

How grading works:

Questions are worth 3 points according to the following scale:

- 3 = correct or very nearly so.
- 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- $0=$ way off.

Schedule:

The course will mainly cover chapters 2 through 6 of the textbook. (You should know all about Chapter 1.)

Week \# (dates)	Tuesday	Thursday
$1(8 / 31,9 / 2)$	Lecture	Lecture + A1
$2(9 / 7,9 / 9)$	Lecture	Lecture + A2
$3(9 / 14,9 / 16)$	Lecture	Lecture + A3
$4(9 / 21,9 / 23)$	Lecture	Test 1
$5(9 / 28,9 / 30)$	Lecture	Lecture + A4
$6(10 / 5,10 / 7)$	Lecture	Lecture + A5
$7(10 / 12,10 / 14)$	Lecture	Lecture + A6
$8(10 / 19,10 / 21)$	Lecture	Test 2
$9(10 / 26,10 / 29)$	Lecture	Lecture + A7
$10(11 / 2,11 / 4)$	Lecture	Lecture + A8
$11(11 / 9,11 / 11)$	Lecture	Lecture + A9
$12(11 / 16,11 / 18)$	Lecture	Test 3
$13(11 / 23,11 / 25)$	Thanksgiving	Thanksgiving
$14(11 / 30,12 / 2)$	Lecture	Lecture + A10
$15(12 / 7,12 / 9)$	Lecture	Lecture

Important dates:

1. Classes run from Monday, August 31 to Wednesday, December 9.
2. Add/Drop, Audit, Pass/No Pass deadline-Monday, September 14.
3. Last day to withdraw-Friday, November 6.
4. Reading and exam period-Thursday, December 10 to Friday, December 18.
Ch. 2: Lec. 1
Outline
Importance
Usages
Key problems
Three ways of
looking...
Colbert on
Equations
References
Ch. 2: Lec. 1
Outline
Importance
Usages
Key problems
Three ways of
looking...
Colbert on
Equations
References

More stuff:

Do check your zoo account for updates regarding the course.

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible.

More stuff

Being good people:

1. In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab or similar).
2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.
3. Finally, as in all UVM classes, Academic honesty will be expected and departures will be dealt with appropriately. See http://www.uvm.edu/cses/ for guidelines.

More stuff:

Late policy: Unless in the case of an emergency (a real one) or if an absence has been predeclared and a make-up version sorted out, assignments that are not turned in on time or tests that are not attended will be given 0\%.

Computing: Students are encouraged to use Matlab or something similar to check their work.

Note: for assignment problems, written details of calculations will be required.

Ch. 2: Lec. 1
Outline
Importance
Usages
Key problems
Three ways of looking... Colbert on Equations
References

What is going on here? We have 25 lectures to find out...

Is this your left nullspace?:

Broadly speaking, $A \vec{x}=\vec{b}$ translates as follows:

- \vec{b} represents reality (e.g., music, structure)
- A contains building blocks (e.g., notes, shapes)
- \vec{x} specifies how we combine our building blocks to make \vec{b} (as best we can).

How can we disentangle an orchestra's sound?
What about pictures, waves, signals, ...?

Three ways to understand $A \vec{x}=\vec{b}$:

- Way 1: The Row Picture
- Way 2: The Column Picture
- Way 3: The Matrix Picture

Example:

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

- Call this a 2 by 2 system of equations.
- 2 equations with 2 unknowns.

Standard method of simultaneous equations: solve above by adding and subtracting multiples of equations to each other $=$ Row Picture.

Three ways to understand $A \vec{x}=\vec{b}$:
ow Picture-what we are doing:
(a) Finding intersection of two lines
(b) Finding the values of x_{1} and x_{2} for which both equations are satisfied (true/happy)
A splendid and deep connection:

Three possible kinds of solution:

1. Lines intersect at one point -One, unique solution
2. Lines are parallel and disjoint -No solutions
3. Lines are the same -Infinitely many solutions

Three ways to understand $A \vec{x}=\vec{b}$:
The column picture:
See

$$
\begin{aligned}
& -x_{1}+x_{2}=1 \\
& 2 x_{1}+x_{2}=4
\end{aligned}
$$

as

$$
x_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

General problem

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}=\vec{b}
$$

- Column vectors are our 'building blocks'
- Key idea: try to 'reach' \vec{b} by combining (summing) multiples of column vectors \vec{a}_{1} and \vec{a}_{2}.

Three ways to understand $A \vec{x}=\vec{b}$:

We love the column picture:

- Intuitive.
- Generalizes easily to many dimensions.

Three possible kinds of solution:

1. $\vec{a}_{1} \nmid \vec{a}_{2}: 1$ solution
2. $\vec{a}_{1} \| \vec{a}_{2} \nmid \vec{b}$: No solutions
3. $\vec{a}_{1}\left\|\vec{a}_{2}\right\| \vec{b}$: infinitely many solutions
(assuming neither \vec{a}_{1} or \vec{a}_{1} are $\overrightarrow{0}$)

Three ways to understand $A \vec{x}=\vec{b}$:

Difficulties:

- Do we give up if $A \vec{x}=\vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.
- Method of approximation-very important!
- We may not have the right building blocks but we can do our best.

[1] G. Strang. The fundamental theorem of linear algebra. The American Mathematical Monthly, 100(9):848-855, 1993. pdf (\boxplus)
[2] G. Strang.
Too much calculus, 2002.
SIAM Linear Algebra Activity Group Newsletter. pdf (\boxplus)
Ch. 2: Lec. 1
Outline
Importance
Usages
Key problems
Three ways of
looking...
Colbert on
Equations
References

