Contagion

Complex Networks, SFI Summer School, June, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Outline

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

Superstars Musiclab

References

Frame 2/80

Contagion

Definition:

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...

Two main classes of contagion:

- 1. Infectious diseases
- 2. Social contagion

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

References

Frame 3/80

Contagion

Definition:

- (1) The spreading of a quality or quantity between individuals in a population.
- (2) A disease itself: the plague, a blight, the dreaded lurgi, ...

Two main classes of contagion:

- 1. Infectious diseases: tuberculosis, HIV, ebola, SARS, influenza, ...
- 2. Social contagion:

fashion, word usage, rumors, riots, religion, ...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Superstars

References

Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

winning: it's not for everyone Superstars Musiclab

References

Frame 4/80

SAR

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fr

Winning: it's not for everyone Superstars Musiclab

References

Frame 4/80

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's pot f

Winning: it's not for everyone Superstars Musiclab

References

Frame 4/80

SQC.

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's pot f

Winning: it's not for everyone Superstars Musiclab

References

Frame 4/80

୶ୡଡ଼

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's pot f

Winning: it's not for everyone Superstars Musiclab

References

Frame 4/80

୍୬ବ୍ଦ

Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fi

Winning: it's not for everyone Superstars Musiclab

References

Frame 4/80

୍କର୍ବ୍

Outline

Introduction

Simple Disease Spreading Models Background

Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 5/80

The standard SIR model:

- Three states:
 - S = Susceptible
 - I = Infected
 - R = Recovered

Discrete time example:

► S(t) + I(t) + R(t) = 1

 Presumes random interactions

Transition Probabilities:

 β for being infected given contact with infected *r* for recovery ρ for loss of immunity

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyonce

Superstars Musiclab

References

Frame 6/80 日 のへへ

The standard SIR model:

- Three states:
 - S = Susceptible
 - I = Infected
 - R = Recovered

Discrete time example:

► S(t) + I(t) + R(t) = 1

 Presumes random interactions

Transition Probabilities:

 β for being infected given contact with infected *r* for recovery ρ for loss of immunity

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

The standard SIR model:

- Three states:
 - S = Susceptible
 - I = Infected
 - R = Recovered

Discrete time example:

- ► S(t) + I(t) + R(t) = 1
- Presumes random interactions

Transition Probabilities:

 β for being infected given contact with infected *r* for recovery ρ for loss of immunity

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

The standard SIR model:

- Three states:
 - S = Susceptible
 - I = Infected
 - R = Recovered

Discrete time example:

- S(t) + I(t) + R(t) = 1
- Presumes random interactions

Transition Probabilities:

 β for being infected given contact with infected *r* for recovery ρ for loss of immunity

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective.
- Epidemic threshold: If R₀ > 1, 'epidemic' occurs.
- Example:

- Continuous phase transition.
- Fine idea from a simple model.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 7/80 日 のへへ

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective.
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.

Example:

- Continuous phase transition.
- Fine idea from a simple model.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Sumerstars

Musiclab

References

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective.
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.
- Example:

- Continuous phase transition.
- Fine idea from a simple model.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Sumerstars

Musiclab

References

Frame 7/80 日 のへへ

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective.
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.
- Example:

- Continuous phase transition.
- Fine idea from a simple model.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Musiclab

References

Frame 7/80 日 のへへ

Reproduction Number R_0 :

- R₀ = expected number of infected individuals resulting from a single initial infective.
- Epidemic threshold: If $R_0 > 1$, 'epidemic' occurs.
- Example:

- Continuous phase transition.
- Fine idea from a simple model.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Musiclab

References

Outline

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 8/80

P

୶ୡ୲ୖ

Disease spreading models

For 'novel' diseases:

- 1. Can we predict the size of an epidemic?
- 2. How important/useful is the reproduction number R_0 ?
- 3. What is the population size N?

Contagion

Introduction

Simple Disease Background Prediction

Models

References

Frame 9/80 P

 $\neg \land \land \land$

R_0 and variation in epidemic sizes

 R_0 approximately the same for all of the following:

- > 1918-19 "Spanish Flu" \sim 500,000 deaths in US
- 1957-58 "Asian Flu" ~ 70,000 deaths in US
- 1968-69 "Hong Kong Flu" ~ 34,000 deaths in US
- 2003 "SARS Epidemic" ~ 800 deaths world-wide

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winnina: it's not fit

vvinning: it's not for everyone Superstars Musiclab

References

Frame 10/80

Elsewhere, event size distributions are important:

- earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- wealth distributions
- 'popularity' (books, music, websites, ideas)
- What about Epidemics?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 11/80

Elsewhere, event size distributions are important:

- earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- wealth distributions
- 'popularity' (books, music, websites, ideas)
- What about Epidemics?

Power laws distributions are common but not obligatory...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for GVCPVCPC

Superstars Musiclab

References

Frame 11/80

Elsewhere, event size distributions are important:

- earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- wealth distributions
- 'popularity' (books, music, websites, ideas)
- What about Epidemics?

Power laws distributions are common but not obligatory...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 11/80

Feeling icky in Iceland

Caseload recorded monthly for range of diseases in Iceland, 1888-1990

Treat outbreaks separated in time as 'novel' diseases.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musidab

References

Frame 12/80

Measles

Insert plots:

Complementary cumulative frequency distributions:

$$N_>(\Psi) \propto \Psi^{-\gamma+1}$$

 Ψ = fractional epidemic size

Measured values of γ :

- measles: 1.40 (low Ψ) and 1.13 (high Ψ)
- Expect $2 \le \gamma < 3$ (finite mean, infinite variance)
- Distribution is rather flat...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

Frame 13/80

Resurgence—example of SARS

- Epidemic discovers new 'pools' of susceptibles: Resurgence.
- Importance of rare, stochastic events.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 14/80

Resurgence—example of SARS

- Epidemic discovers new 'pools' of susceptibles: Resurgence.
- Importance of rare, stochastic events.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

Frame 14/80

A challenge

So... can a simple model produce

- 1. broad epidemic distributions and
- 2. resurgence ?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Frame 15/80

Simple models typically produce bimodal or unimodal size distributions.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

- This includes network models: random, small-world, scale-free, ...
- Some exceptions:
 - 1. Forest fire models
 - 2. Sophisticated metapopulation models

Frame 16/80

Simple models typically produce bimodal or unimodal size distributions.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

References

- This includes network models: random, small-world, scale-free, ...
- Some exceptions:
 - 1. Forest fire models
 - Sophisticated metapopulation models

Frame 16/80

Simple models typically produce bimodal or unimodal size distributions.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Sumersters

Superstars Musiclab

References

- This includes network models: random, small-world, scale-free, ...
- Some exceptions:
 - 1. Forest fire models
 - 2. Sophisticated metapopulation models

Frame 16/80

A toy agent-based model

Geography: allow people to move between contexts:

- P = probability of travel
- Movement distance: $Pr(d) \propto \exp(-d/\xi)$
- ξ = typical travel distance

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Example model output: size distributions

- Flat distributions are possible for certain ξ and *P*.
- Different R₀'s may produce similar distributions
- Same epidemic sizes may arise from different R₀'s

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

Winning: it's not for everyone Superstars Musiclab

References

Frame 18/80 日 のへへ
Standard model:

Standard model with transport: Resurgence

- Disease spread highly sensitive to population structure
- Rare events may matter enormously

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

WINNING: It's not for everyone Superstars Musiclab

References

Frame 19/80 日 のへへ

Simple disease spreading models

Attempts to use beyond disease:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)
- Spread of rumors (Daley & Kendall, 1965)
- Diffusion of innovations (Bass, 1969)
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

everyone Superstars Musiclab

References

Frame 20/80

 $\neg \land \land \land$

Contagion

Introduction

Simple Disease Spreading Models Background

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Examples abound:

- being polite/rude
- strikes
- innovation
- residential segregation
- ipods
- obesity

SIR and SIRS contagion possible

Classes of behavior versus specific behavior

- Harry Potter
- voting
- gossip
- 🕨 Rubik's cube 🕸
- religious beliefs
- leaving lectures

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version

Summar

Winning: it's not for everyone Superstars Musiclab

References

Frame 22/80

Examples abound:

- being polite/rude
- strikes
- innovation
- residential segregation
- ipods
- obesity
- SIR and SIRS contagion possible
 - Classes of behavior versus specific behavior: dieting

- Harry Potter
- voting
- gossip
- 🕨 Rubik's cube 🕸
- religious beliefs
- leaving lectures

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups

Summar

Winning: it's not for everyone Superstars Musiclab

References

Two focuses for us:

- Widespread media influence
- Word-of-mouth influence

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups

Summar

Winning: it's not for everyone Superstars Musiclab

References

Frame 23/80

The hypodermic model of influence:

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} Musiclab

References

Frame 24/80

The two step model of influence:

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} Musiclab

References

The general model of influence:

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 26/80

Why do things spread?

- Because of system level properties?
- Or properties of special individuals?
- Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Why do things spread?

- Because of system level properties?
- Or properties of special individuals?
- Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Why do things spread?

- Because of system level properties?
- Or properties of special individuals?
- Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Why do things spread?

- Because of system level properties?
- Or properties of special individuals?
- Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Why do things spread?

- Because of system level properties?
- Or properties of special individuals?
- Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} Musiclab

References

Why do things spread?

- Because of system level properties?
- Or properties of special individuals?
- Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Why do things spread?

- Because of system level properties?
- Or properties of special individuals?
- Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

"Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon

Not the world's greatest painting from the start..

Escalation through theft, vandalism, parody, ...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

- "Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon
- Not the world's greatest painting from the start...
- Escalation through theft, vandalism, parody, ...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

- "Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon
- Not the world's greatest painting from the start...
- Escalation through theft, vandalism, parody, ...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

- "Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon
- Not the world's greatest painting from the start...
- Escalation through theft, vandalism, parody, ...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model

Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

The completely unpredicted fall of Eastern Europe:

Timur Kuran: "Now Out of Never: The Element of Surprise in the East European Revolution of 1989"

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Some important models:

- Tipping models—Schelling (1971)
 - Simulation on checker boards
 - Idea of thresholds
- Threshold models—Granovetter (1978)
- Herding models—Bikhchandani, Hirschleifer, Welch (1992)
 - Social learning theory, Informational cascades,...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups

Winning: it's not for everyone ^{Superstars} ^{Musiclab}

References

Some important models:

- Tipping models—Schelling (1971)
 - Simulation on checker boards
 - Idea of thresholds
- Threshold models—Granovetter (1978)
- Herding models—Bikhchandani, Hirschleifer, Welch (1992)
 - Social learning theory, Informational cascades,...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

- Granovetter's model Network version Groups
- Minning: it's
- Winning: it's not for everyone Superstars Musiclab

References

Some important models:

- Tipping models—Schelling (1971)
 - Simulation on checker boards
 - Idea of thresholds
- Threshold models—Granovetter (1978)
- Herding models—Bikhchandani, Hirschleifer, Welch (1992)
 - Social learning theory, Informational cascades,...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's mode Network version Groups

Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 30/80

Thresholds:

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- 'Others' may be everyone in a population, an individual's close friends, any reference group
- Response can be probabilistic or deterministic.
- Individual thresholds vary.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups

Winning: it's not for everyone Superstars Musiclab

References

Thresholds:

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- 'Others' may be everyone in a population, an individual's close friends, any reference group.
- Response can be probabilistic or deterministic.
- Individual thresholds vary.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups

Winning: it's not for everyone ^{Superstars} Musiclab

References

Thresholds:

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- 'Others' may be everyone in a population, an individual's close friends, any reference group.
- Response can be probabilistic or deterministic.
- Individual thresholds vary.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Thresholds:

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- 'Others' may be everyone in a population, an individual's close friends, any reference group.
- Response can be probabilistic or deterministic.
- Individual thresholds vary.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups

Winning: it's not for everyone Superstars Musiclab

References

Some possible origins of thresholds:

- Desire to coordinate, to conform.
- Lack of information: impute the worth of a good or behavior based on degree of adoption (social proof)
- Economics: Network effects or network externalities
 - Telephones, Facebook, operating systems, ...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} ^{Musiclab}

References

Frame 32/80

Imitation

despair.com

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

"When people are free to do as they please, they usually imitate each other."

—Eric Hoffer "The Passionate State of Mind"^[11]

Frame 33/80

Outline

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model

Network version Groups Summary

Winning: it's not for everyone

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 34/80

Granovetter's threshold model:

Two states: S and I.

• ϕ = fraction of contacts 'on' (e.g., rioting)

$$\phi_{t+1} = \int_0^{\phi_t} f(\gamma) \mathrm{d}\gamma = F(\gamma)|_0^{\phi_t} = F(\phi_t)$$

This is a Critical Mass model

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Municip

References

Frame 35/80

Social Sciences: Threshold models

Example of single stable state model

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musielab

References

Frame 36/80

Social Sciences—Threshold models

Implications for collective action theory:

- 1. Collective uniformity \Rightarrow individual uniformity
- 2. Small individual changes \Rightarrow large global changes

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovette's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 37/80

Social Sciences—Threshold models

Implications for collective action theory:

- 1. Collective uniformity \Rightarrow individual uniformity
- 2. Small individual changes \Rightarrow large global changes

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 37/80

Outline

Background

Social Contagion Models

Network version

Summary

Musiclab

Contagion

Introduction

Simple Disease Spreading Models

Models Network version

Frame 38/80 Sac

P
Threshold model on a network

- All nodes have threshold $\phi = 0.2$.
- "A simple model of global cascades on random networks"

D. J. Watts. Proc. Natl. Acad. Sci., 2002

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups

Winning: it's not for everyone Superstars Musiclab

References

Frame 39/80

Threshold model on a network

- All nodes have threshold $\phi = 0.2$.
- "A simple model of global cascades on random networks"
 - D. J. Watts. Proc. Natl. Acad. Sci., 2002

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} Musiclab

References

Frame 39/80

Threshold model on a network

- All nodes have threshold $\phi = 0.2$.
- "A simple model of global cascades on random networks"
 - D. J. Watts. Proc. Natl. Acad. Sci., 2002

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} ^{Musiclab}

References

Frame 39/80

Snowballing

The Cascade Condition:

- If one individual is initially activated, what is the probability that an activation will spread over a network?
- What features of a network determine whether a cascade will occur or not?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups

Winning: it's not for everyone ^{Superstars} Musiclab

References

Frame 40/80

୬ବ୍ଦ

Snowballing

The Cascade Condition:

- If one individual is initially activated, what is the probability that an activation will spread over a network?
- What features of a network determine whether a cascade will occur or not?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups

Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 40/80

凸 うくい

Vulnerables:

- Individuals who can be activated by just one 'infected' contact
- For global cascades on random networks, must have a global cluster of vulnerables
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node \rightarrow critical mass \rightarrow everyone.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 41/80

Vulnerables:

- Individuals who can be activated by just one 'infected' contact
- For global cascades on random networks, must have a global cluster of vulnerables
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node \rightarrow critical mass \rightarrow everyone.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 41/80

Vulnerables:

- Individuals who can be activated by just one 'infected' contact
- For global cascades on random networks, must have a global cluster of vulnerables
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node \rightarrow critical mass \rightarrow everyone.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 41/80

Vulnerables:

- Individuals who can be activated by just one 'infected' contact
- For global cascades on random networks, must have a global cluster of vulnerables
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node \rightarrow critical mass \rightarrow everyone.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 41/80

୍ର୍ବ୍ର୍

Cascades on random networks

- Cascades occur only if size of max vulnerable cluster > 0.
- System may be
- 'Ignorance'

Contagion

Introduction

Simple Disease Spreading Models

Models Network version

References

Frame 42/80 $\mathcal{O} \mathcal{O} \mathcal{O}$

P

Cascades on random networks

- Cascades occur only if size of max vulnerable cluster > 0.
- System may be 'robust-yet-fragile'.
- 'Ignorance' facilitates spreading.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 42/80

P

୍ର୍ର୍ତ୍

Cascades on random networks

- Cascades occur only if size of max vulnerable cluster > 0.
- System may be 'robust-yet-fragile'.
- 'lgnorance' facilitates spreading.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 42/80

ゆ う く で

Cascade window for random networks

- 'Cascade window' widens as threshold \u03c6 decreases.
- Lower thresholds enable spreading.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

Winning: it's not for everyone Superstars Musiclab

References

Cascade window for random networks

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 44/80

ð

୍ର୍ର୍ତ୍

Threshold model completely solved (by 2008):

Cascade condition:^[22]

$$\sum_{k=1}^{\infty} k(k-1)\beta_k P_k/z \ge 1.$$

where β_k = probability a degree *k* node is vulnerable.

- ▶ Final size of spread figured out by Gleeson and Calahane^[9, 8].
- Solution involves finding fixed points of an iterative map of the interval.
- Spreading takes off: expansion
- Spreading reaches a particular node: contraction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 45/80 日 のへへ

- Threshold model completely solved (by 2008):
- Cascade condition: ^[22]

$$\sum_{k=1}^{\infty} k(k-1)\beta_k P_k/z \geq 1.$$

where β_k = probability a degree *k* node is vulnerable.

- Final size of spread figured out by Gleeson and Calahane^[9, 8].
- Solution involves finding fixed points of an iterative map of the interval.
- Spreading takes off: expansion
- Spreading reaches a particular node: contraction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 45/80 団 のへへ

- Threshold model completely solved (by 2008):
- Cascade condition: ^[22]

$$\sum_{k=1}^{\infty} k(k-1)\beta_k P_k/z \geq 1.$$

where β_k = probability a degree *k* node is vulnerable.

- Final size of spread figured out by Gleeson and Calahane^[9, 8].
- Solution involves finding fixed points of an iterative map of the interval.
- Spreading takes off: expansion
- Spreading reaches a particular node: contraction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 45/80 日 のへへ

- Threshold model completely solved (by 2008):
- Cascade condition: ^[22]

$$\sum_{k=1}^{\infty} k(k-1)\beta_k P_k/z \geq 1.$$

where β_k = probability a degree *k* node is vulnerable.

- Final size of spread figured out by Gleeson and Calahane^[9, 8].
- Solution involves finding fixed points of an iterative map of the interval.
- Spreading takes off: expansion
- Spreading reaches a particular node: contraction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 45/80

- Threshold model completely solved (by 2008):
- Cascade condition: ^[22]

$$\sum_{k=1}^{\infty} k(k-1)\beta_k P_k/z \geq 1.$$

where β_k = probability a degree *k* node is vulnerable.

- Final size of spread figured out by Gleeson and Calahane^[9, 8].
- Solution involves finding fixed points of an iterative map of the interval.
- Spreading takes off: expansion
- Spreading reaches a particular node: contraction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 45/80

- Threshold model completely solved (by 2008):
- Cascade condition: ^[22]

$$\sum_{k=1}^{\infty} k(k-1)\beta_k P_k/z \geq 1.$$

where β_k = probability a degree *k* node is vulnerable.

- Final size of spread figured out by Gleeson and Calahane^[9, 8].
- Solution involves finding fixed points of an iterative map of the interval.
- Spreading takes off: expansion
- Spreading reaches a particular node: contraction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Frame 45/80

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Winning: it's not for everyone Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Winning: it's not for everyone Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

Winning: it's not for everyone Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

Superstars Musiclab

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

Musiclab

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Sumerstars

Musiclab

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

Musiclab

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

Musiclab

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

Musiclab

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Humietob

References

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

References

 $P_{k,t}$ versus k

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars

References
Early adopters—degree distributions

 $P_{k,t}$ versus k

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

Musiclab

References

Frame 47/80

Outline

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version

Groups

Summary

Winning: it's not for everyone

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups

Summar

Winning: it's not for everyone Superstars Musiclab

References

Frame 48/80

লি ৩৫৫

The power of groups...

A Few Harmless Flakes Working Together Can Unleash an Avalanche of Destruction.

www.despair.com

"A few harmless flakes working together can unleash an avalanche of destruction."

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} Musiclab

References

Frame 49/80

日 うへで

despair.com

Group structure—Ramified random networks

p = intergroup connection probability q = intragroup connection probability.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups

Summar

Winning: it's not for everyone Superstars Musiclab

References

Frame 50/80

Generalized affiliation model

Contagion

Introduction

Simple Disease Spreading Models Background Production

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

References

Frame 51/80

Cascade windows for group-based networks

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

References

Frame 52/80

Assortativity in group-based networks

- The most connected nodes aren't always the most 'influential.'
- Degree assortativity is the reason.

Contagion

Frame 53/80

Assortativity in group-based networks

- The most connected nodes aren't always the most 'influential.'
- Degree assortativity is the reason.

Contagion

Frame 53/80

Outline

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Musiclab

References

Frame 54/80

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for Version

Superstars Musiclab

References

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for GVGPV/GDD

Superstars Musiclab

References

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

everyone Superstars Musiclab

References

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

everyone Superstars Musiclab

References

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

everyone Superstars Musiclab

References

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Frame 55/80

Summary:

- Influential vulnerables' are key to spread.
- Early adopters are mostly vulnerables.
- Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- 'Influentials' are posterior constructs.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Frame 55/80

Implications:

- Focus on the influential vulnerables.
- Create entities that many individuals 'out in the wild' will adopt and display rather than broadcast from a few 'influentials.'
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Accept that movement of entities will be out of originator's control.
- Possibly only simple ideas can spread by word-of-mouth.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winnina: it's not fit

Winning: it's not for everyone ^{Superstars} ^{Musiclab}

References

Implications:

- Focus on the influential vulnerables.
- Create entities that many individuals 'out in the wild' will adopt and display rather than broadcast from a few 'influentials.'
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Accept that movement of entities will be out of originator's control.
- Possibly only simple ideas can spread by word-of-mouth.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone ^{Superstars} ^{Musiclab}

References

Implications:

- Focus on the influential vulnerables.
- Create entities that many individuals 'out in the wild' will adopt and display rather than broadcast from a few 'influentials.'
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Accept that movement of entities will be out of originator's control.
- Possibly only simple ideas can spread by word-of-mouth.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

everyone Superstars Musiclab

References

Implications:

- Focus on the influential vulnerables.
- Create entities that many individuals 'out in the wild' will adopt and display rather than broadcast from a few 'influentials.'
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Accept that movement of entities will be out of originator's control.
- Possibly only simple ideas can spread by word-of-mouth.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Implications:

- Focus on the influential vulnerables.
- Create entities that many individuals 'out in the wild' will adopt and display rather than broadcast from a few 'influentials.'
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Accept that movement of entities will be out of originator's control.
- Possibly only simple ideas can spread by word-of-mouth.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Implications:

- Focus on the influential vulnerables.
- Create entities that many individuals 'out in the wild' will adopt and display rather than broadcast from a few 'influentials.'
- Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Accept that movement of entities will be out of originator's control.
- Possibly only simple ideas can spread by word-of-mouth.

(Idea of opinion leaders has spread well...)

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Frame 56/80 日 のへへ

Messing with social connections:

- Ads based on message content (e.g., Google and email)
- Buzz media
- Facebook's advertising (Beacon)

Arguably not always a good idea...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 57/80

The collective...

www.despair.com

"Never Underestimate the Power of Stupid People in Large Groups."

Contagion

Introduction

Simple Disease

Models Summary

despair.com

Frame 58/80 P

 \mathcal{I}

Outline

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 59/80

Where do superstars come from?

Rosen (1981): "The Economics of Superstars" Examples:

- Full-time Comedians (\approx 200)
- Soloists in Classical Music
- Economic Textbooks (the usual myopic example)

Highly skewed distributions again...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

Frame 60/80

Where do superstars come from?

Rosen (1981): "The Economics of Superstars" Examples:

- Full-time Comedians (\approx 200)
- Soloists in Classical Music
- Economic Textbooks (the usual myopic example)
- Highly skewed distributions again...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

Frame 60/80

Rosen's theory:

- Individual quality q maps to reward R(q)
- *R*(*q*) is 'convex' (d²*R*/d*q*² > 0)
- Two reasons:
 - 1. Imperfect substitution:
 - 2. Technology:

No social element—success follows 'inherent quality'

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Rosen's theory:

- Individual quality q maps to reward R(q)
- R(q) is 'convex' (d²R/dq² > 0)
- Two reasons:
 - 1. Imperfect substitution:
 - 2. Technology:

No social element—success follows 'inherent quality'

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Rosen's theory:

- Individual quality q maps to reward R(q)
- R(q) is 'convex' (d²R/dq² > 0)
- Two reasons:
 - 1. Imperfect substitution:

A very good surgeon is worth many mediocre ones

2. Technology:

Media spreads & technology reduces cost of reproduction of books, songs, etc.

No social element—success follows 'inherent quality'

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

vunning: it's not for everyone Superstars Musiclab

References

Rosen's theory:

- Individual quality q maps to reward R(q)
- R(q) is 'convex' (d²R/dq² > 0)
- Two reasons:
 - 1. Imperfect substitution:

A very good surgeon is worth many mediocre ones

2. Technology:

Media spreads & technology reduces cost of reproduction of books, songs, etc.

No social element—success follows 'inherent quality'

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

vunning: it's not io everyone Superstars Musiclab

References

Frame 61/80

Adler (1985): "Stardom and Talent"

Assumes extreme case of equal 'inherent quality'

- Argues desire for coordination in knowledge and culture leads to differential success
- Success is then purely a social construction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's pot fi

Winning: it's not for everyone Superstars ^{Musiclab}

References

Frame 62/80

Adler (1985): "Stardom and Talent"

- Assumes extreme case of equal 'inherent quality'
- Argues desire for coordination in knowledge and culture leads to differential success
- Success is then purely a social construction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone Superstars ^{Musiclab}

References

Frame 62/80

Adler (1985): "Stardom and Talent"

- Assumes extreme case of equal 'inherent quality'
- Argues desire for coordination in knowledge and culture leads to differential success
- Success is then purely a social construction

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fr

WINNING: It'S NOT for everyone Superstars Musiclab

References

Frame 62/80

Dominance hierarchies

Chase et al. (2002): "Individual differences versus social dynamics in the formation of animal dominance hierarchies"

The aggressive female <u>Metriaclima zebra</u> (\boxplus) :

Pecking orders for fish...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Superstars

References

Frame 63/80
Dominance hierarchies

Fish forget—changing of dominance hierarchies:

 22 observations: about 3/4 of the time, hierarchy changed

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musichab

References

Frame 64/80

Outline

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone

Superstars Musiclab

References

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Frame 65/80

BAND NAME TECHNING REGISTER CONTRIBUTION CONTRIBUTION

48 songs 30,000 participants

multiple 'worlds' Inter-world variability

- How probable is the world?
- Can we estimate variability?
- Superstars dominate but are unpredictable. Why?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

everyone Superstars Musiclab

References

multiple 'worlds'

Inter-world variability

48 songs 30,000 participants

- How probable is the world?
- Can we estimate variability?
- Superstars dominate but are unpredictable. Why?

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

view Go Bookmarks Tool	s melp					
> - 🥵 💿 😚 🕅 http:/	🞯 💿 🏠 M http://www.musiclab.columbia.edu/me/songs				✓ G.	
	# of clown loads	[Help] [Log off]	# of down loads		# of down load:	
HARTSFIELD: "enough is enough"	20	GO MOREDCAI: "It does what its told"	12	UNDO: "while the world passes"	24	
DEEP ENOUGH TO DIE: "for the sky"	17	PARKER THEORY: "she said"	47	UP FOR NOTHING: "In sight of"	13	
THE THRIFT SYNDICATE: "2003 a tagedy"	20	MISS OCTOBER: "pink agression"	27	SILVERFOX: "gnaw"	17	
THE BROKEN PROMISE: "the end in friend"	19	POST BREAK TRAGEDY: "flownce"	14	STRANGER: "one drop"	10	
THIS NEW DAWN: "the belief above the answer"	12	FORTHFADING: "fear"	24	FAR FROM KNOWN: "noute 9"	18	
NOONER AT NINE: "walk away"	6	THE CALEFACTION: "trapped in an orange peel"	20	STUNT MONKEY: "inside out"	46	
MORAL HAZARD: "waste of my life"	8	52METRO: "lockdown"	17	DANTE: "Ifes mystery"	14	
NOT FOR SCHOLARS: "as seasons change"	27	SIMPLY WAITING: "went with the count"	16	FADING THROUGH: "wish me luck"	10	
SECRETARY: "keep your eyes on the ballistics"	\$	STAR CLIMBER: "tell me"	38	UNKNOWN CITIZENS: "falling over"	34	
ART OF KANLY: "seductive intro, melodic breakdown"	10	THE FASTLANE: "til death do us part 0 dont)"	31	BY NOVEMBER: "Hicould take you"	20	
HYDRAULIC SANDWICH: "separation anxiety"	20	A BLINDING SILENCE: "miseries and misacles"	17	DRAWN IN THE SKY: "tap the ride"	12	
EMBER SKY: "this upcoming winter"	25	SUM RANA: "the bokhevik boogie"	15	SELSIUS: "stars of the city"	22	
SALUTE THE DAWN: "Lam error"	13	CAPE RENEWAL: "baseball warlock v1"	12	SIBRIAN: "eye patch"	14	
RYAN ESSMAKER: "detout_ibe still"	14	UP FALLS DOWN: "a brighter burning star"	11	EVAN GOLD: "robert downey jr"	10	
BEERBONG: "father to son"	12	SUMMERSWASTED: "a plan behind destruction"	17	BENEFIT OF A DOUBT: "run away"	38	
HALL OF FAME: "best mistakes"	19	SILENT FILM "all i have to say"	61	SHIPWRECK UNION: "out of the woods"	16	

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiedab

References

Salganik et al. (2006) "An experimental study of inequality and unpredictability in an artificial cultural market"

Frame 67/80

Experiment 1

- 🔗 🖸 😭 🖬 Hapsiwa	ex musicleb	calumbia.edu/mc/sangs		10	
		(Help) (Log.off)	1		#
NARTSPELS "enough a enough"	17	CO MINEDEAL "X door what in add"	22	UNDO "while the second paramet"	24
DEEP ENDIDIE TO DEI "for der cly"	10	PARKER THEORY	4	UP FOR ADDRESS	10
THE THEFT ENGLISH THE '2000 a mapping'	20	MULDCHORER "Jak aproxim"	27	LENERCO.	20
THE BROKEN PROMISE 'the end in band'	19	POST BREAK TRACEON	34	CTRANCED: 'One day'	*
This sets (many "the behavior the proper"	15	TORTHEADING THEY	24	FAR FREEKOMER 'Kult F'	
NODERATINE "with many"		THE CALENCEUR.		STERT MORECE: Traile aut	
MORAL INCOME.		12HETRO "Relation"	17	CANTE. "Bis mysley"	ж
NOT FOR SCHOLARS	27	EMPLY WATER	- 24	PADING TWICKIGH "With the Act"	
SECRETARY Note your eyes on the talking?	5	STAR GLARGER.	38	Unicitized on Device "Talling and"	34
ARTOFRANCY: "solution may, makely brankdows"	19	THE FASTLANE: "If death do us port to dowt?"	23	OF MOVEMBER	
NYDRALK SHIDNCK	17	A BLRIDRO SALENCE: "Hereiter and Hereiter"		CRAME IN THE SAY.	32
ENERY SKY	28	SIM KARA. "Ne holderek kengle"	28	10.101 See of decky	22
CALLYE THE CANAL	13	OPE NUMBER OF	10	Californi Taya pon S	ж
EVEN ESSANDIN 'DENIL DI UNE	34	KP FALLS ODWIN To Signal burning its?	33	EXAN GOLD	8
BEENBONG "Softer to saw"	12	SUMERSMASTER 's plan behind declauter'	32	RENERTOF A BOURT.	
NALL OF FAME	- 19	SLEWFREM	03	1407WIELDX UNION	

Experiments 2-4

🤹 - 🕪 - 🔗 🖸 🐔 🖬 http://www	- 🚳 💿 😭 🖬 http://www.musiclab.columbia.edu/mcicanited				
	[Help] [Log.off]			2	
	Distant Balley	218			
	THE FASTLANE: "Aldneith de un part 5 dent?"	301			
	LELENEL "reason of the city"				
	Chief MONEY "Rede are"	94			
	OT HEVERER: "Front file you"	55			
	Norwalke W			1	
	HORALLIC SARDNEDI "sepanation amilesy"	41			
	SLENT FLM "all have to usp"	-			
	UNDO "While the work posses"	×			
	10040110FA 00091	м			
	A BURDING SALENCE				
	WELL OCTOBER "year operation"	24			
	KTAN CLIMER. "When"	ы			
	TAR FROM ENDING	22			
	HALL OF SAME	a			
	EMBER SKY				

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Superstars

Musiclab

References

Frame 68/80

日 りへで

Variability in final rank.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 69/80

P

୬ବଙ

Variability in final number of downloads.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Superstars Musidab

References

Frame 70/80

Inequality as measured by Gini coefficient:

$$G = rac{1}{(2N_{\rm s}-1)}\sum_{i=1}^{N_{\rm s}}\sum_{j=1}^{N_{\rm s}}|m_i - m_j|$$

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Musiclab

References

Frame 71/80

Unpredictability

$$U = \frac{1}{N_{\rm s} \binom{N_{\rm w}}{2}} \sum_{i=1}^{N_{\rm s}} \sum_{j=1}^{N_{\rm w}} \sum_{k=j+1}^{N_{\rm w}} |m_{i,j} - m_{i,k}|$$

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Superstars

Musiclab

References

Frame 72/80

Sensible result:

 Stronger social signal leads to greater following and greater inequality.

Peculiar result:

 Stronger social signal leads to greater unpredictability.

Very peculiar observation:

- The most unequal distributions would suggest the greatest variation in underlying 'quality.'
- But success may be due to social construction through following...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

everyone Superstars Musiclab

References

Frame 73/80 日 のへへ

Sensible result:

 Stronger social signal leads to greater following and greater inequality.

Peculiar result:

 Stronger social signal leads to greater unpredictability.

Very peculiar observation:

- The most unequal distributions would suggest the greatest variation in underlying 'quality.'
- But success may be due to social construction through following...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo

VVINNING: It's not for everyone Superstars Musiclab

References

Frame 73/80 日 のへへ

Sensible result:

 Stronger social signal leads to greater following and greater inequality.

Peculiar result:

 Stronger social signal leads to greater unpredictability.

Very peculiar observation:

- The most unequal distributions would suggest the greatest variation in underlying 'quality.'
- But success may be due to social construction through following...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

everyone Superstars Musiclab

References

Frame 73/80 日 のへへ

Sensible result:

 Stronger social signal leads to greater following and greater inequality.

Peculiar result:

 Stronger social signal leads to greater unpredictability.

Very peculiar observation:

- The most unequal distributions would suggest the greatest variation in underlying 'quality.'
- But success may be due to social construction through following...

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for

Superstars Musiclab

References

Music Lab Experiment—Sneakiness

Inversion of download count

- The 'pretend rich' get richer ...
- but at a slower rate

Contagion

Introduction

Simple Disease Spreading Models

Models Musiclab

References

Frame 74/80 P

Sac.

Music Lab Experiment—Sneakiness

- Inversion of download count
- ▶ The 'pretend rich' get richer ...
- ... but at a slower rate

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars

Musiclab

References

Frame 74/80

Music Lab Experiment—Sneakiness

- Inversion of download count
- The 'pretend rich' get richer ...
- ... but at a slower rate

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musielab

References

Frame 74/80

References I

[1] M. Adler. Stardom and talent

American Economic Review, pages 208–212, 1985. pdf (\boxplus)

- [2] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades. *J. Polit. Econ.*, 100:992–1026, 1992.
- [3] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades.

J. Econ. Perspect., 12(3):151–170, 1998. pdf (⊞)

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone

Superstars Musiclab

References

Frame 75/80 日 のへへ

References II

[4] J. Carlson and J. Doyle.

Highly optimized tolerance: A mechanism for power laws in design systems.

Phys. Rev. E, 60(2):1412–1427, 1999. pdf (⊞)

- [5] J. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design in complex systems. *Phys. Rev. Lett.*, 84(11):2529–2532, 2000. pdf (⊞)
- [6] I. D. Chase, C. Tovey, D. Spangler-Martin, and M Manfredonia

Individual differences versus social dynamics in the formation of animal dominance hierarchies.

Proc. Natl. Acad. Sci., 99(8):5744-5749, 2002. pdf (⊞)

Contagion

Introduction

Simple Disease Spreading Models Background

Social Contagion Models

References

Frame 76/80 $\neg \land \land \land$

References III

[7] M. Gladwell.
The Tipping Point.
Little, Brown and Company, New York, 2000.

[8] J. P. Gleeson.

Cascades on correlated and modular random networks.

Phys. Rev. E, 77:046117, 2008. pdf (⊞)

[9] J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random networks.

Phys. Rev. E, 75:056103, 2007. pdf (⊞)

[10] M. Granovetter. Threshold models of collective behavior. Am. J. Sociol., 83(6):1420–1443, 1978. pdf (⊞)

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone

Superstars Musiclab

References

Frame 77/80 日 のへへ

References IV

[11] E. Hoffer.

The Passionate State of Mind: And Other Aphorisms. Buccaneer Books, 1954.

[12] E. Katz and P. F. Lazarsfeld. Personal Influence. The Free Press, New York, 1955.

[13] T. Kuran.

Now out of never: The element of surprise in the east european revolution of 1989.

World Politics, 44:7–48, 1991. pdf (⊞)

🔋 [14] T. Kuran.

Private Truths. Public Lies: The Social Consequences of Preference Falsification. Harvard University Press, Cambridge, MA, Reprint edition. 1997.

Contagion

Introduction

Simple Disease Spreading Models Background

Models

References

Frame 78/80 $\neg \land \land \land$

References V

[15] J. D. Murray.
Mathematical Biology.
Springer, New York, Third edition, 2002.

[16] S. Rosen. The economics of superstars. *Am. Econ. Rev.*, 71:845–858, 1981. pdf (⊞)

[17] M. J. Salganik, P. S. Dodds, and D. J. Watts. An experimental study of inequality and unpredictability in an artificial cultural market. *Science*, 311:854–856, 2006. pdf (⊞)

[18] T. Schelling.
Dynamic models of segregation.
J. Math. Sociol., 1:143–186, 1971.

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not fo everyone Superstars

References

Frame 79/80

References VI

[19] T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381–428, 1973. pdf (⊞)

[20] T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, 1978.

[21] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003.

[22] D. J. Watts.

A simple model of global cascades on random networks.

Proc. Natl. Acad. Sci., 99(9):5766–5771, 2002. pdf (⊞)

Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musietab

References

Frame 80/80 日 のへへ