Applications of Random Networks Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

Outline

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Analysis of real networks

How to build revisited Motifs

References

- Problem: How much of a real network's structure is non-random?
- Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- Degree frequency N_k = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency *N_k* and then compare.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

- Problem: How much of a real network's structure is non-random?
- Key elephant in the room: the degree distribution P_k .
- ► First observe departure of *P_k* from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- Degree frequency N_k = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency *N_k* and then compare.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

- Problem: How much of a real network's structure is non-random?
- Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- Degree frequency N_k = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency *N_k* and then compare.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

- Problem: How much of a real network's structure is non-random?
- Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- Degree frequency N_k = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency *N_k* and then compare.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

- Problem: How much of a real network's structure is non-random?
- Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- Degree frequency N_k = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency *N_k* and then compare.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

- Problem: How much of a real network's structure is non-random?
- Key elephant in the room: the degree distribution P_k .
- First observe departure of P_k from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- Degree frequency N_k = observed frequency of degrees for a real network.
- What we now need to do: Create an ensemble of random networks with degree frequency N_k and then compare.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

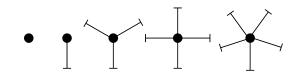
Outline

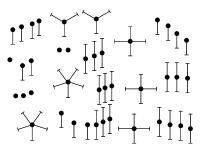
Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Analysis of real networks How to build revisited Motifs


References

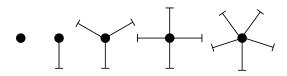

Frame 4/17

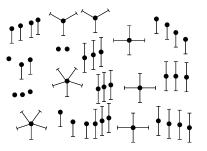
日 りへで

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

Randomly select stubs (not nodes!) and connect them.

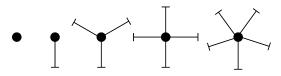

Must have an even number of stubs. Initially allow self- and repeat connections. Applications of Random Networks

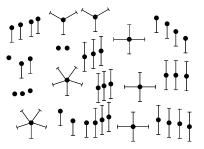

Analysis of real networks How to build revisited Motifs

References

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

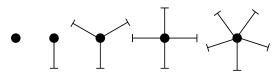

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.

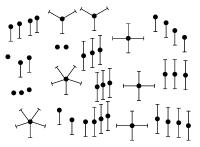

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):


- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.


Applications of Random Networks

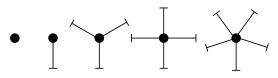
Analysis of real networks How to build revisited Motifs

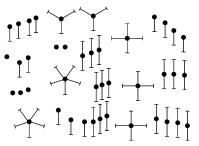
Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.

Applications of Random Networks


Analysis of real networks How to build revisited Motifs

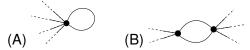

References

Frame 5/17 日 つくへ

Phase 1:

Idea: start with a soup of unconnected nodes with stubs (half-edges):

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.


Applications of Random Networks

Analysis of real networks How to build revisited Motifs

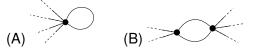
Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.

- Being careful: we can't change the degree of any node, so we can't simply move links around.
- Simplest solution: randomly rewire two edges at a time.

Applications of Random Networks


Analysis of real networks How to build revisited Motifs

References

Building random networks: First rewiring

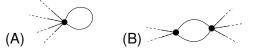
Phase 2:

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.

- Being careful: we can't change the degree of any node, so we can't simply move links around.
- Simplest solution: randomly rewire two edges at a time.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

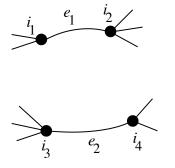

References

Frame 6/17

Building random networks: First rewiring

Phase 2:

Now find any (A) self-loops and (B) repeat edges and randomly rewire them.


- Being careful: we can't change the degree of any node, so we can't simply move links around.
- Simplest solution: randomly rewire two edges at a time.

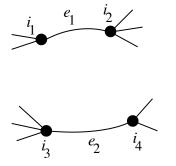
Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Frame 6/17

- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

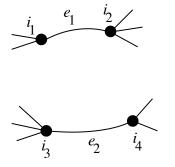

- Rewire one end of each edge.
- ▶ Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Frame 7/17 日 のへで

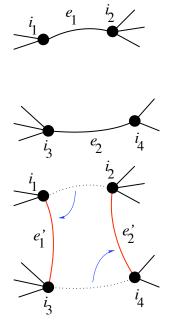

- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- ▶ Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References



- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

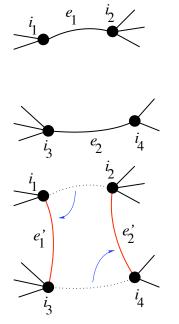

- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- Node degrees do not change.
- ► Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References


- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- ► Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- Randomly choose two edges. (Or choose problem edge and a random edge)
- Check to make sure edges are disjoint.

- Rewire one end of each edge.
- ► Node degrees do not change.
- Works if e₁ is a self-loop or repeated edge.
- Same as finding on/off/on/off 4-cycles. and rotating them.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Phase 2:

 Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- Rule of thumb: # Rewirings ~ 10 × # edges^[1].

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Phase 2:

 Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- Rule of thumb: # Rewirings $\simeq 10 \times$ # edges^[1].

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Phase 2:

 Use rewiring algorithm to remove all self and repeat loops.

Phase 3:

- Randomize network wiring by applying rewiring algorithm liberally.
- ► Rule of thumb: # Rewirings ~ 10 × # edges^[1].

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

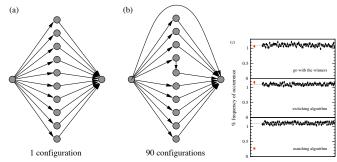
Frame 8/17

Random sampling

- Problem with only joining up stubs is failure to randomly sample from all possible networks.
- Example from Milo et al. (2003)^[1]:

Applications of Random Networks

Analysis of real networks How to build revisited Motifs


References

Frame 9/17

P

Random sampling

- Problem with only joining up stubs is failure to randomly sample from all possible networks.
- Example from Milo et al. (2003)^[1]:

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Frame 9/17

What if we have P_k instead of N_k?

- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- What if we have P_k instead of N_k?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- ► Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- What if we have P_k instead of N_k?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- ▶ Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- What if we have P_k instead of N_k?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- Easy to do exactly numerically since k is discrete.
- Note: not all P_k will always give nodes that can be wired together.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- What if we have P_k instead of N_k?
- Must now create nodes before start of the construction algorithm.
- Generate N nodes by sampling from degree distribution P_k.
- Easy to do exactly numerically since k is discrete.
- Note: not all P_k will always give nodes that can be wired together.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Outline

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Analysis of real networks How to build revisited

Motifs

References

Frame 11/17 日 のへへ

Network motifs

 Idea of motifs^[2] introduced by Shen-Orr, Alon et al. in 2002.

- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Network motifs

- Idea of motifs^[2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- ► Used network randomization to produce ensemble of alternate networks with same degree frequency *N*_{*k*}.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- Idea of motifs^[2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- ► Used network randomization to produce ensemble of alternate networks with same degree frequency *N*_{*k*}.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- Idea of motifs^[2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

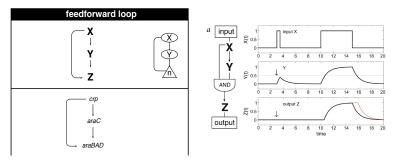
References

- Idea of motifs^[2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

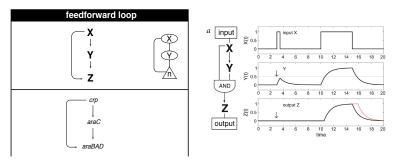

- Idea of motifs^[2] introduced by Shen-Orr, Alon et al. in 2002.
- Looked at gene expression within full context of transcriptional regulation networks.
- Specific example of Escherichia coli.
- Directed network with 577 interactions (edges) and 424 operons (nodes).
- Used network randomization to produce ensemble of alternate networks with same degree frequency N_k.
- Looked for certain subnetworks (motifs) that appeared more or less often than expected

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Frame 12/17 日 のへで

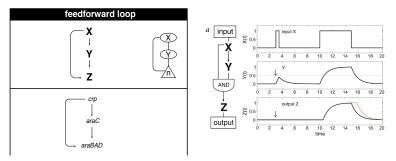


Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

- > Z only turns on in response to sustained activity in X.
- ► Turning off *X* rapidly turns off *Z*.
- Analogy to elevator doors.

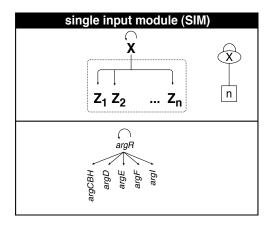


- Z only turns on in response to sustained activity in X.
- Turning off X rapidly turns off Z.
- Analogy to elevator doors.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

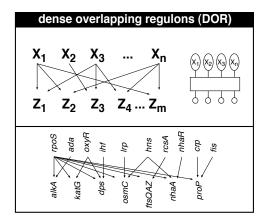


- Z only turns on in response to sustained activity in X.
- Turning off X rapidly turns off Z.
- Analogy to elevator doors.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References



Master switch.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

Frame 15/17 日 のへへ

Analysis of real

networks How to build revisited Motifs

Applications of

Bandom Networks

References

- Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- For more, see work carried out by Wiggins et al. at Columbia.

- Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- For more, see work carried out by Wiggins et al. at Columbia.

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References

References I

- [1] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon.
 On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf (H)
- [2] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*. *Nature Genetics*, pages 64–68, 2002. pdf (III)

Applications of Random Networks

Analysis of real networks How to build revisited Motifs

References