
Optimal supply & Structure detection Complex Networks, SFI Summer School, June, 2010

 $\label{eq:licensed} \mbox{Licensed under the $Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.}$

Optimal supply networks

What's the best way to distribute stuff?

- Stuff = medical services, energy, nutrients, people, ...
- Some fundamental network problems:
 - 1. Distribut e stuff from single source to many sinks
 - 2. Collect stuff coming from many sources at a single sink
 - 3. Distribute stuff from many sources to many sinks
 - 4. Redistribute stuff between many nodes
- Q: How do optimal solutions scale with system size?

Outline

Optimal supply &

Structure detection

Single Source

Distributed

Frame 1/78

B 990

Optimal supply &

Structure detection

Single Source

Distributed

Sources

Detection

Frame 3/78

÷,

Single Source

Distributed Sources

Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Single source optimal supply

Basic Q for distribution/supply networks:

How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

where l_j = current on link jand Z_j = link j's impedance?

• Example: $\gamma = 2$ for electrical networks.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivati Global redistribution networks

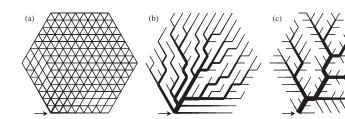
Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Li

-inal words

References

Frame 2/78 *მ*ックへへ

Optimal supply & Structure detection

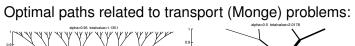

Single Source

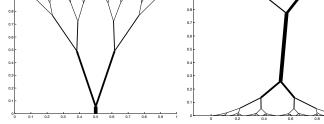
Distributed Sources Facility location Size-density law A reasonable derivat Global redistribution

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lii

General structure det

Single source optimal supply




(a) $\gamma > 1$: Braided (bulk) flow (b) $\gamma < 1$: Local minimum: Branching flow (c) $\gamma < 1$: Global minimum: Branching flow

From Bohn and Magnasco^[3] See also Banavar et al.^[1]

Single source optimal supply

Xia (2003)^[24]

Optimal supply &

Structure detection

Single Source

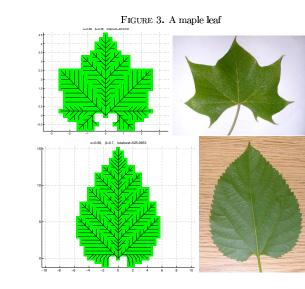
Distributed

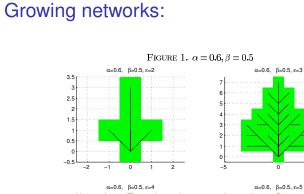
Frame 6/78 **日** りへで

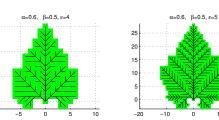
Optimal supply & Structure detection

Single Source

Distributed Sources


Detection


Single Source Distributed


Optimal supply &

Structure detection

Growing networks:

Xia (2007)^[23]

-10

10 20 Frame 7/78

日 りへで

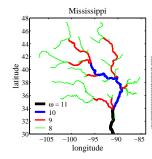
Single source optimal supply

An immensely controversial issue...

The form of river networks and blood networks: optimal or not?^[22, 2, 7]

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

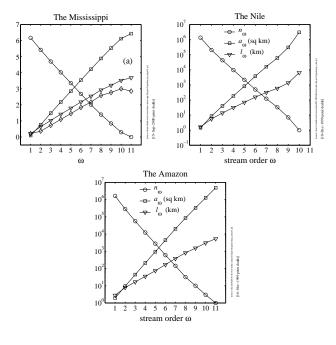


Stream Ordering:

- Label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 (ω + 1).
- ► Simple rule:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.


Optimal supply 8

Structure detection

Single Source

Distributed

Horton's laws in the real world:

Many scaling laws, many connections

relation:	scaling relation/parameter: [6]
$\ell \sim L^d$	d
$T_k = T_1 (R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1}=R_n$	R _n
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	$R_a = \frac{R_n}{R_n}$
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=oldsymbol{R}_\ell$	${m R}_\ell = {m R}_{m s}$
$\ell \sim \pmb{a^h}$	$h = \log \frac{R_s}{\log R_n}$
$a\sim L^D$	D = d/h
$L_\perp \sim L^H$	H = d/h - 1
${\it P}({\it a}) \sim {\it a}^{- au}$	au = 2 - h
${\it P}(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^eta$	$\beta = 1 + h$
$\lambda \sim L^{arphi}$	$arphi = oldsymbol{d}$

Only 3 parameters are independent...^[6]

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivati Global redistribution

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lin General etructure deterbit

Final words

References

Reported parameter values: [6]

Parameter:	Real networks:
R_n	3.0–5.0
R _a	3.0-6.0
$R_\ell = R_T$	1.5–3.0
T_1	1.0–1.5
d	1.1 ± 0.01
D	$\textbf{1.8}\pm\textbf{0.1}$
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
Н	0.75–0.80
β	0.50-0.70
φ	1.05 ± 0.05

Single Source						
Distributed Sources						
Facility location						
Size-density law A reasonable derivation						
Global redistribution						
networks						
Structure Detection						
Hierarchy by division						
Hierarchy by shuffling						
Spectral methods						
General structure detection						
Final words						
References						
Frame 13/78						
- 🗗 - পৎ ৎ						

Optimal supply & Structure detection

Single Source

Distributed

Sources

Detection

Frame 15/78

a 900

Optimal supply &

Structure det

Data from real blood networks

Network	R _n	R_{r}^{-1}	R_ℓ^{-1}	$-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_{\ell}}{\ln R_n}$	α
					_	
West <i>et al.</i>	_	—	—	0.5	0.33	0.75
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
cat (PAT)	3.67	1.71	1.78	0.41	0.44	0.79
(Turcotte <i>et al.</i> ^[21])						
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivativ Global redistribution networks

Detection Hierarchy by division Hierarchy by shuffling Spectral methods

-inal words

leferences

Animal power

Fundamental biological and ecological constraint:

 $P = c M^{\alpha}$

- P = basal metabolic rate
- M = organismal body mass

History

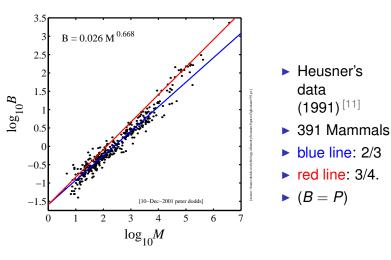
1964: Troon, Scotland: 3rd symposium on energy metabolism. $\alpha = 3/4$ made official . . .

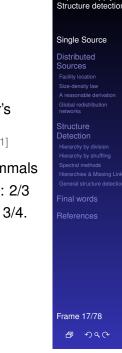
Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivatio Global redistribution

....29 to zip.


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Li


General structure dete

References

Frame 16/78

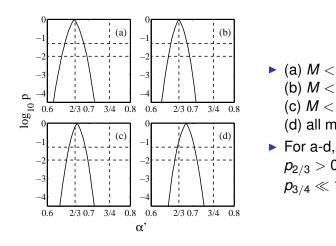
Some data on metabolic rates

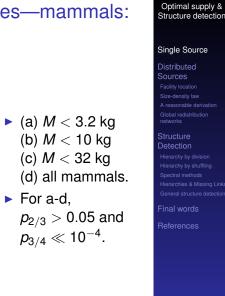
Optimal supply &

Some regressions from the ground up...

range of M	N	\hat{lpha}
\leq 0.1 kg	167	0.678 ± 0.038
, i i i i i i i i i i i i i i i i i i i		
\leq 1 kg	276	0.662 ± 0.032
\leq 10 kg	357	$\textbf{0.668} \pm \textbf{0.019}$
\leq 25 kg	366	$\textbf{0.669} \pm \textbf{0.018}$
\leq 35 kg	371	0.675 ± 0.018
_		
\leq 350 kg	389	0.706 ± 0.016
\leq 3670 kg	391	0.710 ± 0.021

Optimal supply & Structure detectio

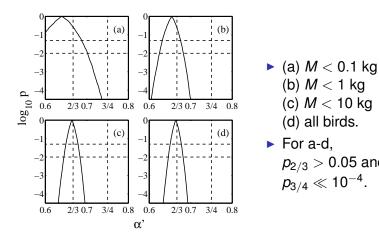

Single Source


Distributed

Detection

Frame 18/78 **日** りへで

Analysis of residuals—p-values—mammals:



Frame 19/78

日 りへで

Analysis of residuals—p-values—birds:

Optimal supply 8 Structure detection

Single Source

Distributed Sources

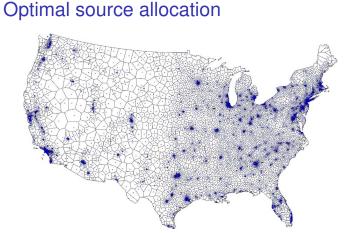
Detection

(b) M < 1 kg

(c) M < 10 kg

 $p_{2/3} > 0.05$ and

 $p_{3/4} \ll 10^{-4}$.


(d) all birds.

Frame 20/78

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we do?

Gastner and Newman (2006)^[8]

- Approximately optimal location of 5000 facilities.
- Based on 2000 Census data.
- Simulated annealing + Voronoi tessellation.

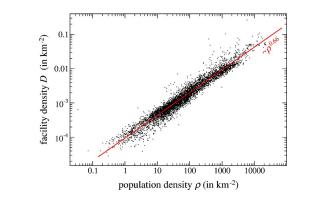
Frame 22/78

Optimal source allocation

Solidifying the basic problem

- Given a region with some population distribution *ρ*, most likely uneven.
- Given resources to build and maintain *N* facilities.
- Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?
- Problem of interested and studied by geographers, sociologists, computer scientists, mathematicians, ...
- See work by Stephan^[19, 20] and by Gastner and Newman (2006)^[8] and work cited by them.

Frame 23/78 日 りへへ


Optimal supply & Structure detection

From

Frame 24/78

Optimal source allocation

From Gastner and Newman (2006)^[8]

- Optimal facility density D vs. population density ρ.
- Fit is $D \propto \rho^{0.66}$ with $r^2 = 0.94$.
- Looking good for a 2/3 power...

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivat Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lii General structure detecti

Final words

References

Frame 25/78

Optimal supply & Structure detectio

Single Source

Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Distributed

Optimal source allocation

Size-density law:

 $D \propto
ho^{2/3}$

In d dimensions:

 $D \propto
ho^{d/(d+1)}$

- ► Why?
- Very different story to branching networks where there is either one source or one sink.
- Now sources & sinks are distributed throughout region...

Optimal source allocation

- One treatment due to Stephan's (1977)^[19, 20]: "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- > Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer principle.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networke

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link

Optimal supply 8

Structure detection

Single Source Distributed

Facility location Size-density law A reasonable derivation Global redistribution

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Li General structure detect

Final words

Frame 31/78

🗗 ୬୯୯

Size-density law

Deriving the optimal source distribution:

- Stronger result obtained by Gusein-Zade (1982).^[10]
- Basic idea: Minimize the average distance from a random individual to the nearest facility.
- Assume given a fixed population density *ρ* defined on a spatial region Ω.
- Formally, we want to find the locations of *n* sources $\{\vec{x}_1, \ldots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \min_i ||\vec{x}-\vec{x}_i|| \mathrm{d}\vec{x}.$$

- Also known as the p-median problem.
- ▶ Not easy... in fact this one is an NP-hard problem. [8]

Size-density law

Can (roughly) turn into a Lagrange multiplier story:

• By varying $\{\vec{x}_1, ..., \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

- Involves estimating typical distance from x to the nearest source (say i) as c_iA(x)^{1/2} where c_i is a shape factor for the *i*th Voronoi cell.
- Sneakiness: set $c_i = c$.
- ► Compute $\delta G/\delta A$, the <u>functional derivative</u> (\boxplus).
- Solve and substitute D = 1/A, we find

$$D(\vec{x}) = \left(\frac{c}{2\lambda}\rho\right)^{2/3}.$$

Single Source
Distributed
Sources
Facility location
Size-density law
A reasonable derivation
Global redistribution
networks
Structure
Detection
Hierarchy by division
Hierarchy by shuffling

Optimal supply &

Structure detection

chies & Missing Lir ral structure detecti I words rences

Frame 30/78

P

Global redistribution networks

One more thing:

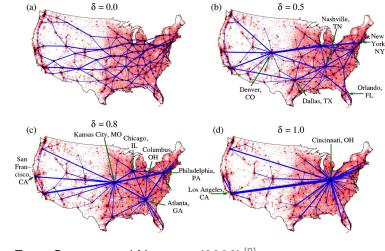
- How do we supply these facilities?
- How do we best redistribute mail? People?
- ▶ How do we get beer to the pubs?
- Gaster and Newman model: cost is a function of basic maintenance and travel time:

$$C_{\text{maint}} + \gamma C_{\text{travel}}$$

Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance ℓ_{ii} and number of legs to journey:

$$(\mathsf{1}-\delta)\ell_{ij}+\delta(\#\mathsf{hops})$$

The issue:

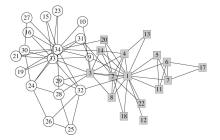

• When $\delta = 1$, only number of hops matters.

Optimal supply &

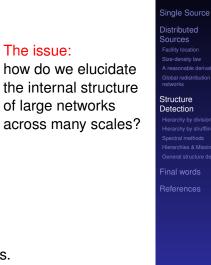
Structure detection

Global redistribution networks

From Gastner and Newman (2006)^[8]


Optimal supply 8 Structure detecti

Single Source


Distributed Sources

Frame 34/78 B 990

Structure detection

- ▲ Zachary's karate club^[25, 16]
 - Possible substructures: hierarchies, cliques, rings, ...
 - Plus:
 - All combinations of substructures.
 - Much focus on hierarchies...

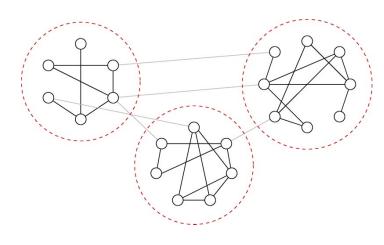
Frame 35/78

Hierarchy by division

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- Following comes from "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).^[16]
- See also
 - 1. "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, **2001**), ^[14, 15]
 - 2. "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). [9]

Optimal supply 8 Structure detection


Single Source

Distributed

Detection lierarchy by divisio

Frame 37/78

Hierarchy by division

Structure detection
Single Source
Distributed
Sources
Facility location
Size-density law
A reasonable derivation
Alebal redistribution
networks
Structure
Detection
Hierarchy by shuffing
Spectral methods
Hierarchies & Missing Link
General structure detectio
Final words
References

Frame 38/78

B 990

Optimal supply &

Structure detection

Single Source

Distributed

Sources

Detection

Hierarchy by divisior

Frame 4<u>0/78</u>

P

Optimal supply &

Idea:

Edges that connect communities have higher betweenness than edges within communities.

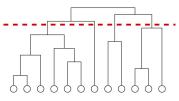
Hierarchy by division

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:


 $Q = \sum_{i} [e_{ii} - (\sum_{i} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1},$

where e_{ij} is the fraction of edges between identified communities *i* and *j*.

Hierarchy by division

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Red line indicates appearance of four (4) components at a certain level.

Hierarchy by division

Test case:

- Generate random community-based networks.
- N = 128 with four communities of size 32.
- Add edges randomly within and across communities.
- Example:

 $\langle k \rangle_{in} = 6$ and $\langle k \rangle_{out} = 2$.

Single Source

Distributed Sources Facility location Size-density law A reasonable derivatio Global redistribution networks

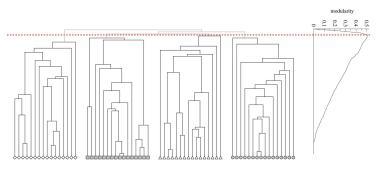
Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lini General structure detection

Final words

References

Frame 41/78

Optimal supply & Structure detection


Single Source Distributed

Facility location Size-density law A reasonable derivation Global redistribution

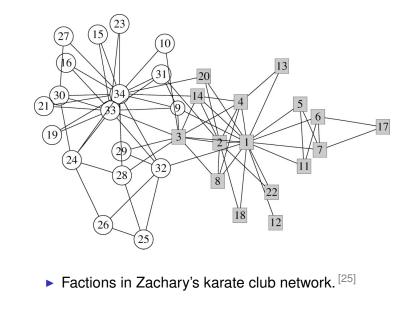
Detection

Hierarchy by divisio

Hierarchy by division

- Maximum modularity Q ~ 0.5 obtained when four communities are uncovered.
- Further 'discovery' of internal structure is somewhat meaningless, as any communities arise accidentally.

Single Source	
Distributed	
Sources	
Facility location	
Size-density law	
A reasonable derivatio	
Global redistribution networks	
Structure	
Detection	
Hierarchy by division	
Hierarchy by shuffling	
Spectral methods	
Hierarchies & Missing	
General structure dete	
Final words	
References	
Frame 42/78	


500

Optimal supply &

Optimal supply &

Structure detection

Hierarchy by division

SOURCES Facility location Size-density law A reasonable derivation

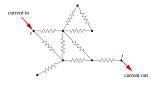
Optimal supply 8

Structure detecti

Single Source

Distributed

networks Structure


Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lini

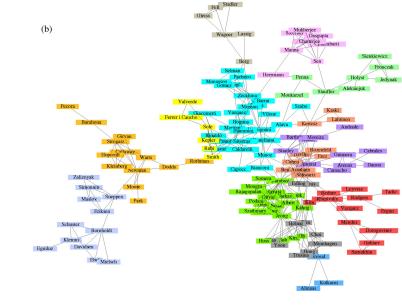
inal words

References

Frame 43/78 *酉* のへへ

Betweenness for electrons:

- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge l, |I_{l,st}|.
- Sum |*I*_{ℓ,st}| over all pairs of nodes to obtain electronic betweenness for edge ℓ.
- (Equivalent to random walk betweenness.)
- Electronic betweenness for edge between nodes i and j:


$$B_{ij}^{\text{elec}} = a_{ij}|V_i - V_j|.$$

 Upshot: specific measure of betweenness not too important. Structure detection Single Source Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks Structure Detection Hierarchy by division Hierarchy by division

Frame 44/78

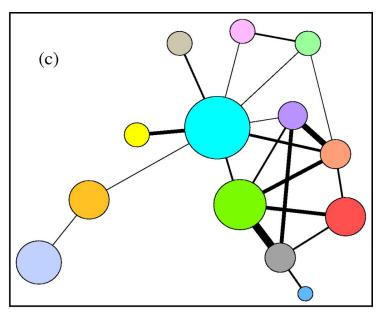
A

Scientists working on networks

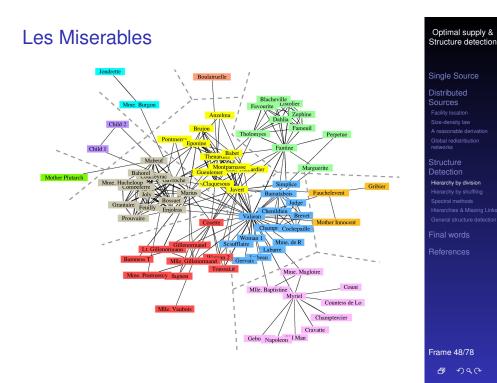
Optimal supply 8 Structure detectio

Single Source

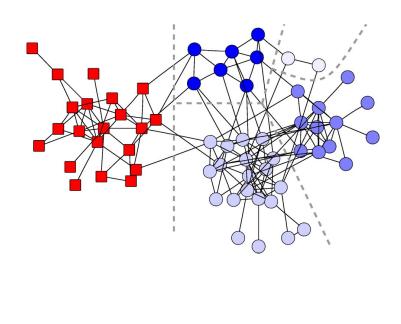
Distributed Sources Facility location Size-density law A reasonable derivatio Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lin General structure detectio

inal words


Refere

Frame 45/78


Scientists working on networks

Dolphins!

Shuffling for structure

 "Extracting the hierarchical organization of complex systems"

Sales-Pardo et al., PNAS (2007) [17, 18]

- Consider all partitions of networks into *m* groups
- As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^2] = \operatorname{Tr} \mathbf{E} - ||\mathbf{E}^2||_1.$$

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link General structure detection

inal words

Optimal supply & Structure detection

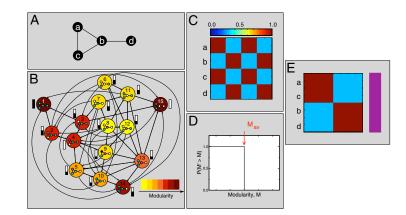
Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link General structure detection

Final words

Frame 50/78


Shuffling for structure

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- Construct an affinity matrix with entries A_{ij}.
- *A_{ij}* = **Pr** random walker on modularity network ends up at a partition with *i* and *j* in the same group.
- C.f. topological overlap between *i* and *j* =
 # matching neighbors for *i* and *j* divided by maximum of *k_i* and *k_j*.

B 990

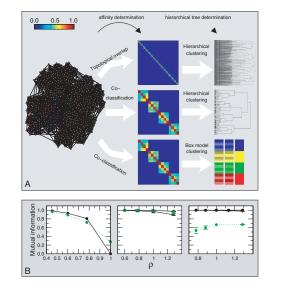
Shuffling for structure

 A: Base network; B: Partition network; C: Coclassification matrix; D: Comparison to random networks (all the same!); E: Ordered coclassification matrix; Conclusion: no structure...

Shuffling for structure

- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$


Use simulated annealing (slow).

Optimal supply & Structure detection

Frame 53/78

P

Shuffling for structure

Optimal supply & Structure detection

Single Source Distributed Sources Facility location Size-density law

A reasonable derivation Global redistribution networks Structure

Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link General structure detection

hierarchy.

► N = 640.

3 tiered

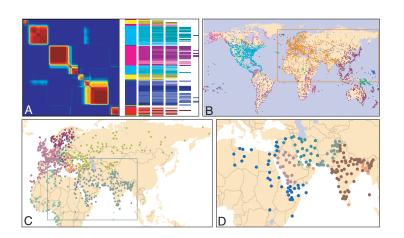
 $\langle k \rangle = 16.$

Optimal supply & Structure detectio

Single Source

Distributed

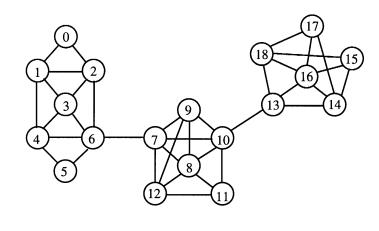
Sources


tructure

Detection

Hierarchy by shufflir

Frame 54/78


Air transportation:

Modules found match up with geopolitical units.

General structure detection

Example network:

Optimal supply & Structure detection Single Source Distributed Sources Facility location Size density law A reasonable derivation Global redistribution networks Structure Detection Hierarchy by shuffing Spectra methods Hierarches & Missing Links General structure detection Final words References

Optimal supply &

Structure detection

Single Source

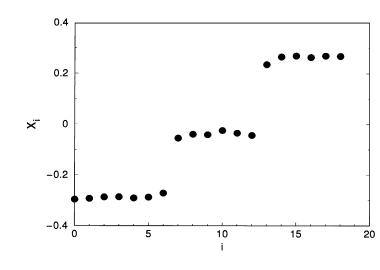
Hierarchy by shuffling

Frame 55/78

日 りへで

Distributed

General structure detection


- "Detecting communities in large networks" Capocci et al. (2005)^[4]
- Consider normal matrix $\mathbf{K}^{-1}A$, random walk matrix $A^{\mathrm{T}}\mathbf{K}^{-1}$, Laplacian $\mathbf{K} \mathbf{A}$, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm.^[13]

nal words eferences

Frame 57/78 日 のへへ

General structure detection

Second eigenvector's components:

Optimal supply & Structure detection

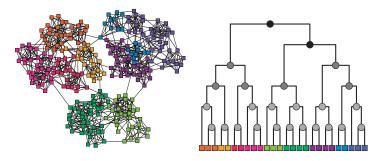
Single Source

Distributed Sources Facility location Size-density law A reasonable derivati Global redistribution networks

Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lin General structure detection

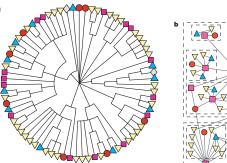
. *.*

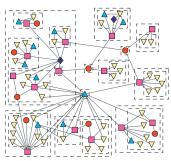
Optimal supply & Structure detection


Single Source

Distributed

୍ କ ୬୯୯


Hierarchies and missing links


Clauset et al., Nature (2008)^[5]

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

Hierarchies and missing links

- Consensus dendogram for grassland species.
- Copes with disassortative and assortative communities.

	2.	clu
	3.	and
	- 1	_

Optimal supply &

Structure detection

Single Source

Hierarchies & Missing Link

Frame 61/78

B 990

Optimal supply &

Structure detection

Single Source

Distributed

Sources

Detection

Hierarchies & Missing Link

Frame 63/78

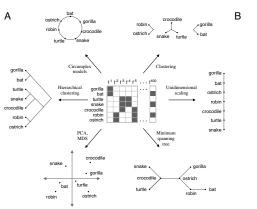
P

Distributed

Hierarchies and missing links

- Model also predicts reasonably well
 - 1. average degree,
 - 2. clustering,
 - 3. and average shortest path length.

Table 1 | Comparison of original and resampled networks


Network	$\langle k \rangle_{\rm real}$	$\langle k \rangle_{\rm samp}$	C _{real}	C _{samp}	$d_{\rm real}$	d _{samp}
<i>T. pallidum</i> Terrorists	4.8 4.9	3.7(1) 5.1(2)	0.0625 0.361	0.0444(2) 0.352(1)	3.690 2.575	3.940(6) 2.794(7)
Grassland	3.0	2.9(1)	0.174	0.168(1)	3.29	3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by resampling from our hierarchical model. The generated networks closely match the average degree $\langle k \rangle$, clustering coefficient *C* and average vertex-vertex distance *d* in each case, suggesting that they capture much of the structure of the real networks. Parenthetical values indicate standard errors on the final digits.

General structure detection

 "The discovery of structural form" Kemp and Tenenbaum, PNAS (2008)^[12]

Single Source

Distributed Sources Facility location Size-density law A reasonable derivat Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link General structure detection

Final words

Referen

Tree

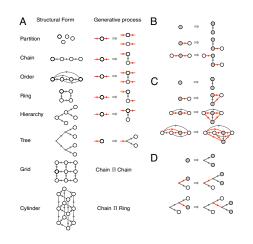
bat turtle

snake

robin

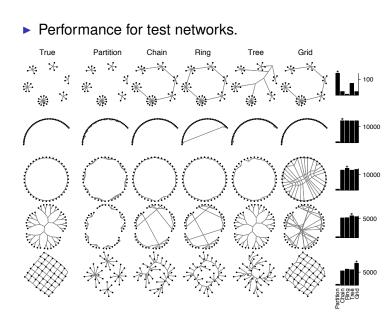
Frame 65/78

Optimal supply & Structure detection


Single Source Distributed

acility location ize-density law reasonable derivatio ilobal redistribution

Hierarchies & Missing Lin


Detection

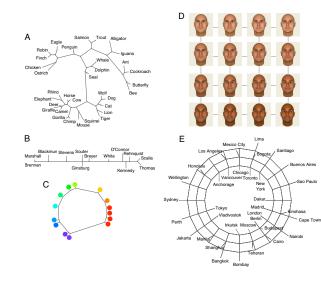
General structure detection

- Top down description of form.
 - Node replacement graph grammar: parent node becomes two child nodes.
- B-D: Growing chains, orders, and trees.

General structure detection

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lir General structure detecti

illai wulus

Frame 67/78 日 のへへ

Example learned structures:

 Biological features; Supreme Court votes; perceived color differences; face differences; & distances between cities.

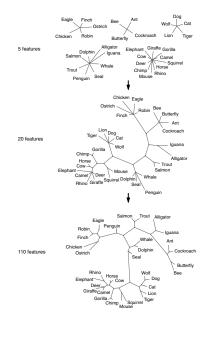
Optimal supply &

Structure detection

Single Source

Distributed

Detection


General structure detectior

Frame 66/78

Optimal supply &

Structure detection

General structure detection

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link General structure detection

simple tree ↓

 Effect of adding features on detected form.

Straight partition ↓

complex tree

Frame 69/78

Final words:

Science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

A plea/warning

Beware your assumptions-don't use tools/models because they're there, or because everyone else does...

References I

- [1] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo. Topology of the fittest transportation network. *Phys. Rev. Lett.*, 84:4745–4748, 2000. pdf (⊞)
- [2] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. Nature, 399:130–132, 1999. pdf (⊞)
- [3] S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network.

Phys. Rev. Lett., 98:088702, 2007. pdf (⊞)

Optimal supply & Structure detection

More final words:

A real theory of everything:

- 1. Is not just about the small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ vs. Accidents of history

Universality

How probable is a certain level of complexity?

Frame 71/78 **日** りへで

References II

[4] A. Capocci, V. Servedio, G. Caldarelli, and F. Colaiori. Detecting communities in large networks. Physica A: Statistical Mechanics and its Applications, 352:669–676, 2005. pdf (⊞) [5] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks. *Nature*, 453:98–101, 2008. pdf (⊞)

[6] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. *Physical Review E*, 59(5):4865–4877, 1999. pdf (⊞)

Optimal supply 8 Structure detection

Single Source

Distributed Sources

Detection

References

Frame 73/78

Single Source Distributed Sources

Single Source

Distributed

A reasonable de

Final words

Frame 70/78

B 990

Optimal supply &

Structure detection

Detection References

Frame 72/78

P

Single Source Distributed

Detection

Final words

Optimal supply &

Structure detection

References III

- [7] P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and deviations. *Physical Review E*, 63(1):016115, 2001. pdf (⊞)
- [8] M. T. Gastner and M. E. J. Newman. Optimal design of spatial distribution networks. *Phys. Rev. E*, 74:016117, 2006. pdf (⊞)
- [9] M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
 Proc. Natl. Acad. Sci., 99:7821–7826, 2002, p.

Proc. Natl. Acad. Sci., 99:7821–7826, 2002. <u>pdf</u> (⊞)

[10] S. M. Gusein-Zade.

Bunge's problem in central place theory and its generalizations. *Geogr. Anal.*, 14:246–252, 1982.

References V

[15] M. E. J. Newman.

Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality [Phys. Rev. E 64, 016132 (2001)]. *Phys. Rev. E*, 73:039906(E), 2006. pdf (\boxplus)

[16] M. E. J. Newman and M. Girvan.

Finding and evaluating community structure in networks.

Phys. Rev. E, 69(2):026113, 2004. pdf (⊞)

[17] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral.

Extracting the hierarchical organization of complex systems.

Proc. Natl. Acad. Sci., 104:15224–15229, 2007. pdf (⊞)

Single Source Distributed Sources Facily location Size-density law A reasonable derivation Global redistribution networks Structure Detection Hierarchy by division Hierarchy by division Hierarchy by shuffling Spectral methods Hierarches & Missing L General structure detect Final words References

Frame 74/78

B 990

Optimal supply &

Structure detection

Single Source

Distributed

Sources

Detection

References

Frame 7<u>6/7</u>8

P

Optimal supply &

Structure detection

References IV

[11] A. A. Heusner.

Size and power in mammals. Journal of Experimental Biology, 160:25–54, 1991.

[12] C. Kemp and J. B. Tenenbaum. The discovery of structural form. *Proc. Natl. Acad. Sci.*, 105:10687–10692, 2008. pdf (⊞)

13] J. M. Kleinberg.

Authoritative sources in a hyperlinked environment. *Proc. 9th ACM-SIAM Symposium on Discrete Algorithms*, 1998. pdf (⊞)

[14] M. E. J. Newman.

Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. *Phys. Rev. E*, 64(1):016132, 2001. pdf (\boxplus)

Distributed Sources Facility location Size-density law A reasonable derivatic Global redistribution

Optimal supply &

Structure detection

Single Source

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lir General structure detecti

References

Frame 75/78 *団* つくへ

References VI

[18] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral. Extracting the hierarchical organization of complex systems: Correction. Proc. Natl. Acad. Sci., 104:18874, 2007. pdf (⊞) [19] G. E. Stephan. Territorial division: The least-time constraint behind the formation of subnational boundaries. Science, 196:523–524, 1977. pdf (⊞) [20] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf (⊞) [21] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577-592, 1998.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivatio Global redistribution

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Lir General structure detection

<u>Re</u>ferences

Frame 77/78 日 のへへ

References VII

[22] G. B. West, J. H. Brown, and B. J. Enquist.

A general model for the origin of allometric scaling laws in biology. *Science*, 276:122–126, 1997. pdf (⊞)

[23] Q. Xia. The formation of a tree leaf. Submitted. pdf (\boxplus)

[24] Q. Xia.

Optimal paths related to transport problems. Communications in Contemporary Mathematics, 5:251-279, 2003. pdf (\boxplus)

[25] W. W. Zachary.

An information flow model for conflict and fission in small groups.

J. Anthropol. Res., 33:452–473, 1977.

Optimal supply & Structure detection Single Source Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks Structure Detection Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection Final words References

日 りへで