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Opt'mal Supply networks Supply Networks

Introduction

What'’s the best way to distribute stuff?

» Stuff = medical services, energy, people,
» Some fundamental network problems:

1. Distribute stuff from a single source to many sinks

2. Distribute stuff from many sources to many sinks

3. Redistribute stuff between nodes that are both
sources and sinks

» Supply and Collection are equivalent problems

Frame 3/86
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Single source optimal supply Supply Networks

Introduction

Basic Q for distribution/supply networks:

» How does flow behave given cost:
c=312
J

where
l; = current on link j
and
Z; = link j's impedance?
» Example: v = 2 for electrical networks.

Frame 4/86
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Single source optimal supply Supply Networks

Introduction
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(a) v > 1: Braided (bulk) flow
(b) v < 1: Local minimum: Branching flow
() v < 1: Global minimum: Branching flow

From Bohn and Magnasco [°!
See also Banavar et al. []
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Single source optimal supply Supply Networks

Introduction

Optimal paths related to transport (Monge) problems:
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Growing networks: Supply Networks

Introduction
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Supply Networks

Growing networks:

FIGURE 3. A maple leaf Introduction

4-066, =07, totalcost=525.9653

Frame 8/86

Xia (2007) 28] S




Supply Networks

Single source optimal supply

Introduction

An immensely controversial issue...

» The form of river networks and blood networks:
optimal or not? 2 2. 5. 4]

Two observations:

» Self-similar networks appear everywhere in nature
for single source supply/single sink collection.

» Real networks differ in details of scaling but
reasonably agree in scaling relations.

Frame 9/86
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Rlver network mOdeIS Supply Networks

Introduction

Optimality:

» Optimal channel networks ']
» Thermodynamic analogy ['®!

versus...
Randomness:

» Scheidegger’s directed random networks
» Undirected random networks

Frame 10/86
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Optimization approaches
Cardiovascular networks:

» Murray’s law (1926) connects branch radii at
forks: 13 12.14]

3

_ 3, ,3
=r+r

where ry = radius of main branch
and ry and r» are radii of sub-branches.

» See D’Arcy Thompson’s “On Growth and Form” for
background inspiration [0 21,

Calculation assumes Poiseullle flow ().

Also found to hold for trees 4 10. 111,
Use hydraulic equivalent of Ohm’s law:

vV v vy

Ap=oZ< V=IR

where Ap = pressure difference, ¢ = flux.

Holds up well for outer branchings of blood networks.

Supply Networks

Frame 12/86
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http://en.wikipedia.org/wiki/Hagen-Poiseuille_equation

Supply Networks

Optimization approaches

Cardiovascular networks:

» Fluid mechanics: Poiseuille impedance (/) for
smooth flow in a tube of radius r and length ¢:

8n/
Z=—
wr4
where 1 = dynamic viscosity (/) (units: ML=1T—1).
» Power required to overcome impedance:

Pirg = PAP = d?Z.

» Also have rate of energy expenditure in maintaining
blood:
P, metabolic = CI 26

where ¢ is a metabolic constant. Frame 13/86
F A



http://en.wikipedia.org/wiki/Hagen-Poiseuille_equation
http://en.wikipedia.org/wiki/Dynamic_viscosity

Opt'mlzatlon approaCheS Supply Networks

Aside on Py,

Work done = F - d = energy transferred by force F
Power = P = rate work isdone = F - v
Ap = Force per unit area

¢ = Volume per unit time
= cross-sectional area - velocity

So ¢Ap = Force - velocity

vV v vy

v

Frame 14/86
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Supply Networks

Optimization approaches

Murray’s law:
» Total power (cost):

8n/

P = Pdrag + Pmetdbohc - (DZT + cr ﬁ

» Observe power increases linearly with ¢
» But r’s effect is nonlinear:
» increasing r makes flow easier but increases

metabolic cost (as r?)
» decreasing r decrease metabolic cost but impedance

goes up (as r=*)

Frame 15/86
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Optlmlzatlon Supply Networks

Murray’s law:

» Minimize P with respect to r:

P 9 <¢2877

ar = or w“”)

= —4¢2% +c2rt =0

» Rearrange/cancel/slap:

q)22017;;6:,(2,6
n

where k = constant.

Frame 16/86
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Supply Networks

Optimization

Murray’s law:

» So we now have:
® = krd

» Flow rates at each branching have to add up (else
our organism is in serious trouble...):
bg = 0 + b5

where again 0 refers to the main branch and 1 and 2
refers to the offspring branches

» All of this means we have a groovy cube-law:

3
o

_ .3, .3
=+

Frame 17/86
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Optlmlzatlon Supply Networks

Murray meets Tokunaga:

» &, = volume rate of flow into an order w vessel e
segment

» Tokunaga picture:

w—1

q)w = 2¢w71 + Z qu)wfk
k=1

» Using ¢, = kr3
w—1
=2+ > Tl
k=1

» Find Horton ratio for vessel radius R, = r,,/r,_1...

Frame 19/86
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Optlmlzatlon Supply Networks

cets Tokunaga

Murray meets Tokunaga:

» Find R? satisfies same equation as R, and R,
(v is for volume):

R:=R,=R,

» |s there more we could do here to constrain the
Horton ratios and Tokunaga constants?

Frame 20/86
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Supply Networks

Optimization

Murray meets Tokunaga:

» Isometry: V,, oc £3
» Gives

R}=R, =R,

» We need one more constraint...

» West et al (1997) [°° achieve similar results following
Horton’s laws.

» So does Turcotte et al. (1998) °l using Tokunaga
(sort of).

Frame 21/86
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GeOmetrlC arg u ment Supply Networks

» Consider one source supplying many sinks in a
volume V d-dim. region in a D-dim. ambient space.

» Assume sinks are invariant.

» Assume p = p(V), i.e., p may vary with region’s
volume V.

» See network as a bundle of virtual vessels:

» Q: how does the number of sustainable sinks N
scale with volume V for the most efficient network
design?

» Or: what is the highest o for Ngjpxs o< V*? Frame 23/86
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Geometric argument

» Allometrically growing regions:

L,

» Have d length scales which scale as
Lix Viwhere vy + 72+ ... +vq = 1.

» For isometric growth, v; = 1/d.

» For allometric growth, we must have at least two of
the {~;} being different

Supply Networks

Frame 24/86
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GeOmetrlC arg u ment Supply Networks

» Best and worst configurations (Banavar et al.)

» Rather obviously:
min Vi o Y distances from source to sinks.

Frame 25/86
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Minimal network volume:

Real supply networks are close to optimal:

() © (d)

Figure 1. (a) Commuter rail network in the Boston area. The arrow marks
the assumed root of the network. (b) Star graph. (c¢) Minimum spanning tree.
(d) The model of equation (3) applied to the same set of stations.

(2006) Gastner and Newman [¢): “Shape and efficiency in
spatial distribution networks”

Supply Networks

Geometric argument

Frame 26/86
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Minimal network volume: Supply Networks

Add one more element:

>

» Gives v ox /126 if e < 1/2
» Gives voc 1 —¢~(@=1) — 1 forlarge £ if e > 1/2

Vessel cross-sectional area may vary with distance
from the source.

Flow rate increases as cross-sectional area
decreases.

e.g., a collection network may have vessels tapering
as they approach the central sink.

Find that vessel volume v must scale with vessel
length ¢ to affect overall system scalings.

Consider vessel radius r o« (¢ + 1), tapering from
r = Imax Where ¢ > 0.

» Previously, we looked at ¢ = 0 only. Frame 27/86
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Minimal network volume: Supply Networks

For 0 < e < 1/2, approximate network volume by integral
over region:

min Vi / p||X][12€ dx
Q4,0(V)

Insert question 1, assignment 3 (H)

o pV/1max(1729) where ymay = max ;.
I

For e > 1/2, find simply that

min Vie, o< pV

» So if supply lines can taper fast enough and without
limit, minimum network volume can be made
negligible.

Frame 28/86
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Supply Networks

Geometric argument

ForO0<e<1/2:

> | min Ve oc pV/1Hmax(1-2€)

» If scaling is isometric, we have ymax = 1/0:

min Vnet/iso X pv1+(1726)/d
» If scaling is allometric, we have ymax = Yano > 1/d:
and
; 1-+(1—2€) a0
min Vnet/allo X ,OV +( )
» Isometrically growing volumes require less network
volume than allometrically growing volumes:

min Vnet/iso

. —0asV -
min Vnet/allo

Frame 29/86

F DA




Supply Networks

Geometric argument

Fore>1/2:

> | min Voo o< pV/|
» Network volume scaling is now independent of
overall shape scaling.

Limits to scaling

» Can argue that e must effectively be 0 for real
networks over large enough scales.

» Limit to how fast material can move, and how small
material packages can be.

» e.g., blood velocity and blood cell size.

Frame 30/86
F A




Blood networks Supply Networks

» Velocity at capillaries and aorta approximately
constant across body size *“l: ¢ = 0.

» Material costly = expect lower optimal bound of
Viet o pV(@+1)/9 10 be followed closely.

» For cardiovascular networks, d = D = 3.

» Blood volume scales linearly with blood volume "7,
Vnet X V

» Sink density must .. decrease as volume increases:
poc V179,

» Density of suppliable sinks decreases with organism
size.

Frame 32/86
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Blood networks Supply Networks

>

Then P, the rate of overall energy use in Q, can at
most scale with volume as

PxpVoxpMx M@-1/d

For d = 3 dimensional organisms, we have

Including other constraints may raise scaling
exponent to a higher, less efficient value.

Exciting bonus: Scaling obtained by the supply
network story and the surface-area law only match
for isometrically growing shapes.

Insert question 3, assignment 3 (H) s GG

F DA
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Recap Supply Networks

» The exponent a = 2/3 works for all birds and
mammals up to 10-30 kg

» For mammals > 10-30 kg, maybe we have a new
scaling regime
» Economos: limb length break in scaling around 20 kg

» White and Seymour, 2005: unhappy with large
herbivore measurements. Find o« ~ 0.686 + 0.014

Frame 34/86
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Supply Networks

River networks

» View river networks as collection networks.
» Many sources and one sink.

> €?

» Assume p is constant over time and € = 0:

Vit < pV1+1)/d — constant x V3/2

» Network volume grows faster than basin ‘volume’
(really area).

» It’s all okay:
Landscapes are d=2 surfaces living in D=3
dimension.

» Streams can grow not just in width but in depth...

» If e > 0, Vi Will grow more slowly but 3/2 appears to
be confirmed from real data. Frame 36/86

F DA




Supply Networks

Many sources, many sinks

How do we distribute sources?

» Focus on 2-d (results generalize to higher
dimensions)

» Sources = hospitals, post offices, pubs, ...

» Key problem: How do we cope with uneven
population densities?

» Obvious: if density is uniform then sources are best
distributed uniformly

» Which lattice is optimal? The hexagonal lattice
Q1: How big should the hexagons be?

» Q2: Given population density is uneven, what do we
do?

» We'll follow work by Stephan!'® '°l Gastner and
Newman (2006) "/, Um et al. **! and work cited by

them Frame 38/86

F DA



Optimal source allocation Supply Networks

Solidifying the basic problem

» Given a region with some population distribution p,
most likely uneven.

» Given resources to build and maintain N facilities.

» Q: How do we locate these N facilities so as to

minimize the average distance between an
individual’s residence and the nearest facility?

Frame 39/86
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Optimal source allocation Supply Networks

Facility location

From Gastner and Newman (2006) "/

» Approximately optimal location of 5000 facilities.

» Based on 2000 Census data.

Frame 40/86

» Simulated annealing + Voronoi tessellation.
F DA




Optimal source allocation Supply Networks

Facility location

facility density D (in km2)

0.1 1 10 100 1000 10000

population density p (in km2)

From Gastner and Newman (2006) (/!
» Optimal facility density D vs. population density p.
» Fitis D o p968 with r> = 0.94.
» Looking good for a 2/3 power...

Frame 41/86
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Optimal source allocation Supply Networks

Size-density law:

>

2/3

Dxp

» Why?
» Again: Different story to branching networks where
there was either one source or one sink.

» Now sources & sinks are distributed throughout
region...

Frame 43/86
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Optimal source allocation Supply Networks

» We first examine Stephan’s treatment (1977) '8 19l

» “Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries”
(Science, 1977)

» Zipf-like approach: invokes principle of minimal effort.
» Also known as the Homer principle.

Frame 44/86
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Supply Networks

Optimal source allocation

» Consider a region of area A and population P with a
single functional center that everyone needs to
access every day.

» Build up a general cost function based on time
expended to access and maintain center.

» Write average travel distance to center as d and
assume average speed of travel is v.

» Assume isometry: average travel distance d will be
on the length scale of the region which is ~ A'/?

» Average time expended per person in accessing
facility is therefore

d/v=CcA?)v

where c is an unimportant shape factor. Frame 45/86
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Supply Networks

Optimal source allocation

» Next assume facility requires regular maintenance
(person-hours per day)

» Call this quantity 7

» If burden of mainenance is shared then average cost
per person is 7/P where P = population.

» Replace P by pA where p is density.
» Total average time cost per person:

T =d/V+1/(pA) = gA'2 )V + 7/(pA).

» Now Minimize with respect to A...

Frame 46/86
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Optimal source allocation

» Differentiating...

oT 0 _

A= B <CA1/2/V+T/(pA)>
_ ¢ T _,
ToVAI2 T A2

» Rearrange:

» # facilities per unit area «
A71 O([)2/3

» Groovy...

Supply Networks

Frame 47/86

F DA



Optimal source allocation Supply Networks

An issue:

» Maintenance (7) is assumed to be independent of
population and area (P and A)

Frame 48/86
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Optimal source allocation Supply Networks

Stephan’s online book
“The Division of Territory in Society” is here (F).

Frame 49/86
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http://www.ac.wwu.edu/~stephan/Book/contents.html

Cartograms

Standard world map:

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms

Referen
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Supply Networks

n

Cartograms

Intr
Cartogram of countries ‘rescaled’ by population: Optimal branching
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Cartograms

Diffusion-based cartograms:

>

Idea of cartograms is to distort areas to more
accurately represent some local density p (e.qg.
population).

Many methods put forward—typically involve some
kind of physical analogy to spreading or repulsion.

Algorithm due to Gastner and Newman (2004) (! is
based on standard diffusion:

0

2 P

- — =0.
VP ot
Allow density to diffuse and trace the movement of

individual elements and boundaries.

Diffusion is constrained by boundary condition of
surrounding area having density p.

Supply Networks

Frame 53/86
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Cartograms

Child mortality:

— -l

(-

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms

Referen
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Supply Networks

Cartograms

Introduction

Optimal branching

Energy consumption:

e —— . Single Source

Cartograms

Frame 55/86
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Cartograms

Gross domestic product:

( .

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms
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Cartograms

Greenhouse gas emissions:

Supply Networks

Introduction

Optimal branching

Single Source

Cartograms

Frame 57/86
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Cartograms
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Supply Networks

Introduction

Optimal branching
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Supply Networks

Cartograms

Introduction
Optimal branching

People living with HIV:
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Cartograms Supply Networks

» The preceding sampling of Gastner & Newman’s
cartograms lives here (/).

» A larger collection can be found at
worldmapper.org (H).

)

Frame 60/86
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http://www-personal.umich.edu/~mejn/cartograms/
http://www.worldmapper.org/

Slze'den S|ty IaW Supply Networks

Cartograms

» Left: population density-equalized cartogram.
» Right: (population density)2/3-equalized cartogram.
» Facility density is uniform for p?/3 cartogram.

From Gastner and Newman (2006) |’!

Frame 61/86
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Supply Networks

Size-density law

- - I i | 3 " | 1
-8 0.1F |— p-median [ .
2 | ___ random population- ] ]
B 0.075F proportional

w2 . |
S i
E 0.05F
|

E 0.025 Cartograms

O L

s - ]

00 30 60 950 120 150 180

interior angle of Voronoi cell (degrees)

From Gastner and Newman (2006) |’!
» Cartogram’s Voronoi cells are somewhat hexagonal.

Frame 62/86
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Supply Networks

Size-density law

Deriving the optimal source distribution:

» Basic idea: Minimize the average distance from a
random individual to the nearest facility. "]

» Assume given a fixed population density p defined on
a spatial region Q.

» Formally, we want to find the locations of n sources
{Xy,...,Xn} that minimizes the cost function

F({)a,...,)?n}):/p( )min % — %% .

» Also known as the p-median problem.
» Not easy... in fact this one is an NP-hard problem. !”!

» Approximate solution originally due to
Gusein-Zade %!, Frame 64/86
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Supply Networks

Size-density law

Approximations:

» For a given set of source placements {Xi, ..., Xn},
the region Q2 is divided up into Voronoi cells (&), one
per source.

» Define A(X) as the area of the Voronoi cell containing
X.

» As per Stephan’s calculation, estimate typical
distance from X to the nearest source (say /) as

GA(X)!/?

where c¢; is a shape factor for the ith Voronoi cell.
» Approximate c; as a constant c.

Frame 65/86
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http://en.wikipedia.org/wiki/Voronoi_diagram

S | Ze'den S|ty IaW Supply Networks

Carrying on:

» The cost function is now
F = c/ p(X)A(X)/2d% .

Q

» We also have that the constraint that Voronoi cells
divide up the overall area of Q: Y7, A(X)) = Aq.
» Sneakily turn this into an integral constraint:
X n
QAKX)

» Within each cell, A(X) is constant.
» So... integral over each of the n cells equals 1.

Frame 66/86
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Supply Networks

Size-density law
Now a Lagrange multiplier story:

» By varying {Xi, ..., X, }, minimize

G(A) =c /Q p(X)A(X)1/2d% = A <n— /Q [AGX)] d)?)

» Next compute 6G/dA, the functional derivative (&) of
the functional G(A).

» This gives

[ [Soram 2 - aa) ] ax <o

» Setting the integrand to be zilch, we have:

p(X) = 2XcTA(X) %/,

Frame 67/86

F DA
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Size-density law Supply Networks
Now a Lagrange multiplier story:
» Rearranging, we have
A(X) = (2xc™1)2/3p723/3,

» Finally, we indentify 1/A(X) as D(X), an
approximation of the local source density.
» Substituting D = 1/A, we have
. c \2/3
D() = (50) -

» Normalizing (or solving for \):

2/3
D7) = B o I

Frame 68/86

F DA



Supply Networks

Global redistribution networks
One more thing:

» How do we supply these facilities?
» How do we best redistribute mail? People?
» How do we get beer to the pubs?

» Gaster and Newman model: cost is a function of
basic maintenance and travel time:

Cmaint + 'YCtravel-

Global redistribution
networks

» Travel time is more complicated: Take ‘distance’
between nodes to be a composite of shortest path
distance /; and number of legs to journey:

(1 = 9)¢j + 6(#hops).

» When § = 1, only number of hops matters. Frame 70/86
F DA




Global redistribution networks Supply Networks

3=05
., Nashville,
7o ™N

4 -F},

FL

Kansas City, MO (oo
i

Global redistribution
networks

From Gastner and Newman (2006) "/

Frame 71/86
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Public versus private facilities Supply Networks

Beyond minimizing distances:

» “Scaling laws between population and facility
densities” by Um et al., Proc. Natl. Acad. Sci.,
2009. %]

» Um et al. find empirically and argue theoretically that
the connection between facility and population
density

D x p®
does not universally hold with o = 2/3.

» Two idealized limiting classes:

1. For-profit, commercial facilities: o = 1;
2. Pro-social, public facilities: « = 2/3.

» Um et al. investigate facility locations in the United
States and South Korea.

Frame 73/86
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Public versus private facilities: evidence Supply Networks

>
N
=)

>

«— B __10'
E o~
2 £
§10'2» E10’
)
>
2 404 %10'3
@ SV
° S
= >
‘© 10-6 > . '0 . '2 L " % 10'5 L L L
& 10 10 10 10 8 10° 10° 10 10*
. . . 2 . . .
population density p (in /km®) population density p (in /kmz)

Public versus Private

» Left plot: ambulatory hospitals in the U.S.
» Right plot: public schools in the U.S.

» Note: break in scaling for public schools. Transition
from o ~ 2/3 to a = 1 around p ~ 100.

Frame 74/86
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Supply Networks

Public versus private facilities: evidence

Us facility o (SE) R?
Ambulatory hospital 1.13(1) 0.93
Beauty care 1.08(1) 0.86
Laundry 1.05(1) 0.90
Automotive repair 0.99(1) 0.92
Private school 0.95(1) 0.82
Restaurant 0.93(1) 0.89 .
Accommodation 0.89(1) 0.70 Rough transition
Bank 0.88(1) 0.89 :
Gas station 0.86(1) 0.94 betWeen pUbIIC
Death care 0.79(1) 0so and prlvate at
* Fire station 0.78(3) 0.93 ~
* Police station 0.71(6) 0.75 o= 08
Public school 0.69(1) 0.87 . .
. Note: * indicates
SK facility a (SE) R? L
Bank 1.18(2) 0.96 anaIySIS Is at
Parking place 1_13(2) 0.91 State/prOVInce Public versus Private
* Primary clinic 1.09(2) 1.00 )
* Hospital 0.96(5) 097 level; otherwise
* University/college 0.93(9) 0.89
Market place 0.87(2) 0s0 county level.
* Secondary school 0.77(3) 0.98
* Primary school 0.77(3) 0.97
Social welfare org. 0.75(2) 0.84
* Police station 0.71(5) 0.94
Government office 0.70(1) 0.93
* Fire station 0.60(4) 0.93 Frame 75/86
* Public health center 0.09(5) 0.19

F DA




Public versus private facilities: evidence Supply Networks

Public versus Private

A, C: ambulatory hospitals in the U.S.; B, D: public
schools in the U.S.; A, B: data; C, D: Voronoi diagram
from model simulation.

Frame 76/86
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Public versus private facilities: the story Supply Networks
So what’s going on?

» Social institutions seek to minimize distance of travel.

» Commercial institutions seek to maximize the
number of visitors.
» Defns: For the ith facility and its Voronoi cell V;,
define
» n; = population of the ith cell;
» (r;) = the average travel distance to the ith facility.
» s; = area of ith cell.
» Objective function to maximize for a facility (highly
constructed):

Vi = n,'<r,'>ﬂ with 0 < ﬂ < 1.
» Limits:

» (3 = 0: purely commercial.
» (0 =1: purely social.

Frame 77/86
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Public versus private facilities: the story Supply Networks

» Proceeding as per the
Gastner-Newman-Gusein-Zade calculation, Um et al.
obtain:

[p(F)P/ 2

D()—(‘) _ fQ[p ]2/(5+2)dx ~ [p()—(')]2/(ﬁ+2).

» For 8 =0, o = 1: commercial scaling is linear.
» For 3 =1, a = 2/3: social scaling is sublinear.

» You can try this too:
Insert question 2, assignment 4 (M) .

Frame 78/86

F DA
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