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» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py ~ k=7 for ‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [?!

» Somewhat misleading nomenclature...
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Networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, ... (non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not. ..
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The big deal:

» We move beyond describing of networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?
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Work that presaged scale-free networks

» 1924: G. Udny Yule I°!;
# Species per Genus
» 1926: Lotka [“l:
# Scientific papers per author
» 1953: Mandelbrot [°)):
Zipf’s law for word frequency through optimization
» 1955: Herbert Simon [ 191
Zipf’s law, city size, income, publications, and
species per genus
» 1965/1976: Derek de Solla Price [® 7!
Network of Scientific Citations




. Senle.
Outline e

Original model

Model details

Model details




BA model e

Model details

» Barabasi-Albert model = BA model.




BA model e

Model details

» Barabasi-Albert model = BA model.

» Key ingredients:
Growth and Preferential Attachment (PA).




BA model e

Model details

» Barabasi-Albert model = BA model.

» Key ingredients:
Growth and Preferential Attachment (PA).

» Step 1: start with mg disconnected nodes.




BA model e

Model details

» Barabasi-Albert model = BA model.
» Key ingredients:

Growth and Preferential Attachment (PA).
» Step 1: start with mg disconnected nodes.
» Step 2:




BA model e

Model details

» Barabasi-Albert model = BA model.
» Key ingredients:

Growth and Preferential Attachment (PA).
» Step 1: start with mg disconnected nodes.
» Step 2:

1. Growth—a new node appears at each time step
t=0,1,2,....




BA model e

Model details

» Barabasi-Albert model = BA model.

» Key ingredients:
Growth and Preferential Attachment (PA).
» Step 1: start with mg disconnected nodes.
» Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.




BA model e

Model details

» Barabasi-Albert model = BA model.

» Key ingredients:
Growth and Preferential Attachment (PA).

» Step 1: start with mg disconnected nodes.
» Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.
3. Preferential attachment—Probability of connecting to
ith node is « k;.




BA model e

Model details

» Barabasi-Albert model = BA model.
» Key ingredients:
Growth and Preferential Attachment (PA).
» Step 1: start with mg disconnected nodes.
» Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—Probability of connecting to
ith node is « k;.

» In essence, we have a rich-gets-richer scheme.
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» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
Ac =k

» Definition: Pyacn(k, t) is the attachment probability.
» For the original model:

- ki(t ki(t
Patiacn(node i, t) = N(Itg ) kmax(;)( ;
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BA model

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
Ac =k

» Definition: Pyacn(k, t) is the attachment probability.
» For the original model:

- ki(t ki(t
Patiacn(node i, t) = N(Itg ) kmax(;)( ;
>oim ki) Do KNK(1)

where N(t) = my + t is # nodes at time ¢
and N(t) is # degree k nodes at time t.
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» When (N + 1)th node is added, the expected
increase in the degree of node i is

Kin
—r—
S k()

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

» Approximate ki ni1 — ki n With d%ki,ti

E(kinst1 — Kin) = m

where t = N(t) — mp.
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Approximate analysis T
» Deal with denominator: each added node brings m

new edges.
N(t)

2 Ki(t) =2tm
j=1

» The node degree equation now simplifies:

d k() _ kf) _ 1

at ’"Z(vq) k() ~ 2mt 2t (0
/:

» Rearrange and solve:

dki(t)  dt
k(t)y — 2t

= kj(t) = Cj t1/2.

» Nextfindg;...
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» Know ith node appears at time

— i—mg fori> mg
hstart = 0 for i < mg

» So for i > my (exclude initial nodes), we must have

1/2
k,(t) =m < ) fort > ti,start-

ti,start

» All node degrees grow as '/? but later nodes have
larger t; iare Which flattens out growth curve.
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Approximate analysis T

» Know ith node appears at time

— i—mg fori> mg
hsart 0 fori < my

» So for i > my (exclude initial nodes), we must have

1/2
k,(t) =m < ) fort > ti,start-

ti,start

» All node degrees grow as '/? but later nodes have
larger t; iare Which flattens out growth curve.

» Early nodes do best (First-mover advantage).
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» m=3

> ti,start =

1,2,5, and 10.
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» So what'’s the degree distribution at time t?
» Use fact that birth time for added nodes is distributed

uniformly:
dti,start
P(ti,start)dti,start = m
» Using
t \'"? mPt
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» So what'’s the degree distribution at time t?
» Use fact that birth time for added nodes is distributed

uniformly:
P(t' )dt' ~ dti,start
I,start I,start — f+ Mo
» Using
1/2 m2t
ki(t)=m = = ——.
i) (t) e = (0

and by understanding that later arriving nodes have
lower degrees, we can say this:

mt

Pr(k,- < k) = Pr(t/,start > K2 )
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» Using the uniformity of start times:

m2t — o
Pr(k,- < k) = Pr(ti,start > K2 ) = t+ ;;70

» Differentiate to find Pr(k):

Pr(k) = %Pr(k; < k)
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m2t — o
Pr(k,- < k) = Pr(ti,start > K2 ) = t+ ;;70

» Differentiate to find Pr(k):

2mPt

d
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» Using the uniformity of start times:

Pr(k; < k) = Pr({j sart >

» Differentiate to find Pr(k):

2mPt

d

~2mPk—3as m— cc.
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» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3.

» Range true more generally for events with size
distributions that have power-law tails.

» 2 < ~ < 3: finite mean and ‘infinite’ variance (wild)

» In practice, v < 3 means variance is governed by
upper cutoff.

» ~ > 3: finite mean and variance (mild)
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Examples

WWW

WWWwW

Movie actors
Words (synonyms)

v =~ 2.1 for in-degree

v ~ 2.45 for out-degree
v~23

v ~2.8

The Internets is a different business...
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From Barabasi and Albert’s original paper “):
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Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration
graph with N = 212,250 vertices and average connectivity (k) = 28.78. (B) WWW, N =
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have

slopes (A) Yacror = 2.3, (B) Yyuw = 2.1 and (C) Ypower = 4
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v

Vary attachment kernel.
Vary mechanisms:

1. Add edge deletion
2. Add node deletion
3. Add edge rewiring

Deal with directed versus undirected networks.

Important Q.: Are there distinct universality classes
for these networks?

Q.: How does changing the model affect v?

Q.: Do we need preferential attachment and growth?
Q.: Do model details matter?

The answer is (surprisingly) yes.

v

v

v

vV v v Y
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v

Let’s look at preferential attachment (PA) a little more
closely.

PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

For example: If Pyucn(K) o< k, we need to determine
the constant of proportionality.

We need to know what everyone’s degree is...
PA is . an outrageous assumption of node capability.
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» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Py,ch(k) o< k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
» PAis ... an outrageous assumption of node capability.
» But a very simple mechanism saves the day. ..
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to attach randomly.
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We know that friends are weird...
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Preferential attachment through randomness (erte

» Instead of attaching preferentially, allow new nodes
to attach randomly.

» Now add an exira step: new nodes then connect to
some of their friends’ friends.

» Can also do this at random.
» We know that friends are weird...

» Assuming the existing network is random, we know
probability of a random friend having degree k is

Qk 0.8 kPk

» So rich-gets-richer scheme can now be seen to work
in a natural way.




. Senle.
Outline e

Original model

Robustness

Robustness




Robustness e

Robustness

» We've looked at some aspects of contagion on
scale-free networks:




Robustness e

Robustness

» We've looked at some aspects of contagion on
scale-free networks:

1. Facilitate disease-like spreading.




Robustness e

» We've looked at some aspects of contagion on
scale-free networks:
1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.




Robustness e

» We've looked at some aspects of contagion on
scale-free networks:

1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.

» Another simple story concerns system robustness.




Robustness e

» We've looked at some aspects of contagion on
scale-free networks:

1. Facilitate disease-like spreading.
2. Inhibit threshold-like spreading.

» Another simple story concerns system robustness.

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks”!"!
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» Standard random networks (Erdés-Rényi)
versus

Scale-free networks

Robustness

% e s B0 B ¥

Exponential

Scale-free

from
Albert et al., 2000
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E SE Failure o
I R I R » Plots of network
L 3.3 S oen o s s 20802050 diameter as a function R
Lo ] of fraction of nodes
removed
doo otz ot » Erd6s-Rényi versus
b Bl B scale-free networks
Pl memet o | v % » blue symbols =
r o@ﬁim ] ° e random removal
sl | PSR, » red symbols =
(SJOO 061 Fa!L:Or: 10000 meFa”ure 0.02 targeted removal .
' ' o ' ™ from (most connected first)

Albert et al., 2000




Robustness e

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.




Robustness e

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.




Robustness e

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.
» But: next issue is whether hubs are vulnerable or not.




Scale-Free

Robustness Networks

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.
» But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)




Robustness e

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.
But: next issue is whether hubs are vulnerable or not.

Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

Most connected nodes are either:

v

v

v

v

v




Robustness e

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.
But: next issue is whether hubs are vulnerable or not.

Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)
Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’

v

v

v

v

v




Robustness e

Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

All very reasonable: Hubs are a big deal.

But: next issue is whether hubs are vulnerable or not.
Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

v

v

v

v

v




Robustness e

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.
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Fooling with the mechanism:

» 2001: Redner & Krapivsky (RK) [l explored the
general attachment kernel:

Pr(attach to node i) oc Ax = K/’

where Ay is the attachment kernel and v > 0.

» RK also looked at changing the details of the
attachment kernel.

» We’'ll follow RK’s approach using rate equations (H).
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» Here’s the set up:

where Ny is the number of nodes of degree k.
1.

2.

3.

dN 1
ditk =2 [Ak—1Nk—1 — AxNi] + 91

The first term corresponds to degree k — 1 nodes
becoming degree k nodes.

The second term corresponds to degree k nodes
becoming degree k — 1 nodes.

Detail: Ag =0

One node is added per unit time.

Seed with some initial network

(e.g., a connected pair)
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» In general, probability of attaching to a specific node
of degree k at time t is

. A
Pr(attach to node /) = m

where A(t) = > ¢ ANk (t).
» E.g., for BAmodel, A = k and A =37 ; kNk(1).
» For Ax = k, we have

A(t) = i K'Ni (t) = 2t
k'=1

since one edge is being added per unit time.
» Detail: we are ignoring initial seed network’s edges.
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» So now
ddl\;k = % [Ak—1Nk—1 — AxNk] + k1
becomes
e = 2k~ DNy — KN+ 5

» As for BA method, look for steady-state growing
solution: Ny = nit.

» We replace dNi/dt with dnit/dt = ny.
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» So now
ddl\;k = % [Ak—1Nk—1 — AxNk] + k1
becomes
e = 2k~ DNy — KN+ 5

» As for BA method, look for steady-state growing
solution: Ny = nit.

» We replace dNi/dt with dnit/dt = ny.
» We arrive at a difference equation:

1
Nk = = [(k — 1)ng_1f — kngf] + O
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Universality? Networkes

» As expected, we have the same result as for the BA
model:

N (t) = nk(t)t o< k=2 for large k.

» Now: what happens if we start playing around with
the attachment kernel A,?

» Again, is the result v = 3 universal (H)?
» Natural modification: Ax = k¥ with v # 1.

» But we’ll first explore a more subtle modification of
Ay made by Redner/Krapivsky °!

» Keep Ag linear in k but tweak details.
» Idea: Relax from Ax = kto Ax ~ k as k — .
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Universality?
» Recall we used the normalization:

[e.e]
A(t) = K'Ne(t) ~ 2t for large t.
K=

» We now have

[ee]
A(t) =) AuNe(t)
K'=1
where we only know the asymptotic behavior of Ay.
» We assume that A = ut

» We'll find n later and make sure that our assumption
is consistent.

» As before, also assume N (t) = nkt.

Scale-Free

Networks
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» For large k:
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» For large k:
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» Time for pure excitement: Find asymptotic behavior
of ng given Ay — k as k — oc.

» For large k:
k k
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o ﬁ A1 A2 k—1 K
ALA ) (Aot p) (k=14 m) (Kt p)
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o k—;1—1

» Since i depends on Ag, details matter...




Universality? Networkes

» Now we need to find .




Universality? Networkes

» Now we need to find .
» Our assumption again: A = pt = 57, Nk(t)Ax




Universality?

» Now we need to find .
» Our assumption again: A = pt = 57, Nk(t)Ax
» Since Ny = nt, we have the simplification

1= k=1 Ak

Scale-Free

Networks




Universality? Networkes

» Now we need to find .
» Our assumption again: A = pt = 57, Nk(t)Ax
» Since Ny = nt, we have the simplification
1= k=1 Ak
» Now subsitute in our expression for ny:




Universality? Networkes

» Now we need to find .
» Our assumption again: A = pt = 57, Nk(t)Ax
» Since Ny = nt, we have the simplification
1= k=1 Ak
» Now subsitute in our expression for ny:

— /i
M:ZKK
=1 j

Ak

k

]
L1

D=

)
)




Universality? Networkes

» Now we need to find .
» Our assumption again: A = pt = 57, Nk(t)Ax
» Since Ny = nt, we have the simplification
1= k=1 Ak
» Now subsitute in our expression for ny:

— N
S
2 4,

1

11+

'3

k

2=




Universality?

» Now we need to find .
» Our assumption again: A = pt = 57, Nk(t)Ax
» Since Ny = nt, we have the simplification
1= k=1 Ak
» Now subsitute in our expression for ny:
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» Now we need to find .
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» Since Ny = nt, we have the simplification
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» Now we need to find .
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» Since Ny = nt, we have the simplification
1= k=1 Ak
» Now subsitute in our expression for ny:
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» Now we need to find .
» Our assumption again: A = pt = 57, Nk(t)Ax
» Since Ny = nt, we have the simplification
1= k=1 Ak
» Now subsitute in our expression for ny:

o

Kot
W:;%EH

» Closed form expression for .
» We can solve for 1 in some cases.

A

g
A

» Our assumption that A = ut is okay.
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» Amazingly, we can adjust A, and tune ~ to be
anywhere in [2, c0).

» v = 2is the lower limit since

o (e,
p= ZAknk ~ ank
k=1 k=1

must be finite.

» Let’s now look at a specific example of Ak to see this
range of ~ is possible.
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» Consider Ai =aand Ay = kfork > 2

» Find v = p + 1 by finding .
» Expression for pu:
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Universality? Networkes

1++v1+8a
pp 1) =205 5= LEVIHE

» Since v =+ 1, we have
0<a<x=22<y<

» Craziness...
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v

Rich-get-somewhat-richer:
A~k with0 <v <1,

General finding by Krapivsky and Redner: I°!

v

—v 5—c1k'~74correction terms
ne~k7'e .

v

Stretched exponentials (truncated power laws).
aka Weibull distributions.
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Universality: now details of kernel do not matter.
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v

Rich-get-somewhat-richer:

Ax ~ K" with0 < v < 1.

v

General finding by Krapivsky and Redner: I°!
Nk ~ k—Ve ¢ k1= 4correction terms.
Stretched exponentials (truncated power laws).

aka Weibull distributions.
Universality: now details of kernel do not matter.

vV v vy

Distribution of degree is universal providing v < 1.
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» For1/2 <v < 1:
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Sublinear attachment kernels

Details:
» For1/2 <v < 1:

K1—v_ol—v
Ny ~ kfl/ei‘u( T—v )

» For1/3<v<1/2:

1—v ﬁk1—2u

k
Ny ~ ke Fiw T T

» Andfor 1/(r +1) <v < 1/r, we have r pieces in
exponential.
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» Rich-get-much-richer:

Ax ~ Kk with v > 1.
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» Rich-get-much-richer:
Ak ~ KV with v > 1.

» Now a winner-take-all mechanism.

» One single node ends up being connected to almost
all other nodes.

» For v > 2, all but a finite # of nodes connect to one
node.
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