Lecture 7 (Chapter 2): Review

Linear Algebra MATH 124, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Ch 2: Lec 7

Outline Review for Exam 1 Review for Exam 1

Ch. 2: Lec. 7

Ch 2: Lec 7

- ► Chapter 1 and Chapter 2 (Sections 2.1–2.7)
- Chapter 2 is our focus
 - Knowledge of Chapter 1 as needed for Chapter 2 = solving $A\vec{x} = \vec{b}$
- Want 'understanding' and 'doing' abilities.

Ch 2: Lec 7

- ► Chapter 1 and Chapter 2 (Sections 2.1–2.7)
- ► Chapter 2 is our focus
- Knowledge of Chapter 1 as needed for Chapter 2 = solving $A\vec{x} = \vec{b}$.
- Want 'understanding' and 'doing' abilities.

Sections covered on first midterm:

- ► Chapter 1 and Chapter 2 (Sections 2.1–2.7)
- ► Chapter 2 is our focus
- Nowledge of Chapter 1 as needed for Chapter 2 = solving $A\vec{x} = \vec{b}$.
- Want 'understanding' and 'doing' abilities.

Sections covered on first midterm:

- ► Chapter 1 and Chapter 2 (Sections 2.1–2.7)
- ► Chapter 2 is our focus
- Nowledge of Chapter 1 as needed for Chapter 2 = solving $A\vec{x} = \vec{b}$.
- Want 'understanding' and 'doing' abilities.

Ch 2: Lec 7

- What dimensions of A mean

 - \blacktriangleright $n = \text{number of unknowns } (x_1, x_2, ...)$
- How to draw the row and column pictures.
- Be able to identify row picture
- (e.g., as representing 2 planes in 3-d)
- How to convert between the three pictures.

- What dimensions of A mean:
 - m = number of equations
 - ▶ $n = \text{number of unknowns } (x_1, x_2, ...)$
- How to draw the row and column pictures.
- Be able to identify row picture
- How to convert between the three pictures.

- ▶ What dimensions of *A* mean:
 - \rightarrow m = number of equations
 - ▶ $n = \text{number of unknowns } (x_1, x_2, ...)$
- How to draw the row and column pictures.
- Be able to identify row picture

 (e.g., as representing 2 planes in 3-d).
- How to convert between the three pictures

- ▶ What dimensions of *A* mean:
 - \rightarrow m = number of equations
 - ▶ $n = \text{number of unknowns } (x_1, x_2, ...)$
- How to draw the row and column pictures.
- Be able to identify row picture (e.g., as representing 2 planes in 3-d).
- How to convert between the three pictures

- ▶ What dimensions of *A* mean:
 - \rightarrow m = number of equations
 - ▶ $n = \text{number of unknowns } (x_1, x_2, ...)$
- How to draw the row and column pictures.
- ▶ Be able to identify row picture (e.g., as representing 2 planes in 3-d).
- How to convert between the three pictures.

Solving $A\vec{x} = \vec{b}$ by elimination

Review for Exam 1

Ch. 2: Lec. 7

- Solve four equivalent ways:
- 2. Row operations on augmented r
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back substitution
- 3. Row operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU

Solving $A\vec{x} = \vec{b}$ by elimination

Review for Exam 1

Ch. 2: Lec. 7

Solve four equivalent ways: 1. Simultaneous equations (snore)

- - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$

Review for Exam 1

Solve four equivalent ways:

- 1. Simultaneous equations (snore)
- 2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back subsitution
- 3. How operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU

nd number of solutions business:

- 1. Simultaneous equations (snore)
- 2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back substitution
- 3. Row operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU

ns business:

- 1. Simultaneous equations (snore)
- 2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back substitution
- 3. Row operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU
 - substitution_____
 - First $L\vec{c} = \vec{b}$ then $U\vec{x} = \vec{c}$.
 - More generally, PA = LU.

Understand number of solutions business

- 1. Simultaneous equations (snore)
- 2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back subsitution
- 3. Row operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU
 - Solve two triangular systems by forward and back substitution
 - First $L\vec{c} = b$ then $U\vec{x} = \vec{c}$.
 - More generally, PA = LU.

Understand number of solutions business

- 1. Simultaneous equations (snore)
- 2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back subsitution
- 3. Row operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU
 - Solve two triangular systems by forward and back substitution
 - First $L\vec{c} = \vec{b}$ then $U\vec{x} = \vec{c}$.
 - ▶ More generally, PA = LU.

Understand number of solutions business

Ch. 2: Lec. 7

Review for Exam 1

Solve four equivalent ways:

- 1. Simultaneous equations (snore)
- 2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back substitution
- 3. Row operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU
 - Solve two triangular systems by forward and back substitution
 - First $L\vec{c} = \vec{b}$ then $U\vec{x} = \vec{c}$.
 - More generally, PA = LU.

Understand number of solutions business

- 1. Simultaneous equations (snore)
- 2. Row operations on augmented matrix
 - Systematically transform $A\vec{x} = \vec{b}$ into $U\vec{x} = \vec{c}$
 - Solve by back substitution
- 3. Row operations with E_{ij} and P_{ij} matrices
- 4. Factor A as A = LU
 - Solve two triangular systems by forward and back substitution
 - First $L\vec{c} = \vec{b}$ then $U\vec{x} = \vec{c}$.
 - More generally, PA = LU.

Understand number of solutions business:

- Be able to find the pivots of A (they live in U)
- Understand how elimination matrices (E_{ii}'s) are
- Understand how L is made up of inverses of • e.g.: $L = E_{21}^{-1} E_{21}^{-1} E_{22}^{-1} A$
- Understand how L is made up of the Iii multipliers.
- Understand how inverses of elimination matrices are

Ch 2: Lec 7

- ▶ Be able to find the pivots of *A* (they live in *U*)
- Understand how elimination matrices (E_{ij}'s) are constructed from multipliers (I_{ij}'s)
- Understand how L is made up of inverses of elimination matrices
 ▶ e.g.: L = E₂₁ E₃₁ E₃₂ A
- e.g.: 4 = E₂₁ E₃₁ E₃₂ A
- Understand how L is made up of the I_{ij} multipliers.
- Understand how inverses of elimination matrices are simply related to elimination matrices.

- ▶ Be able to find the pivots of *A* (they live in *U*)
- ▶ Understand how elimination matrices (E_{ij}'s) are constructed from multipliers (I_{ij}'s)
- Understand how L is made up of inverses of elimination matrices
 e.g.: L = E₂⁻¹ E₃⁻¹ E₃ A
- Understand how L is made up of the lij multipliers.
- simply related to elimination matrices are

- ▶ Be able to find the pivots of *A* (they live in *U*)
- Understand how elimination matrices (E_{ij}'s) are constructed from multipliers (I_{ij}'s)
- Understand how L is made up of inverses of elimination matrices
 - e.g.: $L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} A$.
- Understand how L is made up of the lij multipliers.
- simply related to elimination matrices.

- ▶ Be able to find the pivots of *A* (they live in *U*)
- Understand how elimination matrices (E_{ij}'s) are constructed from multipliers (I_{ij}'s)
- Understand how L is made up of inverses of elimination matrices
 - e.g.: $L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} A$.
- ▶ Understand how L is made up of the I_{ij} multipliers.
- simply related to elimination matrices are

- ▶ Be able to find the pivots of *A* (they live in *U*)
- Understand how elimination matrices (E_{ij}'s) are constructed from multipliers (I_{ij}'s)
- Understand how L is made up of inverses of elimination matrices
 - e.g.: $L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} A$.
- ▶ Understand how L is made up of the I_{ij} multipliers.
- Understand how inverses of elimination matrices are simply related to elimination matrices.

 Understand basic matrix algebra Understand matrix multiplication Understand multiplication order matters Understand AB = BA is rarely true

Stuff to know:

Matrix algebra

Ch 2: Lec 7

Stuff to know:

Matrix algebra

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- Understand AB = BA is rarely true

Inverses

Ch. 2: Lec. 7

Stuff to know:

Matrix algebra

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- Understand AB = BA is rarely true

Inverses

Ch. 2: Lec. 7

Review for Exam 1

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ► Understand AB = BA is rarely true

Stuff to know:

Matrix algebra

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ▶ Understand AB = BA is rarely true

Inverses

Ch. 2: Lec. 7

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ► Understand *AB* = *BA* is rarely true

- Understand identity matrix I
- Understand AA 1 = A 1A = I
- Find A with Gauss-Jordan elimination
- ► Perform row reduction on augmented matrix [A|/].
- Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is
- $(AB)^{-1} B^{-1}A^{-1}$

Review for Exam 1

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ► Understand *AB* = *BA* is rarely true

- Understand identity matrix I
- Understand AA = A A = I
- Find A with Gauss-Jordan elimination
- ► Perform row reduction on augmented matrix [A | I].
- Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is often prohibitively expensive to do.
- $(AB)^{-1} B^{-1}A^{-1}$

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ► Understand *AB* = *BA* is rarely true

- Understand identity matrix I
- ▶ Understand $AA^{-1} = A^{-1}A = I$
- Find A with Gauss-Jordan elimination
- ▶ Perform row reduction on augmented matrix [A| /].
- Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is
- $(AB)^{-1} = B^{-1}A^{-1}$

Review for Exam 1

Matrix algebra

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ▶ Understand AB = BA is rarely true

- Understand identity matrix I
- ► Understand $AA^{-1} = A^{-1}A = I$
- Find A^{-1} with Gauss-Jordan elimination
- Perform row reduction on augmented matrix [A | I].

 Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is
- often prohibitively expensive to do.
- $(AB)^{-1} + B^{-1}A^{-1}$

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ▶ Understand AB = BA is rarely true

- Understand identity matrix I
- ▶ Understand $AA^{-1} = A^{-1}A = I$
- ▶ Find A⁻¹ with Gauss-Jordan elimination
- ▶ Perform row reduction on augmented matrix [A | I].
- Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is often prohibitively expensive to do.
- $(AB)^{-1} B^{-1}A^{-1}$

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ▶ Understand AB = BA is rarely true

- Understand identity matrix I
- ▶ Understand $AA^{-1} = A^{-1}A = I$
- ▶ Find A⁻¹ with Gauss-Jordan elimination
- ▶ Perform row reduction on augmented matrix [A | I].
- Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is often prohibitively expensive to do.

- Understand basic matrix algebra
- Understand matrix multiplication
- Understand multiplication order matters
- ▶ Understand AB = BA is rarely true

- Understand identity matrix I
- ▶ Understand $A A^{-1} = A^{-1} A = I$
- ► Find A⁻¹ with Gauss-Jordan elimination
- ▶ Perform row reduction on augmented matrix [A | I].
- Understand that that finding A^{-1} solves $A\vec{x} = \vec{b}$ but is often prohibitively expensive to do.
- $(AB)^{-1} = B^{-1}A^{-1}$

Stuff to know:

- Transposes
 - Definition: flip entries across main diagonal
 - $A = A^{T}$: A is symmetric
 - Important property: (AB)^T = B^TA^T

Extra piece

Ch. 2: Lec. 7

Ch. 2: Lec. 7

Transposes

- ► Definition: flip entries across main diagonal
- $A = A^{T}$: A is symmetric
- Important property: $(AB)^T = B^T A^T$

Ch. 2: Lec. 7

Transposes

- Definition: flip entries across main diagonal
- $ightharpoonup A = A^{T}$: A is symmetric
- Important property: $(AB)^{T} = B^{T}A^{T}$

- Definition: flip entries across main diagonal
- $ightharpoonup A = A^{\mathrm{T}}$: A is symmetric
- ▶ Important property: $(AB)^T = B^T A^T$

- Definition: flip entries across main diagonal
- $ightharpoonup A = A^{\mathrm{T}}$: A is symmetric
- ▶ Important property: $(AB)^T = B^T A^T$

- If $A\vec{x} = 0$ has a non-zero solution, A has no inverse
- If $A\vec{x} = \vec{0}$ has a non-zero solution, then $A\vec{x} = \vec{b}$ always has infinitely many solutions.
- $(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1}$

- ▶ Definition: flip entries across main diagonal
- $ightharpoonup A = A^{T}$: A is symmetric
- ▶ Important property: $(AB)^T = B^T A^T$

- ▶ If $A\vec{x} = \vec{0}$ has a non-zero solution, A has no inverse
- If $A\vec{x} = \vec{0}$ has a non-zero solution, then $A\vec{x} = \vec{b}$ always has infinitely many solutions.
- $(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1}$

- ▶ Definition: flip entries across main diagonal
- $ightharpoonup A = A^{T}$: A is symmetric
- ▶ Important property: $(AB)^T = B^T A^T$

- ▶ If $A\vec{x} = \vec{0}$ has a non-zero solution, A has no inverse
- If $A\vec{x} = \vec{0}$ has a non-zero solution, then $A\vec{x} = \vec{b}$ always has infinitely many solutions.

- Definition: flip entries across main diagonal
- $ightharpoonup A = A^{\mathrm{T}}$: A is symmetric
- ▶ Important property: $(AB)^T = B^T A^T$

- ▶ If $A\vec{x} = \vec{0}$ has a non-zero solution, A has no inverse
- If $A\vec{x} = \vec{0}$ has a non-zero solution, then $A\vec{x} = \vec{b}$ always has infinitely many solutions.
- $(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1}$

