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Modeling Complex
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Some important models:

Generalized random networks
Scale-free networks ()
Small-world networks (H)
Statistical generative models (p*)
Generalized affiliation networks
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Modeling Complex Networks

Random networks
Basics
Configuration model

Scale-free networks
History
BA model
Redner & Krapivisky’s model
Robustness

Small-world networks
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Modeling Complex
Networks

1. Generalized random networks:

v

Arbitrary degree distribution Py.
Wire nodes together randomly.

Create ensemble to test deviations from
randomness.

Interesting, applicable, rich mathematically.
Much fun to be had with these guys...
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http://www.uvm.edu//~pdodds/teaching/courses/2010-06SFI-SFI Summer School/
http://www.uvm.edu/~pdodds
http://www.uvm.edu/
http://www.santafe.edu/
http://www.uvm.edu/
http://www.uvm.edu/~pdodds
http://en.wikipedia.org/wiki/Scale-free_network
http://en.wikipedia.org/wiki/Small-world_network
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Modeling Complex Modeling Complex

2. ‘Scale-free networks’: emene 3. Small-world networks emene

Due 1o Barabasi and AlbertE » Due to Watts and Strogatz ¢!
» Due to Barabasi an

» Generative model

» Preferential attachment
model with growth

» Plattachment to node i] o< k*.

» Produces P, ~ k=7 when
a=1.

Two scales:

» |ocal regularity (high clustering—an individual’s
friends know each other)

» global randomness (shortcuts).

Strong effects:

» Trickiness: other models » Shortcuts make world ‘small’

zkj 2-? o generate skewed degree » Shortcuts allow disease to jump
N— 150 distributions... > Facilitates synchronization!”!
Frame 5/73 Frame 6/73
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4. Generative statistical models
» |dea is to realize networks based on certain

tendencies:

» Clustering (triadic closure)..
» Types of nodes that like each other..

» Anything really...

» Use statistical methods to estimate ‘best’ values of

parameters.

» Drawback: parameters are not real, measurable

quantities.

» Non-mechanistic and blackboxish.
» c.f., temperature in statistical mechanics.
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5. Generalized affiliation networks

geography

R

a

b

occupation

C

d

age

e

» Blau & Schwartz !, Simmell'®], Breiger!*/, Watts et

al.l'”]
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Pure, abstract random networks:

Consider set of all networks with
N labelled nodes and m edges.

N
Horribly, there are ((37)) of them.
Standard random network =

randomly chosen network from this set.
To be clear: each network is equally probable.
Known as Erd6s-Rényi random networks

Key structural feature of random networks is that
they locally look like branching networks

(No small cycles and zero clustering).

Random networks: largest components

AR %

m =200 m =230 m =240

(ky=08 (ky =0.92 (ky =0.96

m =280 m =300 m =500
(ky =1.12 (ky =12 (ky=2
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Random networks: examples for N=500

Giant component:

0.6

0.4

0.2

» Sy = fraction of nodes in largest component.
» Old school phase transition.
» Key idea in modeling contagion.
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Properties

But:
» Erdds-Rényi random networks are a mathematical
construct.

» Real networks are a microscopic subset of all
networks...

» ex: ‘Scale-free’ networks are growing networks that
form according to a plausible mechanism.

But but:

» Randomness is out there, just not to the degree of a
completely random network.

General random rewiring algorithm
.

R

4

» Randomly choose two edges.
(Or choose problem edge and
a random edge)

» Check to make sure edges
are disjoint.

» Rewire one end of each edge.

» Node degrees do not change.

» Works if e; is a self-loop or
repeated edge.

» Same as finding on/off/on/off
4-cycles. and rotating them.

Models of
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General random networks
» So... standard random networks have a Poisson
degree distribution

» Can happily generalize to arbitrary degree
distribution Pk.

» Also known as the configuration model. "]

» Can generalize construction method from ER
random networks.

» Assign each node a weight w from some distribution
and form links with probability

Configuration model

P(link between i and j) oc w;w;.

» A more useful way:
1. Randomly wire up (and rewire) already existing
nodes with fixed degrees.
2. Examine mechanisms that lead to networks with
certain degree distributions.

Frame 15/73 Frame 17/73
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Random networks: largest components

Configuration model Configuration model

v =219
(k) =2.986

v =246
(k) =1.856

4 =255
(ky =1.712

=264
(k) =16

=273
(k) =1.862
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» The degree distribution Py is fundamental for our
description of many complex networks

» A related key distribution:
Ri = probability that a friend of a random node has
k other friends.

(kNP1 (k+1)Prg
> w—o(K + 1) P4 (k)

Ry

» Natural question: what'’s the expected number of
other friends that one friend has?

» Find ’
_ (ke
(Ko = g (K%)= (1)
» True for all random networks, independent of degree

istributi Frame 21/73
distribution. rame
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» Average # friends of friends per node is
(ko) = (K?) — (K).

» Average depends on the 1st and 2nd moments of Py
and not just the 1st moment.
» Three peculiarities:
1. We might guess (ko) = (k)({k) — 1) but it's actually
(k(k—=1)).
2. If Px has a large second moment,
then (k2) will be big.
3. Your friends have more friends than you...

Frame 23/73
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Giant component condition

> If:

1

(k)

then our random network has a giant component.

(kg = 7 (K3 = (k) > 1

» Exponential explosion in number of nodes as we
move out from a random node.

» Number of nodes expected at n steps:

n—1

)+ 005" = s (K = ()

» We'll see this again for contagion models...

Size distributions
The sizes of many systems’ elements appear to obey an
inverse power-law size distribution:

P(size = x) ~cx™ 7

where Xpin < X < Xmax and ~v > 1.

» X can be continuous or discrete.

» Typically, 2 < v < 3.

» No dominant internal scale between Xpi, and Xpax-
» If v < 3, variance and higher moments are ‘infinite’
» If v < 2, mean and higher moments are ‘infinite’

» Negative linear relationship in log-log space:

log P(x) =logc — vlog x

Models of
Complex Networks
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H H . Models of H H H H Models of
A beaUtIfUL heart-WaI’mlng example COITIp|:XeNSetOWOI’KS SIZG dIStrlbUtlonS ComplgxeNset?Norks
10’ T T T
10° ¢ Elephant
. a~1.23
0 3 Scale-free Scale-free
Tl 1 gray neworks Power law size distributions are sometimes called neworks
o matter: Pareto distributions (H) after Italian scholar Vilfredo
gma L 1 ‘computing Pareto.
% West European, hf;[::::: S . . ok e elementS,
S| gy ] » Pareto noted wealth in Italy was distributed unevenly
;10' L ; > ™ Long-eared desert hedgehog ] White (80—20 rule).
T A i ] matter: » Term used especially by economists
. P log,) W= (1.23+0.01) log,, G - (1.47 £ 0.04) erlng
100 e S hite—toothed shrew 120998 E
107‘ 0 ‘I ‘2 IS ‘4 ‘5 ‘6 ¥ 3
10 10 10 10 10 10 10 10
Gray Matter Volume G ( mma)
from Zhang & Sejnowski, PNAS (2000) (2°!
Frame 25/73 Frame 26/73
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Examples:
Examples: Sealoiron » Number of citations to papers: P(k) oc k—3. Seale-froe
networks . _ networks
» Earthquake magnitude (Gutenberg Richter law): : > Individual wealth (maybe): P(W) oc W2,
P(M) < M3 » Distributions of tree trunk diameters: P(d) o d—2.
» Number of war deaths: P(d) o d—1-814 » The gravitational force at a random point in the
» Sizes of forest fires universe: P(F) oc F~/2,
> Sizes of cities: P(n) o n2" » Diameter of moon craters: P(d) oc d—3.
» Number of links to and from websites > Word frequency: e.g., P(k) o k=22 (variable)

Note: Exponents range in error;
see M.E.J. Newman arxiv.org/cond-mat/0412004v3 (H)

Frame 27/73 Frame 28/73
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http://en.wikipedia.org/wiki/Pareto_distribution
http://www.arxiv.org/cond-mat/0412004v3
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History

» Random Additive/Copying Processes involving
Competition.

» Widespread: Words, Cities, the Web, Wealth,
Productivity (Lotka), Popularity (Books, People, ...)

» Competing mechanisms (more trickiness)

Frame 30/73
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Not everyone is happy...
|

Mandelbrot vs. Simon:

» Mandelbrot (1953): “An Informational Theory of the
Statistical Structure of Languages”!'’!

» Simon (1955): “On a class of skew distribution
functions”®]

» Mandelbrot (1959): “A note on a class of skew
distribution function: analysis and critique of a paper
by H.A. Simon”

» Simon (1960): “Some further notes on a class of
skew distribution functions”

Frame 32/73
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Work of Yore

» 1924: G. Udny Yule '9l:
# Species per Genus
» 1926: Lotka?:
# Scientific papers per author (Lotka’s law)
» 1953: Mandelbrot [l:
Optimality argument for Zipf’s law; focus on
language.
» 1955: Herbert Simon (1621l
Zipf’s law for word frequency, city size, income,
publications, and species per genus.
» 1965/1976: Derek de Solla Price % 4l
Network of Scientific Citations.
» 1999: Barabasi and Albert !
The World Wide Web, networks-at-large.

Not everyone is happy... (cont.)

Mandelbrot vs. Simon:

» Mandelbrot (1961): “Final note on a class of skew
distribution functions: analysis and critique of a
model due to H.A. Simon”

» Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot”

» Mandelbrot (1961): “Post scriptum to ‘final note

» Simon (1961): “Reply to Dr. Mandelbrot’s post
scriptum”

Models of
Complex Networks
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NOt everyone iS happy (Cont) Complex Networks Essential EXtI’aCt Of a GFOWth MOdG' Complex Networks

Random Competitive Replication (RCR):

Mandelbrot:

1. Start with 1 element of a particular flavor at t = 1
“We shall restate in detail our 1959 objections to Simon’s

2. Attime t =2,3,4,..., add a new element in one of

1955 model for the Pareto-Yule-Zipf distribution. Our two ways:
objections are valid quite irrespectively of the sign of p-1, » With probability p, create a new element with a new
so that most of Simon’s (1960) reply was irrelevant.” flavor

Si » Mutation/Innovation
Imon:

“Dr. Mandelbrot has proposed a new set of objections to
my 1955 models of the Yule distribution. Like his earlier
objections, these are invalid.”

» With probability 1 — p, randomly choose from all
existing elements, and make a copy.
» Replication/Imitation

» Elements of the same flavor form a group

Frame 34/73 Frame 35/73
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Random Competitive Replication Gomplox Networks Random Competitive Replication Gomplox Networks

Example: Words in a text

» Consider words as they appear sequentially. » Competition for replication between elements is

» With probability p, the next word has not previously random
appeared » Competition for growth between groups is not
» Mutation/Innovation random

Selection on groups is biased by size
Rich-gets-richer story

Random selection is easy

No great knowledge of system needed

» With probability 1 — p, randomly choose one word
from all words that have come before, and reuse this
word
» Replication/Imitation

vV v v Vv

» Please note: authors do not do this...

Frame 36/73
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Random Competitive Replication

» After some thrashing around, one finds:

(2—p)

P oc k™ (=0 = k™7

1

)

» See ~ is governed by rate of new flavor creation, p.

Evolution of catch phrases

» Robert K. Merton: the Matthew Effect

» Studied careers of scientists and found credit flowed

disproportionately to the already famous

From the Gospel of Matthew:

“For to every one that hath shall be given...
(Wait! There’s more....)

but from him that hath not, that also which he
seemeth to have shall be taken away.

And cast the worthless servant into the outer

darkness; there men will weep and gnash their teeth.”

Models of
Complex Networks
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Evolution of catch phrases

» Yule’s paper (1924) 9!
“A mathematical theory of evolution, based on the
conclusions of Dr J. C. Willis, FR.S”

» Simon’s paper (1955) 16l
“On a class of skew distribution functions” (snore)
» Price’s term: Cumulative Advantage

Evolution of catch phrases

Merton was a catchphrase machine:
1. self-fulfilling prophecy
2. role model
3. unintended (or unanticipated) consequences
4. focused interview — focus group
And justtorub it in...

Merton’s son, Robert C. Merton, won the Nobel Prize for
Economics in 1997.

Models of
Complex Networks
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Evolution of catch phrases
» Barabasi and Albert ?/—thinking about the Web

» Basic idea: a new node arrives every discrete time

» Solution: Connect to a random node (easy)

v

v

Scale-free networks

» Scale-free networks are not fractal in any sense.

» Primary example: hyperlink network of the Web

Models of
Complex Networks

Independent reinvention of a version of Simon and
Price’s theory for networks

Another term: “Preferential Attachment”

step and connects to an existing node i with
probability o k;.

Connection:

Groups of a single flavor ~ edges of a node

Small hitch: selection mechanism is now
non-random

+ Randomly connect to the node’s friends (also easy)
Scale-free networks = food on the table for physicists

Frame 42/73
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Term ‘scale-free’ is somewhat confusing...

Usually talking about networks whose links are
abstract, relational, informational, . .. (non-physical)

Main reason is link cost.

Much arguing about whether or networks are
‘scale-free’ or not. ..

Frame 45/73
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Scale-free networks

» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py ~ k™7 for ‘large’ k

» Please note: not every network is a scale-free
network...

Scale-free networks

The big deal:

» We move beyond describing networks to finding
mechanisms for why certain networks arise.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism’s details matter?
» We know they do for Simon’s model...

Models of
Complex Networks

Frame 44/73

F Dae

Models of
Complex Networks

Frame 46/73

F Dae




Real data (eek!)

From Barabasi and Albert’s original paper °!:

\
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have
510D (A) Vuctor = 23, (B) Yo = 2.1 a0 () Yyper = 4

» But typically for real networks: 2 < v < 3.
» (Plot C is on the bogus side of things...)

Universality?

» Consider A1 = o and A, = k for k > 2.
» Some unsettling calculations leads to Py ~ k=7

where
14+ v1+8a

=1
Y + 5

» We then have
O0<a<ow=2<v<o0

» Craziness...

Models of
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Generalized model

Fooling with the mechanism:

» 2001: Redner & Krapivsky (RK) ¢! explored the
general attachment kernel:

Pr(attach to node /) oc A = Kk’

where Ay is the attachment kernel and v > 0.

» RK also looked at changing very subtle details of the
attachment kernel.

> e.9., keep Ax ~ k for large k but tweak A, for low k.
» RK’s approach is to use rate equations (H).

Sublinear attachment kernels

» Rich-get-somewhat-richer:
A ~ k" with0 < v < 1.
» General finding by Krapivsky and Redner: €]

_ _ 1—v :
Pk ~ ke cik'~Y+correction terms.

» Weibull distributionish (truncated power laws).
» Universality: now details of kernel do not matter.

Models of
Complex Networks

Redner & Krapivisky’s
model
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http://en.wikipedia.org/wiki/Rate_equation

Superlinear attachment kernels

» Rich-get-much-richer:

Ak ~ k¥ with v > 1.

» Now a winner-take-all mechanism.

» One single node ends up being connected to almost

all other nodes.
» For v > 2, all but a finite # of nodes connect to one

12
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0 | | 10 |
0.00 0.01 0.02 0.00 0.01 0.02

from Albert et al., 2000

£

Plots of network
diameter as a function
of fraction of nodes
removed

Erdds-Rényi versus
scale-free networks

blue symbols =
random removal

red symbols =
targeted removal
(most connected first)
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Redner & Krapivisky’s
model
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Robustness
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Robustness

>

Standard random networks (Erdds-Rényi)
versus
Scale-free networks

LT ..... "

Scale-free

Exponential

from Albert et al., 2000 “Error and attack tolerance of complex networks” [1 ]

Robustness

v

v

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is

obviously a stretch (e.g., google vs. a random
person’s webpage)
Most connected nodes are either:
1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

Need to explore cost of various targeting schemes.

Models of
Complex Networks

Robustness
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Milgram’s social search experiment (1960s)  FECStutism Milgram’s experiment with e-mail ™ Gomplox Networks

» Target person = Participants:

THE NMAan Wiao
S Boston stockbroker.
W .. k= > 296senders from Boston and

» 60,000+ people in 166
countries

Omaha. Q. > 24,000+ chains
» 20% of senders reached L ¢ > Big media boost...
target. Small Id - Small Id
> chain length ~ 6.5. networks 18 targets in 13 countries including networks
Popular terms: » a professor at » a potter in
“““““ an lvy League > @ technology New Zealand
» The Small World university consultant in T
THOMAS BLASS, P;.D Phenomenon; h , | India’ g a \;Etermanan
. » an archiva : in the
;?':;://Www.Stanleymilgram.com > “S|X DegreeS Of Separatlon” InS eC'[OF |n > a p0|lceman Norweglan
e in Australia,
Estonia, army.
Frame 57/73 Frame 58/73
& Dae & vae
Social search—the Columbia experiment Gomplex Networks Randomness + regularity Gomplex Networks

The world is smaller:

» (L) = 4.05 for all completed chains
» L, = Estimated ‘true’ median chain length (zero

attrition) NN NSNS
ZANNZIN 2 SN2
» Intra-country chains: L, =5 Rnetia anaa&m&n&n anetia

» Inter-country chains: L, =7
» Allchains: L, =7

ZNDIANZNEN

eSO INCIN
AN ININ N

» c.f. Milgram (zero attrition): L, ~ 9 A

das = 10 without random paths
Frame 59/73 dag = 3 with random paths e R
5 oac (d) decreases overall 5 vac
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Theory of Small-World networks e

Introduced by
Watts and Strogatz (Nature, 1998) '€l
“Collective dynamics of ‘small-world’ networks.”

Small-world networks are found everywhere:
» neural network of C. elegans,
» semantic networks of languages,
» actor collaboration graph, et

» food webs,
» social networks of comic book characters,...

Very weak requirements:

» local regularity + random short cuts

Frame 61/73

F Dae

The mOdel Commggel\llse?\:/orks

One approach: incorporate identity.
(See “Identity and Search in Social Networks.” Science, 2002,
Watts, Dodds, and Newman 7))

|dentity is formed from attributes such as:

» Geographic location
» Type of employment Small-world
» Religious beliefs neene

» Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes < Contexts < Interactions < Networks. Frame 63/73
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Previous work—finding short paths

But are these short cuts findable?
No!

Nodes cannot find each other quickly
with any local search method.

» Jon Kleinberg (Nature, 2000) [©!
“Navigation in a small world.”

» Only certain networks are navigable
» So what’s special about social networks?

Social distance—RBipartite affiliation networks

[contexts]

¢ v ¢ . " [individuals |

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.

Models of
Complex Networks

Small-world
networks
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Social distance as a function of identity

occupation

education health care

kindergarten
teacher

high school

teacher doctor

Small-world
networks

Frame 65/73
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Social Search—Real world uses

v

Tagging: e.g., Flickr induces a network between
photos

Search in organizations for solutions to problems
Peer-to-peer networks

Synchronization in networked systems
Motivation for search matters...

Small-world
LI

vV v v Vv

Frame 67/73

F Dae

Homophily

geography occupation age

ER e

a b c d e

(Blau & Schwartz, Simmel, Breiger)
» Networks built with ‘birds of a feather...” are
searchable.
» Attributes & Contexts < Interactions < Networks.
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