Chapter 3/4: Lecture 15

Linear Algebra MATH 124, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Ch 3/4: Lec 15

Review for Exam 2

Words

Outline Review for Exam 2 Words Pictures Review for Exam 2

Ch. 3/4: Lec. 15

Words Pictures

Sections covered on second midterm:

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:

As always, want 'doing' and 'understanding' and abilities.

Ch. 3/4: Lec. 15

Review for Exam 2

Ch. 3/4: Lec. 15

- ▶ Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $A\vec{x} = b$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- ► Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

- Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and

- ▶ Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$ Must be able to draw the big picture!
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

- Vector space concept and definition.

- Various techniques for finding bases and orthogonal

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors
- Concept of a basis
- Basis = minimal spanning set
- Concept of orthogonal complement
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- ► Concept of a spanning set of vectors.
- Concept of a basis
- ▶ Basis = minimal spanning set
- Concept of orthogonal complement
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set
- Concept of orthogonal complement
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Fundamental Theorem of Linear Algebra:

- Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- Column space C(A) ⊂ R^m.
- ► Left Nullspace $N(A^{T}) \subset R^{m}$.
- $| \dim C(A) + \dim N(A^T) | = r + (m r) = m$
- Orthogonality: $C(A) \otimes N(A^T) = R^m$
- Row space $C(A^{T}) \subset R^{n}$.
- (Right) Nullspace $N(A) \subset R^n$.
- dies C(AT) dies M(A) and (S)

Ch 3/4: Lec 15

Review for Exam 2

Words

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .
- Column space $C(A) \subset R^m$.
- Left Nullspace $N(A^{T}) \subset R^{m}$.
- dim C(A) + dim $N(A^{T}) = r + (m + r) = m$
- ightharpoonup Orthogonality: $C(A) \otimes N(A^T) = R^m$
- ▶ Row space $C(A^T) \subset R^n$.
- (Right) Nullspace $N(A) \subset R^n$.
- $\int dim C(A^{T}) + dim N(A) = r + (n r) = n$
- Orthogonality: $C(A^T) \otimes N(A) = B^T$

Ch 3/4: Lec 15

Review for Exam 2

Words

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- Symmetry of A and A^T.
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^T) \subset R^m$.
- \blacktriangleright | dim C(A) | \blacktriangleright | dim $N(A^T)$ | \Rightarrow r| \Rightarrow t| \Rightarrow t| \Rightarrow t| \Rightarrow t| ightharpoonup Orthogonality: $C(A) \otimes N(A^T) = R^m$
- Row space $C(A^{T}) \subset R^{n}$.
- (Right) Nullspace $N(A) \subset \mathbb{R}^n$.
- $| \dim C(A^T) + \dim M(A) | = r + (n r) + n$
- Orthogonality: C(A^T) ⊗ N(A) + Rⁿ

Review for Exam 2 Words

Ch 3/4: Lec 15

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- \rightarrow dim C(A) + dim N(AT) = r + (m + r) = m
- ightharpoonup Orthogonality: $C(A) \otimes N(A^T) = R^m$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- $ightharpoonup \dim C(A^{T}) + \dim N(A) = r + (n r) = n$
- Orthogonality: C(AT) & N(A) = RT

Ch 3/4: Lec 15

Review for Exam 2

Words

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$

Fundamental Theorem of Linear Algebra:

- ightharpoonup Orthogonality: $C(A) \otimes N(A^T) \rightarrow R^m$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- $ightharpoonup \dim C(A^{T}) + \dim N(A) = r + (n r) = n$
- ▶ Orthogonality: $C(A^T) \otimes N(A) = B^T$

Ch. 3/4: Lec. 15

Review for Exam 2
Words

Pictures

1010100

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: C(A) ⊗ N(A^T) → R^m
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- Orthogonality: $C(A^T) \otimes M(A) = R^n$

Ch. 3/4: Lec. 15

Review for Exam 2
Words

Words Pictures

1010100

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^{T} .
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$

Fundamental Theorem of Linear Algebra:

- ▶ Orthogonality: $C(A) \otimes N(A^{T}) = R^{m}$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ightharpoonup Orthogonality: $C(A^T) \otimes N(A) = R^n$

Ch. 3/4: Lec. 15

Review for Exam 2
Words

Pictures

1010100

Ch. 3/4: Lec. 15

Review for Exam 2

Words

Pictures

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^T.
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^T) = R^m$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ▶ dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

- Enough to find bases for subspaces
- ► Be able to reduce A to R
- Identify pivot columns and free columns
- Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ► Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A

Words

Pictures

- ► Enough to find bases for subspaces.
- ► Be able to reduce A to R
- Identify pivot columns and free columns
- Rank r of A = # pivot columns.
- ► Know that relationship between R's columns hold for A's columns.
- ► Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns
- ► Rank r of A = # pivot columns.
- ➤ Know that relationship between R's columns hold for A's columns.
- ► Warning: R's columns do not give a basis for C(A)
- But find pivot columns in R, and same columns in A form a basis for C(A)

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- ► Know that relationship between R's columns hold for A's columns.
- Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- ► Know that relationship between R's columns hold for A's columns.
- ightharpoonup Warning: R's columns do not give a basis for C(A)
- But find pivot columns in R, and same columns in A form a basis for C(A).

- Enough to find bases for subspaces.
- Be able to reduce A to B.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ► Warning: R's columns do not give a basis for C(A)

- Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- But find pivot columns in R, and same columns in A form a basis for C(A).

- ► Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Review for Exam 2

Ch. 3/4: Lec. 15

Words Pictures

- Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on b's elements for a solution to $A\vec{x} = \vec{b}$ to exist
- ► Basis for row space = non-zero rows in R (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Review for Exam 2
Words

Words Pictures

- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist
- Basis for row space = non-zero rows in R (easy!)
- Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Review for Exam 2

Words

Pictures

- ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist
- Basis for row space = non-zero rows in R (easy!)
- Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Review for Exam 2

Words

Pictures

- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- Basis for row space = hon-zero rows in R (easy!)
- Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

- ▶ Reduce $[A | \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- Basis for row space = non-zero rows in R (easy!)
- Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Review for Exam 2
Words

Pictures

More on bases for column and row space:

- ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- Basis for row space = non-zero rows in R (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Review for Exam 2

Words Pictures

- Basis for nullspace obtained by solving $A\vec{x} = 0$
- Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- # free variables = n # pivot variables = n r = dim N(A).
- Similarly find basis for $N(A^T)$ by solving $A^T\vec{y} = \vec{0}$.

Review for Exam 2

Words

Pictures

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- Always express pivot variables in terms of free variables.
- number)
- # free variables = n # pivot variables = n r = dim N(A).
- Similarly find basis for $N(A^T)$ by solving $A^T\vec{y} = \vec{0}$.

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- ► Always express pivot variables in terms of free variables.
- number)
- # free variables = n # pivot variables = n r = dim N(A).
- Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- ► Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- # free variables = n # pivot variables = n r = dim N(A).
- Similarly find basis for $N(A^T)$ by solving $A^T\vec{y} = \vec{0}$.

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- ► Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim N(A).
- Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- ► Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- # free variables = n # pivot variables = n r = dim N(A).
- ► Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures

- Number of solutions to $A\vec{x} = \vec{b}$:
 - 1. If $b \notin C(A)$, there are no solutions
 - 2. If $b \in C(A)$ there is either one unique solution of infinitely many solutions.

Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $b \in C(A)$ there is either one unique solution or infinitely many solutions.

Pictures

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - If dim N(A) = n r = 0, then there is one solution.

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - If dim N(A) = n r = 0, then there is one solution.

Review for Exam 2
Words

Pictures

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - If dim N(A) = n r = 0, then there is one solution.

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution.

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $b = \vec{p} + \vec{e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \vec{a}^{\mathrm{T}} \vec{b} \vec{a} \left(= \vec{a} \vec{a}^{\mathrm{T}} \vec{b} \right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator *P*:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Ch 3/4: Lec 15

Review for Exam 2

Words Pictures

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- b = p + e
- \vec{p} = that part of b that lies in the line:

$$\vec{p} = \vec{a}^{T} \vec{b} \vec{a} \left(\begin{array}{c} \vec{a} \vec{a}^{T} \\ \vec{a}^{T} \vec{a} \end{array} \right)$$

- $\vec{e} = \text{that part of } \vec{b} \text{ that is orthogonal to the line}$
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Review for Exam 2
Words

Words Pictures

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $ightharpoonup ec{b} = ec{p} + ec{e}$
- \vec{p} = that part of *b* that lies in the line:

- $\vec{e} = \text{that part of } \vec{b} \text{ that is orthogonal to the line.}$
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Review for Exam 2

Words

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $ightharpoonup ec{m{b}} = ec{m{p}} + ec{m{e}}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Review for Exam 2

Words

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $ightharpoonup ec{m{b}} = ec{m{p}} + ec{m{e}}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Review for Exam 2

Words

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $ightharpoonup ec{m{b}} = ec{m{p}} + ec{m{e}}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Ch. 3/4: Lec. 15

Review for Exam 2

Words

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- $ightharpoonup ec{m b} = ec{m p} + ec{m e}$
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Review for Exam 2

Words

Normal equation for $A\vec{x} = \vec{b}$:

If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).

Nhow $\vec{p} \in C(A)$ so $\exists \vec{x}_{*}$ such that $A\vec{x}_{*} + \vec{p}$.

- Write projection of \vec{b} as \vec{p} .
- Error vector must be orthogonal to column space so
- $A^{\mathrm{T}}\vec{e} = A^{\mathrm{T}}(\vec{b} \vec{p}) = \vec{0}$
- ► Rearrange:

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}.$$

This is linear algebra's normal equation;

Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of b as p.
- Nnow $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{\rho}) = \vec{0}$.
- Rearrange:

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}$$

This is linear algebra's normal equation;

Ch. 3/4: Lec. 15

Review for Exam 2

Words Pictures

- Normal equation for $A\vec{x} = \vec{b}$:
 - If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
 - Write projection of \vec{b} as \vec{p} .
 - Now $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
 - Error vector must be orthogonal to column space so $A^{T} \vec{e} = A^{T} (\vec{b} \vec{p}) = \vec{0}$.
 - Rearrange:

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}$$

This is linear algebra's normal equation;

Review for Exam 2

Pictures

Words

Ch. 3/4: Lec. 15

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- ▶ Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- Error vector must be orthogonal to column space so $A^{T} \vec{e} = A^{T} (\vec{b} \vec{p}) = \vec{0}$.
- Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}$$

This is linear algebra's normal equation; \vec{x} is our best solution to $A\vec{x} = \vec{b}$

Review for Exam 2

Words Pictures

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- From vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- Rearrange

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}$$

This is linear algebra's normal equation; \vec{x} is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- Write projection of \vec{b} as \vec{p} .
- ▶ Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- From vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- Rearrange:

$$\mathbf{A}^{\mathrm{T}}\vec{\mathbf{p}}=\mathbf{A}^{\mathrm{T}}\vec{\mathbf{b}}$$

Since $A\vec{x}_* = \vec{\rho}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_{*}=A^{\mathrm{T}}\vec{b}$$

This is linear algebra's normal equation;
x̄_k is our best solution to Ax̄ = b̄.

Review for Exam 2

Words

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- ▶ Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- From vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

$$A^{\mathrm{T}}A\vec{x}_*=A^{\mathrm{T}}\vec{b}.$$

This is linear algebra's normal equation;
x̄, is our best solution to Ax̄ = b̄.

Review for Exam 2

Words

Review for Exam 2

Words Pictures

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- ▶ Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- From vector must be orthogonal to column space so $A^{T}\vec{e} = A^{T}(\vec{b} \vec{p}) = \vec{0}$.
- ► Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\vec{\mathbf{x}}_{*}=\mathbf{A}^{\mathrm{T}}\vec{\mathbf{b}}.$$

This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

The symmetry of $A\vec{x} = \vec{b}$ and $A^{T}\vec{y} = \vec{c}$:

Ch. 3/4: Lec. 15

Review for Exam 2
Words
Pictures

How $A\vec{x} = \vec{b}$ works:

Ch. 3/4: Lec. 15

Review for Exam 2 Words

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:

Ch. 3/4: Lec. 15

Review for Exam 2 Words Pictures

The fourfold ways of $A\vec{x} = \vec{b}$:

case	example R	big picture	# solutions
m = r n = r		→	1 always
m = r, $n > r$			∞ always
m > r, n = r	1 0 0 1 0 0		0 or 1
m > r, n > r	1 0 %1 0 1 %2 0 0 0 0 0 0		0 or ∞

Ch. 3/4: Lec. 15

Review for Exam 2 Vords

