Chapter 3/4: Lecture 15

Linear Algebra MATH 124, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Ch 3/4: Lec 15

Review for Exam 2

Words

Outline Review for Exam 2 Words Pictures Review for Exam 2

Ch. 3/4: Lec. 15

Sections covered on second midterm:

- ► Chapter 3 and Chapter 4 (Sections 4.1–4.3)
- Main pieces:
 - 1. Big Picture of $A\vec{x} = \vec{b}$ Must be able to draw the big picture!
 - 2. Projections and the normal equation
- As always, want 'doing' and 'understanding' and abilities.

Vector Spaces:

- Vector space concept and definition.
- Subspace definition (three conditions).
- Concept of a spanning set of vectors.
- Concept of a basis.
- Basis = minimal spanning set.
- Concept of orthogonal complement.
- Various techniques for finding bases and orthogonal complements.

Stuff to know/understand:

Ch. 3/4: Lec. 15

Fundamental Theorem of Linear Algebra:

- ▶ Applies to any $m \times n$ matrix A.
- ► Symmetry of A and A^T.
- ▶ Column space $C(A) \subset R^m$.
- ▶ Left Nullspace $N(A^{T}) \subset R^{m}$.
- ▶ dim C(A) + dim $N(A^{T}) = r + (m r) = m$
- ▶ Orthogonality: $C(A) \otimes N(A^T) = R^m$
- ▶ Row space $C(A^T) \subset R^n$.
- ▶ (Right) Nullspace $N(A) \subset R^n$.
- ► dim $C(A^{T})$ + dim N(A) = r + (n r) = n
- ▶ Orthogonality: $C(A^T) \otimes N(A) = R^n$

Finding four fundamental subspaces:

- ► Enough to find bases for subspaces.
- ▶ Be able to reduce A to R.
- Identify pivot columns and free columns.
- ► Rank r of A = # pivot columns.
- Know that relationship between R's columns hold for A's columns.
- ▶ Warning: R's columns do not give a basis for C(A)
- ▶ But find pivot columns in R, and same columns in A form a basis for C(A).

Review for Exam 2
Words

Pictures

More on bases for column and row space:

- ▶ Reduce $[A \mid \vec{b}]$ where \vec{b} is general.
- Find conditions on \vec{b} 's elements for a solution to $A\vec{x} = \vec{b}$ to exist \rightarrow obtain basis for C(A).
- Basis for row space = non-zero rows in R (easy!)
- ► Alternate basis for column space = non-zero rows in reduced form of A^T (easy!)

Bases for nullspaces, left and right:

- ▶ Basis for nullspace obtained by solving $A\vec{x} = \vec{0}$
- ► Always express pivot variables in terms of free variables.
- Free variables are unconstrained (can be any real number)
- ▶ # free variables = n # pivot variables = n r = dim N(A).
- ► Similarly find basis for $N(A^{T})$ by solving $A^{T}\vec{y} = \vec{0}$.

Number of solutions to $A\vec{x} = \vec{b}$:

- 1. If $\vec{b} \notin C(A)$, there are no solutions.
- 2. If $\vec{b} \in C(A)$ there is either one unique solution or infinitely many solutions.
 - Number of solutions now depends entirely on N(A).
 - If dim N(A) = n r > 0, then there are infinitely many solutions.
 - ▶ If dim N(A) = n r = 0, then there is one solution.

Projections:

- Understand how to project a vector \vec{b} onto a line in direction of \vec{a} .
- \vec{p} = that part of \vec{b} that lies in the line:

$$\vec{p} = \frac{\vec{a}^{\mathrm{T}}\vec{b}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{a}\left(=\frac{\vec{a}\vec{a}^{\mathrm{T}}}{\vec{a}^{\mathrm{T}}\vec{a}}\vec{b}\right)$$

- \vec{e} = that part of \vec{b} that is orthogonal to the line.
- Understand generalization to projection onto subspaces.
- Understand construction and use of subspace projection operator P:

$$\vec{P} = A(A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}},$$

where A's columns form a subspace basis.

Review for Exam 2

Words

Normal equation for $A\vec{x} = \vec{b}$:

- ▶ If $\vec{b} \notin C(A)$, project \vec{b} onto C(A).
- ▶ Write projection of \vec{b} as \vec{p} .
- ► Know $\vec{p} \in C(A)$ so $\exists \vec{x}_*$ such that $A\vec{x}_* = \vec{p}$.
- From vector must be orthogonal to column space so $A^T \vec{e} = A^T (\vec{b} \vec{p}) = \vec{0}$.
- Rearrange:

$$A^{\mathrm{T}}\vec{p} = A^{\mathrm{T}}\vec{b}$$

Since $A\vec{x}_* = \vec{p}$, we end up with

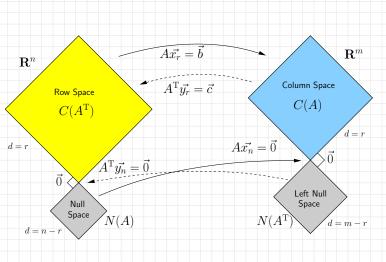
$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\vec{\mathbf{x}}_{*}=\mathbf{A}^{\mathrm{T}}\vec{\mathbf{b}}.$$

This is linear algebra's normal equation; \vec{x}_* is our best solution to $A\vec{x} = \vec{b}$.

Review for Exam 2

Words

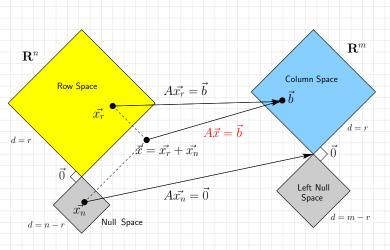
The symmetry of $A\vec{x} = \vec{b}$ and $A^{T}\vec{y} = \vec{c}$:



Ch. 3/4: Lec. 15

Review for Exam 2
Words
Pictures

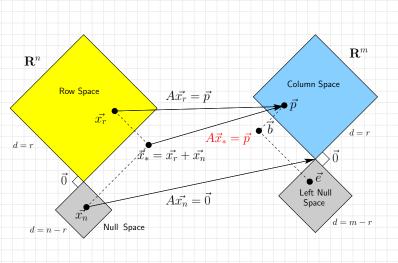
How $A\vec{x} = \vec{b}$ works:



Ch. 3/4: Lec. 15

Review for Exam 2 Words

Best solution \vec{x}_* when $\vec{b} = \vec{p} + \vec{e}$:



Ch. 3/4: Lec. 15

Review for Exam 2 Words

The fourfold ways of $A\vec{x} = \vec{b}$:

case	example R	big picture	# solutions
m = r n = r		→	1 always
m = r, $n > r$			∞ always
m > r, $n = r$	$\left[\begin{array}{cc}1&0\\0&1\\0&0\end{array}\right]$	→	0 or 1
m > r, n > r	[1 0 551] 0 1 552 0 0 0 0 0 0]		0 or ∞

Ch. 3/4: Lec. 15

Review for Exam 2 **Nords**

