3/4: Lecture 15

Linear Algebra

MATH 124, Fall, 2010

Prof. Peter Dodds

Department of Mathematics \& Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

UNIVERSITY VERMONT

Outline

Review for Exam 2

Words

Pictures

The
UNIVERSITY of VERMONT
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$ ๑ดく 2 of 16

Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1-4.3)

Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1-4.3)
- Main pieces:

Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1-4.3)
- Main pieces:

1. Big Picture of $A \vec{x}=\vec{b}$

- As always, want 'doing' and 'understanding' and abilities.

Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1-4.3)
- Main pieces:

1. Big Picture of $A \vec{x}=\vec{b}$
2. Projections and the normal equation

- As always, want 'doing' and 'understanding' and abilities.

Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1-4.3)
- Main pieces:

1. Big Picture of $A \vec{x}=\vec{b}$
2. Projections and the normal equation

- As always, want 'doing' and 'understanding' and abilities.

UNIVERSITY of VERMONT

Basics:

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1-4.3)
- Main pieces:

1. Big Picture of $A \vec{x}=\vec{b}$

Must be able to draw the big picture!
2. Projections and the normal equation

- As always, want 'doing' and 'understanding' and abilities.

Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.

Subspace definition (three conditions)
Concept of a spanning set of vectors
Concent of a basis
Basis = minimal spanning set.
Concept of orthogonal complement.

- Various techniques for finding bases and orthogonal complements.

Zhe UNIVERSITY of VERMONT

つの® 4 of 16

Stuff to know／understand

Vector Spaces：

－Vector space concept and definition．
－Subspace definition（three conditions）．
Concept of a spanning set of vectors．

Basis＝minimal spanning set．

Various techniques for finding bases and orthogonal complements．

Words

Pictures

Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.

Basis = minimal spanning set.

Various techniques for finding bases and orthogonal complements.

UNe of VERMONT

Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.

Basis = minimal spanning set. Various techniques for finding bases and orthogonal complements.

The ${ }^{\text {Un }}$ NVERSITY of VERMONT

Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.

Stuff to know/understand

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Stuff to know／understand

Vector Spaces：

－Vector space concept and definition．
－Subspace definition（three conditions）．
－Concept of a spanning set of vectors．
－Concept of a basis．
－Basis＝minimal spanning set．
－Concept of orthogonal complement．
－Various techniques for finding bases and orthogonal complements．
$\left|\begin{array}{l}0 \\ 0\end{array}\right|$

Stuff to know／understand：

Fundamental Theorem of Linear Algebra：
Applies to any $m \times n$ matrix A ．
\square Left Nullspace $N\left(A^{T}\right) \in R^{m}$ ． dimf $C(A)+\operatorname{dim} N\left(A^{T}\right)-r+(m-r)=m$ Orithogonality：$C(A) \otimes N\left(A^{T}\right)=8 m$

Row space （Right）Nullspace N（A） R^{n}

Review for Exam 2

Pictures

Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^{T}.

Row space (Right) Nullspace N(A) R^{n}

Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^{T}.
- Column space $C(A) \subset R^{m}$.
- Left Nullspace $N\left(A^{\mathrm{T}}\right) \subset R^{m}$.

Stuff to know／understand：

Fundamental Theorem of Linear Algebra：
－Applies to any $m \times n$ matrix A ．
－Symmetry of A and A^{T} ．
－Column space $C(A) \subset R^{m}$ ．
－Left Nullspace $N\left(A^{T}\right) \subset R^{m}$ ．
－Row space $C\left(A^{\mathrm{T}}\right) \subset R^{n}$ ．
－（Right）Nullspace $N(A) \subset R^{n}$ ．

Stuff to know／understand：

Fundamental Theorem of Linear Algebra：
－Applies to any $m \times n$ matrix A ．
－Symmetry of A and A^{T} ．
－Column space $C(A) \subset R^{m}$ ．
－Left Nullspace $N\left(A^{T}\right) \subset R^{m}$ ．
－ $\operatorname{dim} C(A)+\operatorname{dim} N\left(A^{\mathrm{T}}\right)=r+(m-r)=m$
－Row space $C\left(A^{\mathrm{T}}\right) \subset R^{n}$ ．
－（Right）Nullspace $N(A) \subset R^{n}$ ．

Stuff to know／understand：

Fundamental Theorem of Linear Algebra：
－Applies to any $m \times n$ matrix A ．
－Symmetry of A and A^{T} ．
－Column space $C(A) \subset R^{m}$ ．
－Left Nullspace $N\left(A^{\mathrm{T}}\right) \subset R^{m}$ ．
－ $\operatorname{dim} C(A)+\operatorname{dim} N\left(A^{\mathrm{T}}\right)=r+(m-r)=m$
－Row space $C\left(A^{\mathrm{T}}\right) \subset R^{n}$ ．
－（Right）Nullspace $N(A) \subset R^{n}$ ．
－ $\operatorname{dim} C\left(A^{\mathrm{T}}\right)+\operatorname{dim} N(A)=r+(n-r)=n$

Stuff to know／understand：

Fundamental Theorem of Linear Algebra：
－Applies to any $m \times n$ matrix A ．
－Symmetry of A and A^{T} ．
－Column space $C(A) \subset R^{m}$ ．
－Left Nullspace $N\left(A^{\mathrm{T}}\right) \subset R^{m}$ ．
－ $\operatorname{dim} C(A)+\operatorname{dim} N\left(A^{\mathrm{T}}\right)=r+(m-r)=m$
－Orthogonality：$C(A) \otimes N\left(A^{T}\right)=R^{m}$
－Row space $C\left(A^{\mathrm{T}}\right) \subset R^{n}$ ．
－（Right）Nullspace $N(A) \subset R^{n}$ ．
－ $\operatorname{dim} C\left(A^{\mathrm{T}}\right)+\operatorname{dim} N(A)=r+(n-r)=n$

Stuff to know/understand:

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^{T}.
- Column space $C(A) \subset R^{m}$.
- Left Nullspace $N\left(A^{T}\right) \subset R^{m}$.
- $\operatorname{dim} C(A)+\operatorname{dim} N\left(A^{\mathrm{T}}\right)=r+(m-r)=m$
- Orthogonality: $C(A) \otimes N\left(A^{T}\right)=R^{m}$
- Row space $C\left(A^{\mathrm{T}}\right) \subset R^{n}$.
- (Right) Nullspace $N(A) \subset R^{n}$.
- $\operatorname{dim} C\left(A^{\mathrm{T}}\right)+\operatorname{dim} N(A)=r+(n-r)=n$
- Orthogonality: $C\left(A^{T}\right) \otimes N(A)=R^{n}$

Stuff to know/understand:

Finding four fundamental subspaces:

Words
Pictures

Stuff to know／understand：

Finding four fundamental subspaces：
－Enough to find bases for subspaces．
Be able to reduce A to R ．
Identify pivot columns and free columns．
\square
Know that relationship between R＇s columns hold for A＇s columns．
 form a basis for $C(A)$ ．

Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to R.

Identify pivat columns and free columns.
\square
Know that relationship between Fis columns hold for A's columns.

But find pivot columns in B, and same columns in A form a hacis for $C(\Delta)$

Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to R.
- Identify pivot columns and free columns.

Rankr of $A=\#$ pivot columns.

Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to R.
- Identify pivot columns and free columns.
- Rank r of $A=$ \# pivot columns.

Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to R.
- Identify pivot columns and free columns.
- Rank r of $A=$ \# pivot columns.
- Know that relationship between R 's columns hold for A's columns.

Stuff to know/understand:

Finding four fundamental subspaces:

- Enough to find bases for subspaces.
- Be able to reduce A to R.
- Identify pivot columns and free columns.
- Rank r of $A=$ \# pivot columns.
- Know that relationship between R 's columns hold for A's columns.
- Warning: R's columns do not give a basis for $C(A)$

Stuff to know／understand：

Finding four fundamental subspaces：
－Enough to find bases for subspaces．
－Be able to reduce A to R ．
－Identify pivot columns and free columns．
－Rank r of $A=$ \＃pivot columns．
－Know that relationship between R＇s columns hold for A＇s columns．
－Warning：R＇s columns do not give a basis for $C(A)$
－But find pivot columns in R ，and same columns in A form a basis for $C(A)$ ．

Stuff to know／understand：

More on bases for column and row space：

Reduce $[A \mid b]$ where b is general．

Find conditions on b＇s elements for a solution to $A \vec{x}=\vec{b}$ to exist

Basis for row space＝non－zero rows in R（easy！）
Alternate basis for column space＝non－zero rows in reduced form of A^{1}（easy！）

Ibe UNIVERSITY VERMONT $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$ つのく 7 of 16

Stuff to know／understand：

More on bases for column and row space：
－Reduce $[A \mid \vec{b}]$ where \vec{b} is general．
Find conditions on \vec{b}＇s elements for a solution to $A \vec{x}=\vec{b}$ to exist

Alternate basis for column space＝non－zero rows in reduced form of A^{1}（easy！）

Zibe of VERMONT

Stuff to know/understand:

More on bases for column and row space:

- Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A \vec{x}=\vec{b}$ to exist Alternate basis for column
reduced form of A^{T} (easy!)

Stuff to know/understand:

More on bases for column and row space:

- Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A \vec{x}=\vec{b}$ to exist \rightarrow obtain basis for $C(A)$. Alternate basis for column s
reduced form of A^{T} (easy!)

Stuff to know/understand:

More on bases for column and row space:

- Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A \vec{x}=\vec{b}$ to exist \rightarrow obtain basis for $C(A)$.
- Basis for row space = non-zero rows in R (easy!)
reduced form of A^{T} (easy!)

Stuff to know/understand:

More on bases for column and row space:

- Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A \vec{x}=\vec{b}$ to exist \rightarrow obtain basis for $C(A)$.
- Basis for row space = non-zero rows in R (easy!)
- Alternate basis for column space = non-zero rows in reduced form of A^{T} (easy!)

Stuff to know／understand：

Bases for nullspaces，left and right：

Basis for nullspace obtained by solving $A \vec{x}=0$

Always express pivot variables in terms of free variables．
－Free variables are unconstrained（can be any real number）

```
\# free variables \(=n-\) \# pivot variables \(=n-r=\operatorname{dim}\)
```

Similarly find basis for $N\left(A^{1}\right)$ by solving $A^{1} \vec{y}=0$ ．

Ibe NIVERSITY VERMONT $\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

Stuff to know／understand：

Bases for nullspaces，left and right：
－Basis for nullspace obtained by solving $A \vec{x}=\overrightarrow{0}$
\rightarrow Free variables are unconstrained（can be any real number）
\＃free variables $=n-$ \＃pivot variables $=n-r=\operatorname{dim}$

Similarly find basis for $N\left(A^{\mathrm{T}}\right)$ by solving $A^{\mathrm{T}} \vec{y}=0$ ．

The UNIVERSITY of VERMONT

っのく 8 of 16

Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $A \vec{x}=\overrightarrow{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
\square
\rightarrow Similarly find basis for $N\left(A^{\mathrm{T}}\right)$ by solving $A^{\mathrm{T}} \vec{y}=0$.

UNIVERSITY of VERMONT
$\left|\begin{array}{l}0 \\ 0 \\ 0\end{array}\right|$

๑aく 8 of 16

Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $A \vec{x}=\overrightarrow{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
\rightarrow \# free variables $=n$ - \# pivot variables $=n-r=\operatorname{dim}$

Stuff to know／understand：

Bases for nullspaces，left and right：
－Basis for nullspace obtained by solving $A \vec{x}=\overrightarrow{0}$
－Always express pivot variables in terms of free variables．
－Free variables are unconstrained（can be any real number）
－\＃free variables $=n$－\＃pivot variables $=n-r=\operatorname{dim}$ $N(A)$ ．

Stuff to know/understand:

Bases for nullspaces, left and right:

- Basis for nullspace obtained by solving $A \vec{x}=\overrightarrow{0}$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- \# free variables $=n$ - \# pivot variables $=n-r=\operatorname{dim}$ $N(A)$.
- Similarly find basis for $N\left(A^{\mathrm{T}}\right)$ by solving $A^{\mathrm{T}} \vec{y}=\overrightarrow{0}$.

Stuff to know/understand:

Number of solutions to $A \vec{x}=\vec{b}$:

> If $b \notin C(A)$, there are no solutions.
> 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.

Stuff to know/understand:

Number of solutions to $A \vec{x}=\vec{b}$:

1. If $\vec{b} \notin C(A)$, there are no solutions.
2. If $b \in C(A)$ there is either one unique solution or infinitely many solutions.

Stuff to know/understand:

Number of solutions to $A \vec{x}=\vec{b}$:

1. If $\vec{b} \notin C(A)$, there are no solutions.
2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.

Stuff to know/understand:

Number of solutions to $A \vec{x}=\vec{b}$:

1. If $\vec{b} \notin C(A)$, there are no solutions.
2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.

- Number of solutions now depends entirely on $N(A)$.
$f \operatorname{dim} N(A)=n-r=0$, then there is one solution.

Stuff to know/understand:

Number of solutions to $A \vec{x}=\vec{b}$:

1. If $\vec{b} \notin C(A)$, there are no solutions.
2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.

- Number of solutions now depends entirely on $N(A)$.
- If $\operatorname{dim} N(A)=n-r>0$, then there are infinitely many solutions.
then there is one solution.

Stuff to know/understand:

Number of solutions to $A \vec{x}=\vec{b}$:

1. If $\vec{b} \notin C(A)$, there are no solutions.
2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.

- Number of solutions now depends entirely on $N(A)$.
- If $\operatorname{dim} N(A)=n-r>0$, then there are infinitely many solutions.
- If $\operatorname{dim} N(A)=n-r=0$, then there is one solution.

Projections:

- $\vec{e}=$ that part of \vec{b} that is orthogonal to the line. Understand generalization to projection onto subspaces.

Understand construction and use of subspace projection operator P :

$$
\vec{P}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}},
$$

where A's columns form a subspace basis.

The
UNIVERSITY
aa^ 10 of 16

Projections：

－Understand how to project a vector \vec{b} onto a line in direction of \vec{a} ．
$\vec{e}=$ that part of \vec{b} that is orthogonal to the line．
Understand gemeralization to proiection onto subspaces．

Understand construction and use of subspace projection operator P ：
where A＇s columns form a subspace basis．

ITN UNIVERSITY of VERMONT

Projections：

－Understand how to project a vector \vec{b} onto a line in direction of \vec{a} ．
－$\vec{b}=\vec{p}+\vec{e}$
$\vec{p}=$ that part of b that les in the line：

$$
\vec{p}=\frac{\overrightarrow{a^{T}} \vec{b}}{\vec{a}^{T} \vec{a}} \vec{a}\left(=\frac{\vec{a}^{T}}{\vec{a}^{T}} \vec{a} \vec{b}\right)
$$

$\vec{e}=$ that part of \vec{b} that is orthogonal to the line． Understand generalization to projection onto subspaces．

Understand construction and use of subspace projection operator P ：
where A＇s columns form a subspace basis．

The UNIVERSITY of VERMONT

Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
- $\vec{b}=\vec{p}+\vec{e}$
- $\vec{p}=$ that part of \vec{b} that lies in the line:

$$
\vec{p}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}} \vec{a}\left(=\frac{\vec{a}}{\vec{a} \vec{a}^{T}} \overrightarrow{\vec{a}^{T}} \vec{a}\right)
$$

$\vec{e}=$ that part of \vec{b} that is orthogonal to the line.

$$
\vec{p}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}} \vec{a}\left(=\frac{\vec{a} \vec{a}^{T}}{\vec{a}^{T} \vec{b}} \vec{a}\right)
$$

$\vec{e}=$ that part of \vec{b} that is orthogonal to the line.
Understand generalization to pro ection onto
subspaces.
Understand construction and use of subspace
projection operator P :

UNIVERSITY of VERMONT

Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
- $\vec{b}=\vec{p}+\vec{e}$
- $\vec{p}=$ that part of \vec{b} that lies in the line:

$$
\vec{p}=\frac{\vec{a}^{\mathrm{T}} \vec{b}}{\vec{a}^{\mathrm{T}} \vec{a}} \vec{a}\left(=\frac{\vec{a} \vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{a}} \vec{a} \vec{b}}\right)
$$

- $\vec{e}=$ that part of \vec{b} that is orthogonal to the line.

Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
- $\vec{b}=\vec{p}+\vec{e}$
- $\vec{p}=$ that part of \vec{b} that lies in the line:

$$
\vec{p}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}} \vec{a}\left(=\frac{\vec{a} \vec{a}^{T}}{\vec{a}^{T} \vec{a}^{T} \vec{b}}\right)
$$

- $\vec{e}=$ that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.

Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a}.
- $\vec{b}=\vec{p}+\vec{e}$
- $\vec{p}=$ that part of \vec{b} that lies in the line:

$$
\vec{p}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}} \vec{a}\left(=\frac{\vec{a}}{\vec{a} \vec{a}^{T}} \overrightarrow{\vec{a}^{T}} \vec{a}\right)
$$

- $\vec{e}=$ that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P :

$$
\vec{P}=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}},
$$

where A's columns form a subspace basis.

Review for Exam 2
Words
Pictures

UNDIVERSITY of VERMONT

Stuff to know／understand

Normal equation for $A \vec{x}=\vec{b}$ ：

If $\vec{b} \notin C(A)$ ，project \vec{b} onto $C(A)$

Write projection of \vec{b} as \vec{p} ．
Know $\vec{p} \in C(A)$ so $\exists \vec{x}_{*}$ such that $A \vec{x}_{*}=\vec{p}$ ．
Error vector must be orthogonal to column space so $A^{\mathrm{T}} \vec{e}=A^{\mathrm{T}}(\vec{b}-\vec{p})=\overrightarrow{0}$ ．
－Rearrange：

－Since $A \vec{x}_{*}=\vec{p}$ ，we end up with
－This is linear algebra＇s normal equation； \vec{x} ，is our best solution to $A \vec{x}=\vec{b}$ ．

The
UNIVERSITY VERMONT

Stuff to know／understand

Normal equation for $A \vec{x}=\vec{b}$ ：
－If $\vec{b} \notin C(A)$ ，project \vec{b} onto $C(A)$ ．
\square
Error vector must be orthogonal to column space so $A^{\mathrm{T}} \vec{e}=A^{\mathrm{T}}(\vec{b}-\vec{p})=\overrightarrow{0}$ ．
－Rearrange：
－Since $A \vec{x}_{*}=\vec{p}$ ，we end up with
－This is linear algebra＇s normal equation； \vec{x} ，is our best solution to $A \vec{x}=\vec{b}$ ．

The UNIVERSITY V VERMONT

つの『 11 of 16

Stuff to know／understand

Normal equation for $A \vec{x}=\vec{b}$ ：
－If $\vec{b} \notin C(A)$ ，project \vec{b} onto $C(A)$ ．
－Write projection of \vec{b} as \vec{p} ．

Error vector must be orthogonal to column space so $A^{\mathrm{T}} \dot{e}=A^{\mathrm{T}}(\vec{b}-\vec{p})=0$ ．
－Rearrange：

\square

\qquad

Stuff to know/understand

Normal equation for $A \vec{x}=\vec{b}$:

- If $\vec{b} \notin C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_{*}$ such that $A \vec{x}_{*}=\vec{p}$.

Stuff to know/understand

Normal equation for $A \vec{x}=\vec{b}$:

- If $\vec{b} \notin C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_{*}$ such that $A \vec{x}_{*}=\vec{p}$.
- Error vector must be orthogonal to column space so $A^{\mathrm{T}} \vec{e}=A^{\mathrm{T}}(\vec{b}-\vec{p})=\overrightarrow{0}$.

Stuff to know/understand

Normal equation for $A \vec{x}=\vec{b}$:

- If $\vec{b} \notin C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_{*}$ such that $A \vec{x}_{*}=\vec{p}$.
- Error vector must be orthogonal to column space so $A^{\mathrm{T}} \vec{e}=A^{\mathrm{T}}(\vec{b}-\vec{p})=\overrightarrow{0}$.
- Rearrange:

$$
A^{\mathrm{T}} \vec{p}=A^{\mathrm{T}} \vec{b}
$$

Stuff to know/understand

Normal equation for $A \vec{x}=\vec{b}$:

- If $\vec{b} \notin C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_{*}$ such that $A \vec{x}_{*}=\vec{p}$.
- Error vector must be orthogonal to column space so $A^{\mathrm{T}} \vec{e}=A^{\mathrm{T}}(\vec{b}-\vec{p})=\overrightarrow{0}$.
- Rearrange:

$$
A^{\mathrm{T}} \vec{p}=A^{\mathrm{T}} \vec{b}
$$

- Since $A \vec{x}_{*}=\vec{p}$, we end up with

$$
A^{\mathrm{T}} A \vec{x}_{*}=A^{\mathrm{T}} \vec{b} .
$$

Stuff to know/understand

Normal equation for $A \vec{x}=\vec{b}$:

- If $\vec{b} \notin C(A)$, project \vec{b} onto $C(A)$.
- Write projection of \vec{b} as \vec{p}.
- Know $\vec{p} \in C(A)$ so $\exists \vec{x}_{*}$ such that $A \vec{x}_{*}=\vec{p}$.
- Error vector must be orthogonal to column space so $A^{\mathrm{T}} \vec{e}=A^{\mathrm{T}}(\vec{b}-\vec{p})=\overrightarrow{0}$.
- Rearrange:

$$
A^{\mathrm{T}} \vec{p}=A^{\mathrm{T}} \vec{b}
$$

- Since $A \vec{x}_{*}=\vec{p}$, we end up with

$$
A^{\mathrm{T}} A \vec{\chi}_{*}=A^{\mathrm{T}} \vec{b} .
$$

- This is linear algebra's normal equation; \vec{x}_{*} is our best solution to $A \vec{x}=\vec{b}$.

${ }^{\text {Tho }}$ UNIVERSITY of VERMONT

The symmetry of $A \vec{x}=\vec{b}$ and $A^{\mathrm{T}} \vec{y}=\vec{c}$:

The
UNIVERSITY of VERMONT

How $A \vec{x}=\vec{b}$ works:

Best solution \vec{x}_{*} when $\vec{b}=\vec{p}+\vec{e}$:

The fourfold ways of $A \vec{x}=\vec{b}$ ：

case	example R	big picture	\＃ solutions
$\begin{aligned} m & =r \\ n & =r \end{aligned}$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$		1 always
$\begin{gathered} m=r \\ n>r \end{gathered}$	$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & { }_{2}\end{array}\right]$		∞ always
$\begin{gathered} m>r \\ n=r \end{gathered}$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$		0 or 1
$\begin{aligned} m & >r \\ n & >r \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$		0 or ∞

The UNIVERSITY of VERMONT

