Applications of Random Networks Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Applications of Random Networks Analysis of real networks How to build revisited Motifs References

Outline

Analysis of real networks

How to build revisited Motifs

References

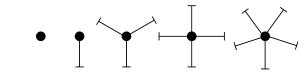
More on building random networks

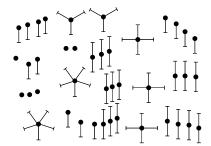
- ► Problem: How much of a real network's structure is non-random?
- \triangleright Key elephant in the room: the degree distribution P_k .
- ► First observe departure of *P_k* from a Poisson distribution.
- Next: measure the departure of a real network with a degree frequency N_k from a random network with the same degree frequency.
- ▶ Degree frequency N_K = observed frequency of degrees for a real network.
- ▶ What we now need to do: Create an ensemble of random networks with degree frequency N_k and then compare.

Applications of Random Networks Analysis of real networks

Frame 1/17

母 り900


Analysis of real networks How to build revisited Motifs References


Frame 3/17

Building random networks: Stubs

Phase 1:

► Idea: start with a soup of unconnected nodes with stubs (half-edges):

- Randomly select stubs (not nodes!) and connect them.
- Must have an even number of stubs.
- Initially allow self- and repeat connections.

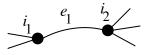
Analysis of real networks How to build revisited Motifs

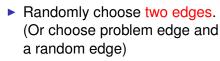
References

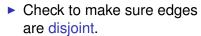
Frame 5/17

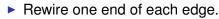
Building random networks: First rewiring

Phase 2:


Now find any (A) self-loops and (B) repeat edges and randomly rewire them.




- ▶ Being careful: we can't change the degree of any node, so we can't simply move links around.
- ► Simplest solution: randomly rewire two edges at a time.


Applications of Random Networks Analysis of real networks How to build revisited References

General random rewiring algorithm

- ► Node degrees do not change.
- ▶ Works if e₁ is a self-loop or repeated edge.
- ► Same as finding on/off/on/off 4-cycles. and rotating them.

Frame 7/17

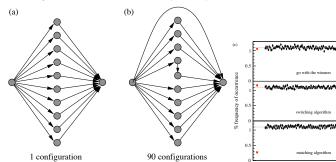
Frame 6/17

Sampling random networks

Phase 2:

▶ Use rewiring algorithm to remove all self and repeat loops.

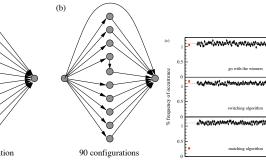
Phase 3:


- ► Randomize network wiring by applying rewiring algorithm liberally.
- ▶ Rule of thumb: # Rewirings $\simeq 10 \times \text{# edges}^{[1]}$.

Applications of Random Networks Analysis of real networks How to build revisited References

Frame 8/17

Random sampling


- Problem with only joining up stubs is failure to randomly sample from all possible networks.
- ► Example from Milo et al. (2003) [1]:

Random Network

analysis of real

References

Frame 9/17

Sampling random networks

- ▶ What if we have P_k instead of N_k ?
- Must now create nodes before start of the construction algorithm.
- ▶ Generate N nodes by sampling from degree distribution P_k .
- ▶ Easy to do exactly numerically since *k* is discrete.
- Note: not all P_k will always give nodes that can be wired together.

Applications of Random Networks

Analysis of real networks
How to build revisited Motifs

References

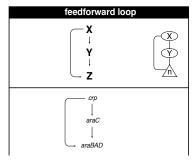
Network motifs

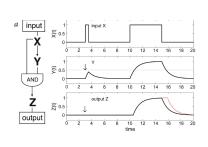
- ▶ Idea of motifs [2] introduced by Shen-Orr, Alon et al. in 2002.
- ► Looked at gene expression within full context of transcriptional regulation networks.
- ▶ Specific example of Escherichia coli.
- ▶ Directed network with 577 interactions (edges) and 424 operons (nodes).
- ▶ Used network randomization to produce ensemble of alternate networks with same degree frequency N_k .
- ► Looked for certain subnetworks (motifs) that appeared more or less often than expected

Applications of Random Networks

Analysis of real networks
How to build revisited
Motifs

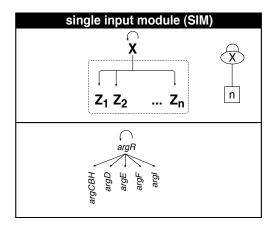
References


Frame 12/17



Frame 10/17

Network motifs


- ▶ *Z* only turns on in response to sustained activity in *X*.
- ▶ Turning off *X* rapidly turns off *Z*.
- Analogy to elevator doors.

Applications of Random Networks

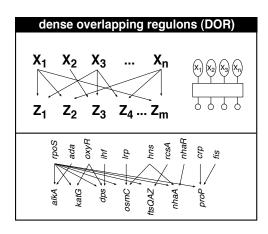
Analysis of real networks How to build revisited Motifs References

Frame 13/17

Network motifs

Master switch.

Applications of Random Networks


Analysis of real networks How to build revisited Motifs

References

Frame 14/17

Network motifs

Frame 15/17

回 りへで

Network motifs

- ▶ Note: selection of motifs to test is reasonable but nevertheless ad-hoc.
- For more, see work carried out by Wiggins et al. at Columbia.

Analysis of real networks Motifs

Frame 16/17

References I

[1] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, and U. Alon.

On the uniform generation of random graphs with prescribed degree sequences, 2003. pdf (H)

[2] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli.

Nature Genetics, pages 64–68, 2002. pdf (⊞)

Applications of Random Networks networks References

Frame 17/17 母 りへで