Lecture 1/25—Chapter 2

Linear Algebra MATH 124, Fall, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Outline Outline Importance Usages Key problems Three ways of looking... Colbert on Equations References Key problems

Outline

Three ways of looking...

Colbert on Equations

References

Ch. 2: Lec. 1

少 Q (~ 2 of 32

Basics:

- Instructor: Prof. Peter Dodds
- Lecture room and meeting times:
 209 Votey Hall, Tuesday and Thursday, 10:00 am to
 11:15 am
- Office: Farrell Hall, second floor, Trinity Campus
- ► E-mail: peter.dodds@uvm.edu
- ► Course website: http://www.uvm.edu/~pdodds/ teaching/courses/2010-08UVM-124 (⊞)
- Textbook: "Introduction to Linear Algebra" (4th edition) by Gilbert Strang (published by Wellesley-Cambridge Press). The 3rd edition is okay too.

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Admin:

Paper products:

1. Outline

Papers to read:

- 1. "The Fundamental Theorem of Linear Algebra" [1]
- 2. "Too Much Calculus" [2]

Office hours:

► 1:00 pm to 4:00 pm, Wednesday,
Farrell Hall, second floor, Trinity Campus

Outline Importance

Ch 2: Lec 1

portance

Usages

Key problems
Three ways of

Colbert on Equations

References

ferences

Grading breakdown:

1. Assignments (40%)

- Ten one-week assignments.
- Lowest assignment score will be dropped.
- The last assignment cannot be dropped!
- Each assignment will have a random bonus point question which has nothing to do with linear algebra.

2. Midterm exams (35%)

Three 75 minutes tests distributed throughout the course, all of equal weighting.

3. Final exam (24%)

- Saturday, December 11, 7:30 am to 10:15 am, 209 Votey

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

- 1. Homework (0%)—Problems assigned online from the textbook. Doing these exercises will be most beneficial and will increase happiness.
- General attendance (1%)—it is extremely desirable that students attend class, and class presence will be taken into account if a grade is borderline.

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

How grading works:

Questions are worth 3 points according to the following scale:

- ▶ 3 = correct or very nearly so.
- 2 = acceptable but needs some revisions.
- 1 = needs major revisions.
- ▶ 0 = way off.

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

The course will mainly cover chapters 2 through 6 of the textbook. (You should know all about Chapter 1.)

Week # (dates)	Tuesday	Thursday		
1 (8/31, 9/2)	Lecture	Lecture + A1		
2 (9/7, 9/9)	Lecture	Lecture + A2		
3 (9/14, 9/16)	Lecture	Lecture + A3		
4 (9/21, 9/23)	Lecture	Test 1		
5 (9/28, 9/30)	Lecture	Lecture + A4		
6 (10/5, 10/7)	Lecture	Lecture + A5		
7 (10/12, 10/14)	Lecture	Lecture + A6		
8 (10/19, 10/21)	Lecture	Test 2		
9 (10/26, 10/29)	Lecture	Lecture + A7		
10 (11/2, 11/4)	Lecture	Lecture + A8		
11 (11/9, 11/11)	Lecture	Lecture + A9		
12 (11/16, 11/18)	Lecture	Test 3		
13 (11/23, 11/25)	Thanksgiving	Thanksgiving		
14 (11/30, 12/2)	Lecture	Lecture + A10		
15 (12/7, 12/9)	Lecture	Lecture		

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Important dates:

- Classes run from Monday, August 31 to Wednesday, December 9.
- 2. Add/Drop, Audit, Pass/No Pass deadline—Monday, September 14.
- 3. Last day to withdraw—Friday, November 6.
- 4. Reading and exam period—Thursday, December 10 to Friday, December 18.

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

More stuff:

Do check your zoo account for updates regarding the course.

Academic assistance: Anyone who requires assistance in any way (as per the ACCESS program or due to athletic endeavors), please see or contact me as soon as possible.

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Being good people:

- In class there will be no electronic gadgetry, no cell phones, no beeping, no text messaging, etc. You really just need your brain, some paper, and a writing implement here (okay, and Matlab or similar).
- 2. Second, I encourage you to email me questions, ideas, comments, etc., about the class but request that you please do so in a respectful fashion.
- 3. Finally, as in all UVM classes, Academic honesty will be expected and departures will be dealt with appropriately. See http://www.uvm.edu/cses/for guidelines.

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Late policy: Unless in the case of an emergency (a real one) or if an absence has been predeclared and a make-up version sorted out, assignments that are not turned in on time or tests that are not attended will be given 0%.

Computing: Students are encouraged to use Matlab or something similar to check their work.

Note: for assignment problems, written details of calculations will be required.

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Grading:

A+	97–100	B+	87–89	C+	77–79	D+	67–69
Α	93-96	В	83-86	С	73-76	D	63-66
A-	90-92	B-	80-82	C-	70-72	D-	60-62

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Why are we doing this?

Big deal: Linear Algebra is a body of mathematics that deals with discrete problems.

Many things are discrete:

- Information (0's & 1's, letters, words)
- People (sociology)
- Networks (the Web, people again, food webs, ...)
- Sounds (musical notes)

Even more:

If real data is continuous, we almost always discretize it (0's and 1's) Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Why are we doing this?

Linear Algebra is used in many fields to solve problems:

- Engineering
- Computer Science (Google's Pagerank)
- Physics
- Economics
- Biology
- Ecology
- **.**..

Linear Algebra is as important as Calculus...

Calculus

≡ the blue pill...

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

You are now choosing the red pill:

Ch. 2: Lec. 1

Outline Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Matrices as gadgets:

A matrix \vec{A} transforms a vector \vec{x} into a new vector \vec{x}' through matrix multiplication (whatever that is):

$$\vec{x}' = A\vec{x}$$

We can use matrices to:

- Grow vectors
- Shrink vectors
- Rotate vectors
- Flip vectors
- Do all these things in different directions
- ► Reveal the true ur-dystopian reality.

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Three key problems of Linear Algebra

1. Given a matrix \vec{A} and a vector \vec{b} , find \vec{x} such that

$$A\vec{x} = \vec{b}$$
.

2. Eigenvalue problem: Given A, find λ and \vec{v} such that

$$\mathbf{A}\vec{\mathbf{v}} = \lambda\vec{\mathbf{v}}.$$

3. Coupled linear differential equations:

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) = \mathbf{A}\,y(t)$$

Our focus will be largely on #1, partly on #2.

Ch. 2: Lec. 1

Outline

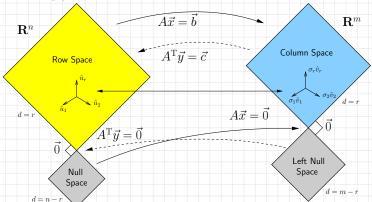
Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations



Major course objective:

To deeply understand the equation $A\vec{x} = \vec{b}$, the Fundamental Theorem of Linear Algebra, and the following picture:

What is going on here? We have 25 lectures to find out...

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Is this your left nullspace?:

Ch. 2: Lec. 1

Outline Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

Our new BFF: $A\vec{x} = \vec{b}$

Broadly speaking, $A\vec{x} = \vec{b}$ translates as follows:

- ▶ **b** represents reality (e.g., music, structure)
- A contains building blocks (e.g., notes, shapes)
- \vec{x} specifies how we combine our building blocks to make \vec{b} (as best we can).

How can we disentangle an orchestra's sound?

What about pictures, waves, signals, ...?

Ch. 2: Lec. 1

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

What does knowing \vec{x} give us?

If we can represent reality as a superposition (or combination or sum) of simple elements, we can do many things:

- Compress information
- See how we can alter information (filtering)
- Find a system's simplest representation
- ▶ Find a system's most important elements
- See how to adjust a system in a principled way

Outline

Importance

Usages

Key problems

Three ways of looking...

Colbert on Equations

- Way 1: The Row Picture
- Way 2: The Column Picture
- Way 3: The Matrix Picture

Example:

$$\begin{array}{rcl}
-x_1 & + & x_2 & = & 1 \\
2x_1 & + & x_2 & = & 4
\end{array}$$

- Call this a 2 by 2 system of equations.
- 2 equations with 2 unknowns.
 - Standard method of simultaneous equations: solve above by adding and subtracting multiples of equations to each other = Row Picture.

Outline

Ch 2: Lec 1

Importance Usages

Kev problems

References

Three ways of looking Colhert on Equations

Row Picture—what we are doing:

- ► (a) Finding intersection of two lines
- ▶ (b) Finding the values of x_1 and x_2 for which both equations are satisfied (true/happy)
- A splendid and deep connection:(a) Geometry

 (b) Algebra

Three possible kinds of solution:

- 1. Lines intersect at one point —One, unique solution
- 2. Lines are parallel and disjoint —No solutions
- 3. Lines are the same —Infinitely many solutions

Ch. 2: Lec. 1

Outline Importance

Usages Kev problems

Three ways of looking

Equations

References

0101011003

The column picture:

See

as

$$x_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

General problem

$$x_1\vec{a}_1+x_2\vec{a}_2=\vec{b}$$

- ► Column vectors are our 'building blocks'
- **Key idea**: try to 'reach' \vec{b} by combining (summing) multiples of column vectors \vec{a}_1 and \vec{a}_2 .

Ch 2: Lec 1

Outline Importance

Usages

Key problems
Three ways of lookir

Colhert on

Equations

References

.....

We love the column picture:

- Intuitive.
 - Generalizes easily to many dimensions.

Three possible kinds of solution:

- 1. $\vec{a}_1 \not\mid \vec{a}_2$: 1 solution
- 2. $\vec{a}_1 \parallel \vec{a}_2 \not\parallel \vec{b}$: No solutions
- 3. $\vec{a}_1 \parallel \vec{a}_2 \parallel \vec{b}$: infinitely many solutions
- (assuming neither \vec{a}_1 or \vec{a}_1 are $\vec{0}$)

Ch 2: Lec 1

Outline Importance

Usages Kev problems

Colbert on Equations

Three ways of looking

Difficulties:

- ▶ Do we give up if $A\vec{x} = \vec{b}$ has no solution?
- No! We can still find the \vec{x} that gets us as close to \vec{b} as possible.
- Method of approximation—very important!
- We may not have the right building blocks but we can do our best.

Outline Importance

Usages
Key problems
Three ways of lookin
Colbert on
Equations

The Matrix Picture:

Now see

$$X_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + X_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

as

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$$

A is now an operator:

- A transforms \vec{x} into \vec{b} .
 - ▶ Roughly speaking, A does two things to \vec{x} :
 - Rotation/Flipping
 - Dilation (stretching/contraction)

Ch 2: Lec 1

Outline

Usages

Importance

Kev problems Three ways of looking Colhert on

Equations

The Matrix Picture

Key idea in linear algebra:

- Decomposition or factorization of matrices.
- Matrices can often be written as products or sums of simpler matrices
- $ightharpoonup A = LU, A = QR, A = U\Sigma V^{T}, A = \sum_{i} \lambda_{i} \vec{v} \vec{v}^{T}, \dots$

Importance Usages Key problems

Ch 2: Lec 1

Three ways of looking Colhert on

Equations References

Ch. 2: Lec. 1 The truth about mathematics Outline Importance Usages Key problems Three ways of looking... Colbert on Equation The Colbert Report on Math (⊞) (February 7, 2006) References

References I

[1] G. Strang.

The fundamental theorem of linear algebra.

The American Mathematical Monthly, 100(9):848-855, 1993. pdf (⊞)

[2] G. Strang.

Too much calculus, 2002.

SIAM Linear Algebra Activity Group Newsletter.

pdf (⊞)

Ch 2: Lec 1

Outline

Importance

Usages

Key problems

Three ways of lookina...

Colbert on Equations

