Optimal supply & Structure detection Complex Networks, SFI Summer School, June, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 1/78 日 つへへ

Outline

Single Source

Distributed Sources

Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 2/78

Optimal supply networks

What's the best way to distribute stuff?

- Stuff = medical services, energy, nutrients, people, ...
- Some fundamental network problems:
 - 1. Distribut e stuff from single source to many sinks
 - Collect stuff coming from many sources at a single sink
 - 3. Distribute stuff from many sources to many sinks
 - 4. Redistribute stuff between many nodes
- Q: How do optimal solutions scale with system size?

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

-inal words

References

Basic Q for distribution/supply networks:

How does flow behave given cost:

$$C = \sum_{j} I_{j}^{\gamma} Z_{j}$$

where

 $l_j = \text{current on link } j$

and

 $Z_j = \text{link } j$'s impedance?

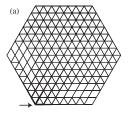
• Example: $\gamma = 2$ for electrical networks.

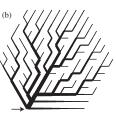
Optimal supply & Structure detection

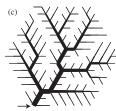
Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection


Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection


-inal words


References

Frame 4/78

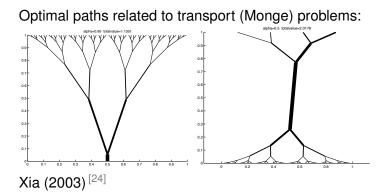
୬ବ୍ଦ

(a) γ > 1: Braided (bulk) flow
(b) γ < 1: Local minimum: Branching flow
(c) γ < 1: Global minimum: Branching flow

From Bohn and Magnasco^[3] See also Banavar et al.^[1]

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links Conserol extructure detection

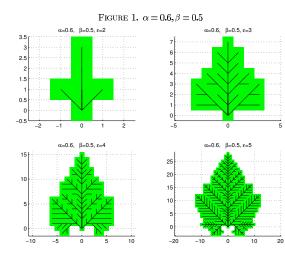
Final words

References

Frame 5/78

Optimal supply & Structure detection

Single Source


Distributed Sources

Structure Detection

Frame 6/78 P

Sac.

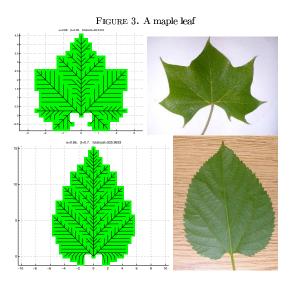
Growing networks:

Xia (2007)^[23]

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 7/78

Growing networks:

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 8/78 団 りへへ

Xia (2007)^[23]

An immensely controversial issue...

The form of river networks and blood networks: optimal or not?^[22, 2, 7]

Two observations:

- Self-similar networks appear everywhere in nature for single source supply/single sink collection.
- Real networks differ in details of scaling but reasonably agree in scaling relations.

Optimal supply & Structure detection

Single Source

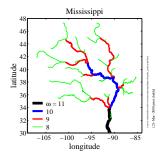
Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure

Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References


Frame 9/78

Stream Ordering:

- Label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 (ω + 1).
- Simple rule:

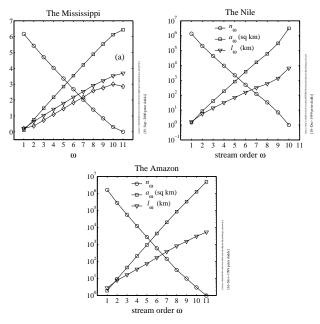
$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

Horton's laws in the real world:

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁼inal words

References

Frame 11/78 日 のへへ

Many scaling laws, many connections

scaling relation/parameter: [6]
d
$T_1 = R_n - R_s - 2 + 2R_s/R_n$
$R_T = R_s$
R _n
$R_a = R_n$
${\it R}_\ell = {\it R}_s$
$h = \log \frac{R_s}{\log R_n}$
D = d/h
H = d/h - 1
$ au = 2 - \mathbf{h}$
$\gamma = 1/h$
$\beta = 1 + h$
$arphi = {oldsymbol d}$

Only 3 parameters are independent...^[6]

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

-inal words

References

Reported parameter values: [6]

Parameter:	Real networks:
R _n	3.0–5.0
R _a	3.0-6.0
$R_\ell = R_T$	1.5–3.0
T_1	1.0–1.5
d	1.1 ± 0.01
D	1.8 ± 0.1
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
Н	0.75–0.80
β	0.50-0.70
arphi	1.05 ± 0.05

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Data from real blood networks

Network	R _n	R_{r}^{-1}	R_ℓ^{-1}	$-\frac{\ln R_r}{\ln R_n}$	$-\frac{\ln R_{\ell}}{\ln R_{n}}$	α
				0.5	0 0ā	0.75
West <i>et al.</i>	-	-	-	0.5	0.33	0.75
rat (PAT)	2.76	1.58	1.60	0.45	0.46	0.73
,						
cat (PAT)	3.67	1.71	1.78	0.41	0.44	0.79
(Turcotte <i>et al.</i> ^[21])						
dog (PAT)	3.69	1.67	1.52	0.39	0.32	0.90
pig (LCX)	3.57	1.89	2.20	0.50	0.62	0.62
pig (RCA)	3.50	1.81	2.12	0.47	0.60	0.65
pig (LAD)	3.51	1.84	2.02	0.49	0.56	0.65
human (PAT)	3.03	1.60	1.49	0.42	0.36	0.83
human (PAT)	3.36	1.56	1.49	0.37	0.33	0.94

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 14/78 団 のくで

Animal power

Fundamental biological and ecological constraint:

 $P = c M^{\alpha}$

- P = basal metabolic rate
- M =organismal body mass

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

History

1964: Troon, Scotland: 3rd symposium on energy metabolism. $\alpha = 3/4$ made official . . .

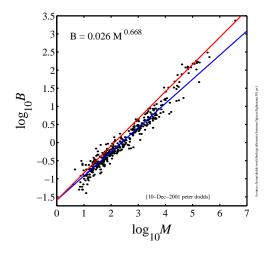
....29 to zip.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection


Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 16/78

Some data on metabolic rates

- Heusner's data (1991)^[11]
- 391 Mammals
- ▶ blue line: 2/3
- ▶ red line: 3/4.
- ► (*B* = *P*)

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁻inal words

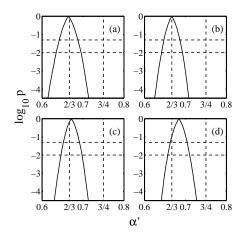
References

Some regressions from the ground up...

range of <i>M</i>	N	\hat{lpha}
\leq 0.1 kg	167	0.678 ± 0.038
\leq 1 kg	276	0.662 ± 0.032
\leq 10 kg	357	0.668 ± 0.019
\leq 25 kg	366	0.669 ± 0.018
\leq 35 kg	371	0.675 ± 0.018
		0.700 0.000
\leq 350 kg	389	0.706 ± 0.016
	001	0.710 0.001
\leq 3670 kg	391	0.710 ± 0.021

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

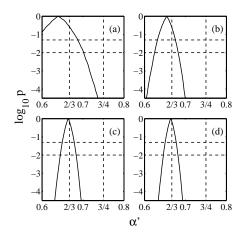
References

Analysis of residuals—p-values—mammals:

- (a) M < 3.2 kg
 (b) M < 10 kg
 (c) M < 32 kg
 (d) all mammals.

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Analysis of residuals—p-values—birds:

- (a) M < 0.1 kg
 (b) M < 1 kg
 (c) M < 10 kg
 (d) all birds.
- ► For a-d, $p_{2/3} > 0.05$ and $p_{3/4} \ll 10^{-4}$.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁻inal words

References

Frame 20/78

Many sources, many sinks

How do we distribute sources?

- Focus on 2-d (results generalize to higher dimensions)
- Sources = hospitals, post offices, pubs, ...
- Key problem: How do we cope with uneven population densities?
- Obvious: if density is uniform then sources are best distributed uniformly.
- Which lattice is optimal? The hexagonal lattice Q1: How big should the hexagons be?
- Q2: Given population density is uneven, what do we do?

Optimal supply & Structure detection

Single Source

Distributed Sources

Facility location Size-density law A reasonable derivation Global redistribution patworks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

Solidifying the basic problem

- Given a region with some population distribution ρ, most likely uneven.
- Given resources to build and maintain N facilities.
- Q: How do we locate these N facilities so as to minimize the average distance between an individual's residence and the nearest facility?
- Problem of interested and studied by geographers, sociologists, computer scientists, mathematicians, ...
- See work by Stephan^[19, 20] and by Gastner and Newman (2006)^[8] and work cited by them.

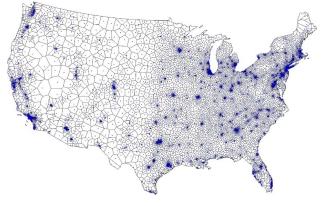
Optimal supply & Structure detection

Single Source

Distributed Sources

Facility location Size-density law

A reasonable derivation Global redistribution networks


Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁻inal words

References

Frame 23/78 日 のへへ

Gastner and Newman (2006)^[8]

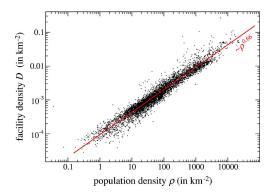
- Approximately optimal location of 5000 facilities.
- Based on 2000 Census data.
- Simulated annealing + Voronoi tessellation.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location

Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links Congregal Structure detection

Final words

References

From

Frame 24/78 日 のへへ

From Gastner and Newman (2006)^[8]

- Optimal facility density D vs. population density ρ.
- Fit is $D \propto \rho^{0.66}$ with $r^2 = 0.94$.
- Looking good for a 2/3 power...

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Size-density law:

► In *d* dimensions:

- Why?
- Very different story to branching networks where there is either one source or one sink.
- Now sources & sinks are distributed throughout region...

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

-inal words

References

- One treatment due to Stephan's (1977)^[19, 20]: "Territorial Division: The Least-Time Constraint Behind the Formation of Subnational Boundaries" (Science, 1977)
- Zipf-like approach: invokes principle of minimal effort.
- Also known as the Homer principle.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

Frame 28/78

Size-density law

Deriving the optimal source distribution:

- Stronger result obtained by Gusein-Zade (1982).^[10]
- Basic idea: Minimize the average distance from a random individual to the nearest facility.
- Assume given a fixed population density ρ defined on a spatial region Ω.
- Formally, we want to find the locations of *n* sources $\{\vec{x}_1, \dots, \vec{x}_n\}$ that minimizes the cost function

$$F(\{\vec{x}_1,\ldots,\vec{x}_n\}) = \int_{\Omega} \rho(\vec{x}) \min_i ||\vec{x}-\vec{x}_i|| \mathrm{d}\vec{x}.$$

- Also known as the p-median problem.
- Not easy... in fact this one is an NP-hard problem.^[8]

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

Size-density law

Can (roughly) turn into a Lagrange multiplier story:

• By varying $\{\vec{x}_1, ..., \vec{x}_n\}$, minimize

$$G(A) = c \int_{\Omega} \rho(\vec{x}) A(\vec{x})^{1/2} \mathrm{d}\vec{x} - \lambda \left(n - \int_{\Omega} \left[A(\vec{x}) \right]^{-1} \mathrm{d}\vec{x} \right)$$

- Involves estimating typical distance from x to the nearest source (say i) as c_iA(x)^{1/2} where c_i is a shape factor for the *i*th Voronoi cell.
- Sneakiness: set $c_i = c$.
- ► Compute $\delta G / \delta A$, the <u>functional derivative</u> (\boxplus).
- Solve and substitute D = 1/A, we find

$$D(\vec{x}) = \left(rac{c}{2\lambda}
ho
ight)^{2/3}$$

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

-inal words

References

Global redistribution networks

One more thing:

- How do we supply these facilities?
- How do we best redistribute mail? People?
- How do we get beer to the pubs?
- Gaster and Newman model: cost is a function of basic maintenance and travel time:

 $C_{\text{maint}} + \gamma C_{\text{travel}}$.

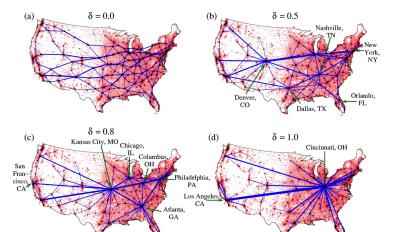
Travel time is more complicated: Take 'distance' between nodes to be a composite of shortest path distance l_{ij} and number of legs to journey:

 $(1 - \delta)\ell_{ij} + \delta(\#hops).$

• When $\delta = 1$, only number of hops matters.

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

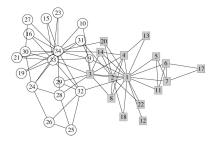
References

Global redistribution networks

From Gastner and Newman (2006)^[8]

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁻inal words

References

Structure detection

▲ Zachary's karate club ^[25, 16]

- Possible substructures: hierarchies, cliques, rings, ...
- Plus:

All combinations of substructures.

Much focus on hierarchies...

The issue:

how do we elucidate the internal structure of large networks across many scales?

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

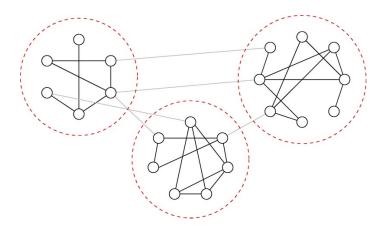
References

Frame 35/78

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- Following comes from "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).^[16]
- See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001).^[14, 15]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). ^[9]

Optimal supply & Structure detection


Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

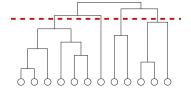
Idea:

Edges that connect communities have higher betweenness than edges within communities.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Red line indicates appearance of four (4) components at a certain level. Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁻inal words

References

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

$$Q = \sum_{i} [\boldsymbol{e}_{ii} - (\sum_{j} \boldsymbol{e}_{ij})^{2}] = \mathrm{Tr} \mathbf{E} - ||\mathbf{E}^{2}||_{1},$$

where e_{ij} is the fraction of edges between identified communities *i* and *j*.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

Test case:

- Generate random community-based networks.
- N = 128 with four communities of size 32.
- Add edges randomly within and across communities.

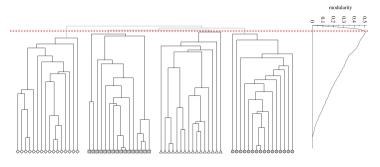
Example:

 $\langle k \rangle_{\rm in} = 6$ and $\langle k \rangle_{\rm out} = 2$.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

Frame 41/78

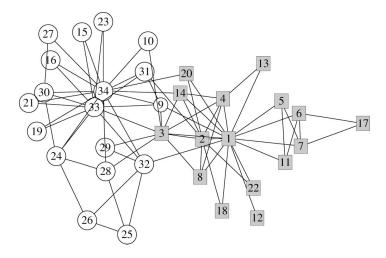
Hierarchy by division

- Maximum modularity Q ~ 0.5 obtained when four communities are uncovered.
- Further 'discovery' of internal structure is somewhat meaningless, as any communities arise accidentally.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

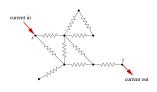
Frame 42/78 日 のへへ

Hierarchy by division

Factions in Zachary's karate club network.^[25]

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁼inal words

References

Betweenness for electrons:

- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge l, |I_{l,st}|.
- Sum |*I*_{ℓ,st}| over all pairs of nodes to obtain electronic betweenness for edge ℓ.
- (Equivalent to random walk betweenness.)
- Electronic betweenness for edge between nodes i and j:

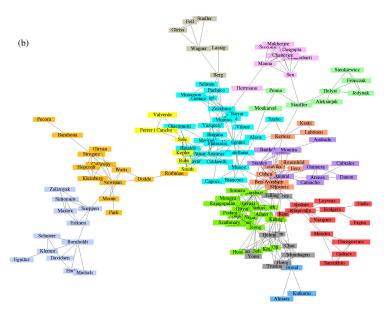
$$B_{ij}^{
m elec} = a_{ij} |V_i - V_j|$$

 Upshot: specific measure of betweenness not too important. Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection


Final words

References

Frame 44/78

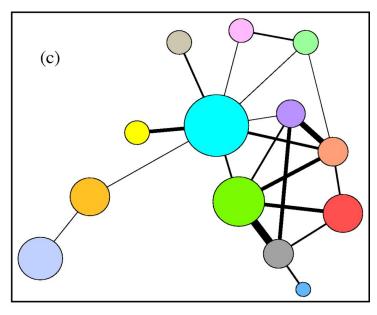
 $\mathcal{A} \mathcal{A} \mathcal{A}$

Scientists working on networks

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

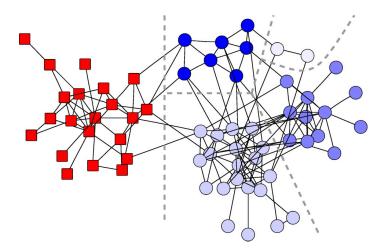
Frame 45/78 団 のへへ

Scientists working on networks

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁻inal words

References

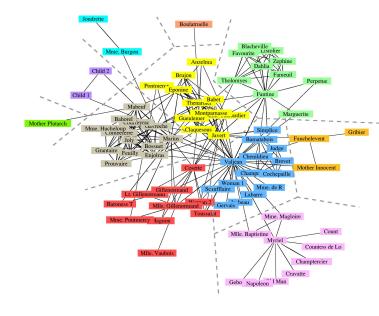
Frame 46/78 日 のへへ

Dolphins!

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links

Final words

References

Frame 47/78

Les Miserables

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

-inal words

References

- "Extracting the hierarchical organization of complex systems"
 Sales-Pardo *et al.*, PNAS (2007)^[17, 18]
- Consider all partitions of networks into m groups
- As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$Q = \sum_{i} [\boldsymbol{e}_{ii} - (\sum_{j} \boldsymbol{e}_{ij})^{2}] = \mathrm{Tr} \mathbf{E} - ||\mathbf{E}^{2}||_{1}.$$

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

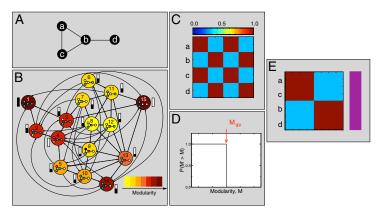
Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- Construct an affinity matrix with entries A_{ij}.
- A_{ij} = Pr random walker on modularity network ends up at a partition with *i* and *j* in the same group.
- C.f. topological overlap between *i* and *j* = # matching neighbors for *i* and *j* divided by maximum of k_i and k_j.

Optimal supply & Structure detection


Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

 A: Base network; B: Partition network; C: Coclassification matrix; D: Comparison to random networks (all the same!); E: Ordered coclassification matrix; Conclusion: no structure...

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

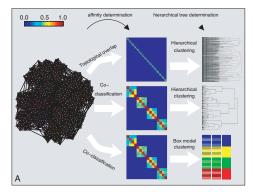
Frame 52/78

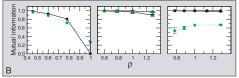
- Method obtains a distribution of classification hierarchies.
- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$

Use simulated annealing (slow).

Optimal supply & Structure detection


Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link General structure detection

⁻inal words

References

Optimal supply & Structure detection

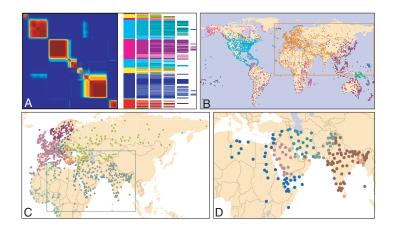
Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References


► *N* = 640,

$$\land \langle k \rangle = 16,$$

 3 tiered hierarchy.

Frame 54/78

Air transportation:

Modules found match up with geopolitical units.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

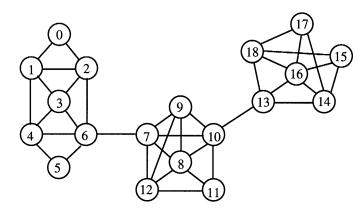
Final words

References

- "Detecting communities in large networks" Capocci et al. (2005)^[4]
- Consider normal matrix $\mathbf{K}^{-1}A$, random walk matrix $A^{\mathrm{T}}\mathbf{K}^{-1}$, Laplacian $\mathbf{K} \mathbf{A}$, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm.^[13]

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

-inal words

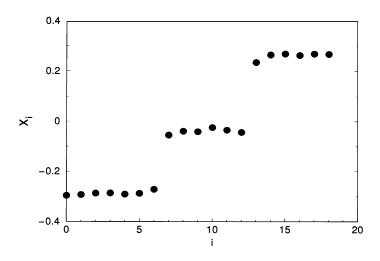
References

Example network:

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁼inal words

References

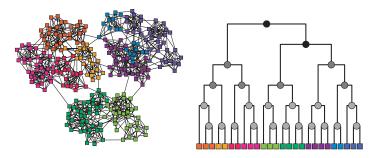
Frame 58/78

Second eigenvector's components:

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

-inal words

References

Frame 59/78

Hierarchies and missing links Clauset *et al.*, Nature (2008)^[5]

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 61/78

SAR

Hierarchies and missing links

Model also predicts reasonably well

- 1. average degree,
- 2. clustering,
- 3. and average shortest path length.

Table 1 | Comparison of original and resampled networks

Network	$\langle k \rangle_{\rm real}$	$\langle k \rangle_{samp}$	C_{real}	C_{samp}	$d_{\rm real}$	d _{samp}
<i>T. pallidum</i> Terrorists	4.8 4.9	3.7(1) 5.1(2)	0.0625 0.361	0.0444(2) 0.352(1)	3.690 2.575	3.940(6) 2.794(7)
Grassland	3.0	2.9(1)	0.174	0.168(1)	3.29	3.69(2)

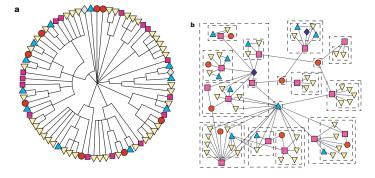
Statistics are shown for the three example networks studied and for new networks generated by resampling from our hierarchical model. The generated networks closely match the average degree $\langle k \rangle$, clustering coefficient C and average vertex-vertex distance *d* in each case, suggesting that they capture much of the structure of the real networks. Parenthetical values indicate standard errors on the final digits.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection


Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 62/78

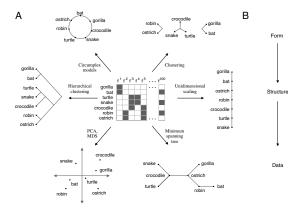
Hierarchies and missing links

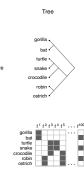
Consensus dendogram for grassland species.

Copes with disassortative and assortative communities.

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

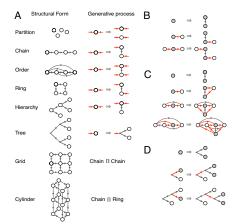

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁻inal words

References

 "The discovery of structural form" Kemp and Tenenbaum, PNAS (2008)^[12]

Optimal supply & Structure detection


Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

- Top down description of form.
- Node replacement graph grammar: parent node becomes two child nodes.
- B-D: Growing chains, orders, and trees.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

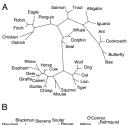
Frame 66/78 日 のへへ

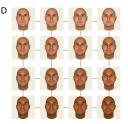
Performance for test networks.

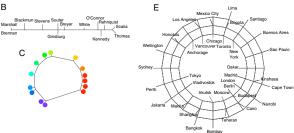
True Partition Chain Rina Tree Grid 100 * * 10000 10000 5000 5000

Optimal supply & Structure detection

Single Source


Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks


Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

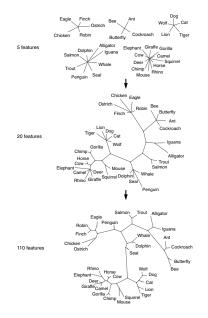

-inal words

References

Example learned structures:

 Biological features; Supreme Court votes; perceived color differences; face differences; & distances between cities.

Optimal supply & Structure detection


Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

 Effect of adding features on detected form.

> Straight partition ↓ simple tree ↓ complex tree

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 69/78

Final words:

Science in three steps:

- 1. Find interesting/meaningful/important phenomena involving spectacular amounts of data.
- 2. Describe what you see.
- 3. Explain it.

A plea/warning Beware your assumptions—don't use tools/models because they're there, or because everyone else does...

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 70/78 日 のへへ

More final words:

A real theory of everything:

- 1. Is not just about the small stuff...
- 2. It's about the increase of complexity

Symmetry breaking/ vs. Universality Accidents of history

How probable is a certain level of complexity?

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 71/78 日 のへへ

References I

 [1] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and A. Rinaldo.
 Topology of the fittest transportation network.
 Phys. Rev. Lett., 84:4745–4748, 2000. pdf (⊞)

- [2] J. R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient transportation networks. *Nature*, 399:130–132, 1999. pdf (H)
- [3] S. Bohn and M. O. Magnasco. Structure, scaling, and phase transition in the optimal transport network.

Phys. Rev. Lett., 98:088702, 2007. pdf (⊞)

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

⁼inal words

References

References II

- [4] A. Capocci, V. Servedio, G. Caldarelli, and F. Colaiori.
 Detecting communities in large networks.
 Physica A: Statistical Mechanics and its Applications, 352:669–676, 2005. pdf (⊞)
- [5] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks.

Nature, 453:98–101, 2008. pdf (⊞)

[6] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. *Physical Review E*, 59(5):4865–4877, 1999. pdf (⊞)

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

References III

[7] P. S. Dodds and D. H. Rothman. Geometry of river networks. I. Scaling, fluctuations, and deviations. *Physical Review E*, 63(1):016115, 2001. pdf (⊞)

[8] M. T. Gastner and M. E. J. Newman. Optimal design of spatial distribution networks. *Phys. Rev. E*, 74:016117, 2006. pdf (⊞)

 [9] M. Girvan and M. E. J. Newman.
 Community structure in social and biological networks.
 Proc. Natl. Acad. Sci., 99:7821–7826, 2002. pdf (⊞)

[10] S. M. Gusein-Zade. Bunge's problem in central place theory and its generalizations. *Geogr. Anal.*, 14:246–252, 1982.

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

Final words

References

Frame 74/78 日 うへへ

References IV

[11] A. A. Heusner. Size and power in mammals. Journal of Experimental Biology, 160:25–54, 1991. [12] C. Kemp and J. B. Tenenbaum. The discovery of structural form.

Proc. Natl. Acad. Sci., 105:10687-10692, 2008. pdf (⊞)

[13] J. M. Kleinberg.

Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf (⊞)

🗎 [14] M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. *Phys. Rev. E*, 64(1):016132, 2001. pdf (⊞)

Optimal supply 8 Structure detection

Single Source

Distributed Sources

Structure Detection

References

Frame 75/78 SQC.

References V

[15] M. E. J. Newman.

Erratum: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality [Phys. Rev. E 64, 016132 (2001)]. *Phys. Rev. E*, 73:039906(E), 2006. pdf (\boxplus)

[16] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. *Phys. Rev. E*, 69(2):026113, 2004. pdf (IIII)

[17] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral. Extracting the hierarchical organization of complex

systems.

Proc. Natl. Acad. Sci., 104:15224–15229, 2007. pdf (⊞)

Optimal supply & Structure detection

Single Source

Distributed Sources Facility location Size-density law A reasonable derivation Global redistribution networks

Structure Detection

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

inal words

References

References VI

[18] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and I A N Amaral

Extracting the hierarchical organization of complex systems: Correction.

Proc. Natl. Acad. Sci., 104:18874, 2007. pdf (⊞)

[19] G. E. Stephan.

Territorial division: The least-time constraint behind the formation of subnational boundaries. Science, 196:523–524, 1977. pdf (⊞)

[20] G. E. Stephan. Territorial subdivision. Social Forces, 63:145–159, 1984. pdf (⊞)

[21] D. L. Turcotte, J. D. Pelletier, and W. I. Newman. Networks with side branching in biology. Journal of Theoretical Biology, 193:577–592, 1998.

Optimal supply & Structure detection

Single Source

Distributed Sources

Structure Detection

References

Frame 77/78 $\neg \land \land \land$

References VII

[22] G. B. West, J. H. Brown, and B. J. Enquist. A general model for the origin of allometric scaling laws in biology.

Science, 276:122–126, 1997. pdf (⊞)

[23] Q. Xia. The formation of a tree leaf. Submitted. pdf (\boxplus)

[24] Q. Xia.

Optimal paths related to transport problems. Communications in Contemporary Mathematics, 5:251–279, 2003. pdf (⊞)

[25] W. W. Zachary.

An information flow model for conflict and fission in small groups.

J. Anthropol. Res., 33:452-473, 1977.

Optimal supply & Structure detection

Single Source

Distributed Sources

Structure

Detection

References

Frame 78/78 $\neg \land \land \land$