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Random networks

Pure, abstract random networks:

I Consider set of all networks with N labelled nodes
and m edges.

I Standard random network = randomly chosen
network from this set.

I To be clear: each network is equally probable.
I Sometimes equiprobability is a good assumption, but

it is always an assumption.
I Known as Erdős-Rényi random networks or ER

graphs.
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Random networks

Some features:
I Number of possible edges:

0 ≤ m ≤
(

N
2

)
=

N(N − 1)

2

I Given m edges, there are
((N

2)
m

)
different possible

networks.
I Crazy factorial explosion for 1 � m �

(N
2

)
.

I Limit of m = 0: empty graph.
I Limit of m =

(N
2

)
: complete or fully-connected graph.

I Real world: links are usually costly so real networks
are almost always sparse.
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Random networks

How to build standard random networks:
I Given N and m.
I Two probablistic methods (we’ll see a third later on)

1. Connect each of the
(N

2

)
pairs with appropriate

probability p.
I Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting
edges without replacement.

I Algorithm: Randomly choose a pair of nodes i and j ,
i 6= j , and connect if unconnected; repeat until all m
edges are allocated.

I Best for adding relatively small numbers of links
(most cases).

I 1 and 2 are effectively equivalent for large N.
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Random networks
A few more things:

I For method 1, # links is probablistic:

〈m〉 = p
(

N
2

)
= p

1
2

N(N − 1)

I So the expected or average degree is

〈k〉 =
2 〈m〉

N

=
2
N

p
1
2

N(N − 1) =
�2

��N
p

1
�2

��N(N − 1) = p(N − 1).

I Which is what it should be...
I If we keep 〈k〉 constant then p ∝ 1/N → 0 as

N →∞.
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Random networks: examples

Next slides:
Example realizations of random networks

I N = 500
I Vary m, the number of edges from 100 to 1000.
I Average degree 〈k〉 runs from 0.4 to 4.
I Look at full network plus the largest component.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 10/89
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Next slides:
Example realizations of random networks

I N = 500
I Vary m, the number of edges from 100 to 1000.
I Average degree 〈k〉 runs from 0.4 to 4.
I Look at full network plus the largest component.
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Random networks: examples

Next slides:
Example realizations of random networks

I N = 500
I Vary m, the number of edges from 100 to 1000.
I Average degree 〈k〉 runs from 0.4 to 4.
I Look at full network plus the largest component.
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Random networks: examples

Next slides:
Example realizations of random networks

I N = 500
I Vary m, the number of edges from 100 to 1000.
I Average degree 〈k〉 runs from 0.4 to 4.
I Look at full network plus the largest component.
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Random networks: examples

Next slides:
Example realizations of random networks

I N = 500
I Vary m, the number of edges from 100 to 1000.
I Average degree 〈k〉 runs from 0.4 to 4.
I Look at full network plus the largest component.
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 100
average degree 〈k〉 = 0.4
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 200
average degree 〈k〉 = 0.8
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 230
average degree 〈k〉 = 0.92
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 240
average degree 〈k〉 = 0.96
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 250
average degree 〈k〉 = 1
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 260
average degree 〈k〉 = 1.04
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 280
average degree 〈k〉 = 1.12
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 300
average degree 〈k〉 = 1.2
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 500
average degree 〈k〉 = 2
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Random networks: examples

entire network: largest component:

N = 500, number of edges m = 1000
average degree 〈k〉 = 4
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Random networks: examples for N=500

m = 100
〈k〉 = 0.4

m = 260
〈k〉 = 1.04

m = 200
〈k〉 = 0.8

m = 280
〈k〉 = 1.12

m = 230
〈k〉 = 0.92

m = 300
〈k〉 = 1.2

m = 240
〈k〉 = 0.96

m = 500
〈k〉 = 2

m = 250
〈k〉 = 1

m = 1000
〈k〉 = 4
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Random networks: largest components

m = 100
〈k〉 = 0.4

m = 260
〈k〉 = 1.04

m = 200
〈k〉 = 0.8

m = 280
〈k〉 = 1.12

m = 230
〈k〉 = 0.92

m = 300
〈k〉 = 1.2

m = 240
〈k〉 = 0.96

m = 500
〈k〉 = 2

m = 250
〈k〉 = 1

m = 1000
〈k〉 = 4
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Random networks: examples for N=500

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1
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Random networks: largest components

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1

m = 250
〈k〉 = 1
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Random networks

Clustering:

I For method 1, what is the clustering coefficient for a
finite network?

I Consider triangle/triple clustering coefficient
(Newman [1]):

C2 =
3×#triangles

#triples

I Recall: C2 = probability that two nodes are
connected given they have a friend in common.

I For standard random networks, we have simply that

C2 = p.
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connected given they have a friend in common.

I For standard random networks, we have simply that

C2 = p.
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I Recall: C2 = probability that two nodes are
connected given they have a friend in common.

I For standard random networks, we have simply that
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Random networks

Clustering:

I For method 1, what is the clustering coefficient for a
finite network?

I Consider triangle/triple clustering coefficient
(Newman [1]):

C2 =
3×#triangles

#triples

I Recall: C2 = probability that two nodes are
connected given they have a friend in common.

I For standard random networks, we have simply that

C2 = p.
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Random networks

Clustering:

I So for large random networks (N →∞), clustering
drops to zero.

I Key structural feature of random networks is that
they locally look like branching networks (no loops).
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Random networks

Clustering:

I So for large random networks (N →∞), clustering
drops to zero.

I Key structural feature of random networks is that
they locally look like branching networks (no loops).
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Random networks
Degree distribution:

I Recall pk = probability that a randomly selected node
has degree k .

I Consider method 1 for constructing random
networks: each possible link is realized with
probability p.

I Now consider one node: there are ‘N − 1 choose k ’
ways the node can be connected to k of the other
N − 1 nodes.

I Each connection occurs with probability p, each
non-connection with probability (1− p).

I Therefore have a binomial distribution:

P(k ; p, N) =

(
N − 1

k

)
pk (1− p)N−1−k .
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ways the node can be connected to k of the other
N − 1 nodes.

I Each connection occurs with probability p, each
non-connection with probability (1− p).

I Therefore have a binomial distribution:

P(k ; p, N) =

(
N − 1

k

)
pk (1− p)N−1−k .



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 30/89

Random networks

Limiting form of P(k ; p, N):

I Our degree distribution:
P(k ; p, N) =

(N−1
k

)
pk (1− p)N−1−k .

I What happens as N →∞?
I We must end up with the normal distribution right?
I If p is fixed, then we would end up with a Gaussian

with average degree 〈k〉 ' pN →∞.
I But we want to keep 〈k〉 fixed...
I So examine limit of P(k ; p, N) when p → 0 and

N →∞ with 〈k〉 = p(N − 1) = constant.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 30/89

Random networks

Limiting form of P(k ; p, N):

I Our degree distribution:
P(k ; p, N) =

(N−1
k

)
pk (1− p)N−1−k .

I What happens as N →∞?
I We must end up with the normal distribution right?
I If p is fixed, then we would end up with a Gaussian

with average degree 〈k〉 ' pN →∞.
I But we want to keep 〈k〉 fixed...
I So examine limit of P(k ; p, N) when p → 0 and

N →∞ with 〈k〉 = p(N − 1) = constant.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 30/89

Random networks

Limiting form of P(k ; p, N):

I Our degree distribution:
P(k ; p, N) =

(N−1
k

)
pk (1− p)N−1−k .

I What happens as N →∞?
I We must end up with the normal distribution right?
I If p is fixed, then we would end up with a Gaussian

with average degree 〈k〉 ' pN →∞.
I But we want to keep 〈k〉 fixed...
I So examine limit of P(k ; p, N) when p → 0 and

N →∞ with 〈k〉 = p(N − 1) = constant.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 30/89

Random networks

Limiting form of P(k ; p, N):

I Our degree distribution:
P(k ; p, N) =

(N−1
k

)
pk (1− p)N−1−k .

I What happens as N →∞?
I We must end up with the normal distribution right?
I If p is fixed, then we would end up with a Gaussian

with average degree 〈k〉 ' pN →∞.
I But we want to keep 〈k〉 fixed...
I So examine limit of P(k ; p, N) when p → 0 and

N →∞ with 〈k〉 = p(N − 1) = constant.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 30/89

Random networks

Limiting form of P(k ; p, N):

I Our degree distribution:
P(k ; p, N) =

(N−1
k

)
pk (1− p)N−1−k .

I What happens as N →∞?
I We must end up with the normal distribution right?
I If p is fixed, then we would end up with a Gaussian

with average degree 〈k〉 ' pN →∞.
I But we want to keep 〈k〉 fixed...
I So examine limit of P(k ; p, N) when p → 0 and

N →∞ with 〈k〉 = p(N − 1) = constant.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 30/89

Random networks

Limiting form of P(k ; p, N):

I Our degree distribution:
P(k ; p, N) =

(N−1
k

)
pk (1− p)N−1−k .

I What happens as N →∞?
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Limiting form of P(k ; p, N):

I Substitute p = 〈k〉
N−1 into P(k ; p, N) and hold k fixed:

P(k ; p, N) =

(
N − 1

k

) (
〈k〉

N − 1

)k (
1− 〈k〉

N − 1

)N−1−k

=
(N − 1)!

k !(N − 1− k)!

〈k〉k

(N − 1)k

(
1− 〈k〉

N − 1

)N−1−k

=
(N − 1)(N − 2) · · · (N − k)

k !

〈k〉k

(N − 1)k

(
1− 〈k〉

N − 1

)N−1−k
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Limiting form of P(k ; p, N):

I Substitute p = 〈k〉
N−1 into P(k ; p, N) and hold k fixed:

P(k ; p, N) =

(
N − 1

k

) (
〈k〉

N − 1

)k (
1− 〈k〉

N − 1

)N−1−k

=
(N − 1)!

k !(N − 1− k)!

〈k〉k

(N − 1)k

(
1− 〈k〉

N − 1

)N−1−k

=
(N − 1)(N − 2) · · · (N − k)

k !

〈k〉k

(N − 1)k

(
1− 〈k〉

N − 1

)N−1−k

=
Nk (1− 1

N ) · · · (1− k
N )

k !Nk
〈k〉k

(1− 1
N )k

(
1− 〈k〉

N − 1

)N−1−k
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Limiting form of P(k ; p, N):

I We are now here:

P(k ; p, N) ' 〈k〉k

k !

(
1− 〈k〉

N − 1

)N−1−k

I Now use the excellent result:

lim
n→∞

(
1 +

x
n

)n
= ex .

(Use l’Hôpital’s rule to prove.)

I Identifying n = N − 1 and x = −〈k〉:

P(k ; 〈k〉) ' 〈k〉k

k !
e−〈k〉

(
1− 〈k〉

N − 1

)−k

→ 〈k〉k

k !
e−〈k〉

I This is a Poisson distribution (�) with mean 〈k〉.

http://en.wikipedia.org/wiki/Poisson_distribution
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General random networks

I So... standard random networks have a Poisson
degree distribution

I Generalize to arbitrary degree distribution Pk .
I Also known as the configuration model [1].
I Can generalize construction method from ER

random networks.
I Assign each node a weight w from some distribution

Pw and form links with probability

P(link between i and j) ∝ wiwj .

I But we’ll be more interested in
1. Randomly wiring up (and rewiring) already existing

nodes with fixed degrees.
2. Examining mechanisms that lead to networks with

certain degree distributions.
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Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

I N = 1000.
I Pk ∝ k−γ for k ≥ 1.
I Set P0 = 0 (no isolated nodes).
I Vary exponent γ between 2.10 and 2.91.
I Again, look at full network plus the largest

component.
I Apart from degree distribution, wiring is random.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 35/89

Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

I N = 1000.
I Pk ∝ k−γ for k ≥ 1.
I Set P0 = 0 (no isolated nodes).
I Vary exponent γ between 2.10 and 2.91.
I Again, look at full network plus the largest

component.
I Apart from degree distribution, wiring is random.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 35/89

Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

I N = 1000.
I Pk ∝ k−γ for k ≥ 1.
I Set P0 = 0 (no isolated nodes).
I Vary exponent γ between 2.10 and 2.91.
I Again, look at full network plus the largest

component.
I Apart from degree distribution, wiring is random.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 35/89

Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

I N = 1000.
I Pk ∝ k−γ for k ≥ 1.
I Set P0 = 0 (no isolated nodes).
I Vary exponent γ between 2.10 and 2.91.
I Again, look at full network plus the largest

component.
I Apart from degree distribution, wiring is random.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 35/89

Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

I N = 1000.
I Pk ∝ k−γ for k ≥ 1.
I Set P0 = 0 (no isolated nodes).
I Vary exponent γ between 2.10 and 2.91.
I Again, look at full network plus the largest

component.
I Apart from degree distribution, wiring is random.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 35/89

Random networks: examples

Coming up:
Example realizations of random networks with power law
degree distributions:

I N = 1000.
I Pk ∝ k−γ for k ≥ 1.
I Set P0 = 0 (no isolated nodes).
I Vary exponent γ between 2.10 and 2.91.
I Again, look at full network plus the largest

component.
I Apart from degree distribution, wiring is random.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 35/89

Random networks: examples

Coming up:
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Random networks: examples for N=1000

γ = 2.1
〈k〉 = 3.448

γ = 2.55
〈k〉 = 1.712

γ = 2.19
〈k〉 = 2.986

γ = 2.64
〈k〉 = 1.6

γ = 2.28
〈k〉 = 2.306

γ = 2.73
〈k〉 = 1.862

γ = 2.37
〈k〉 = 2.504

γ = 2.82
〈k〉 = 1.386

γ = 2.46
〈k〉 = 1.856

γ = 2.91
〈k〉 = 1.49
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Random networks: largest components

γ = 2.1
〈k〉 = 3.448

γ = 2.55
〈k〉 = 1.712

γ = 2.19
〈k〉 = 2.986

γ = 2.64
〈k〉 = 1.6

γ = 2.28
〈k〉 = 2.306

γ = 2.73
〈k〉 = 1.862

γ = 2.37
〈k〉 = 2.504

γ = 2.82
〈k〉 = 1.386

γ = 2.46
〈k〉 = 1.856

γ = 2.91
〈k〉 = 1.49



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 38/89

Poisson basics:

I Normalization: we must have
∞∑

k=0

P(k ; 〈k〉) = 1

I Checking:

∞∑
k=0

P(k ; 〈k〉) =
∞∑

k=0

〈k〉k

k !
e−〈k〉

= e−〈k〉
∞∑

k=0

〈k〉k

k !

= e−〈k〉e〈k〉 = 1X
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Poisson basics:
I Mean degree: we must have

〈k〉 =
∞∑

k=0

kP(k ; 〈k〉).

I Checking:
∞∑

k=0

kP(k ; 〈k〉) =
∞∑

k=0

k
〈k〉k

k !
e−〈k〉

= e−〈k〉
∞∑

k=1

〈k〉k

(k − 1)!

= 〈k〉e−〈k〉
∞∑

k=1

〈k〉k−1

(k − 1)!

= 〈k〉e−〈k〉
∞∑
i=0

〈k〉i

i!
= 〈k〉e−〈k〉e〈k〉 = 〈k〉X

I We’ll get to a better way of doing this...
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Poisson basics:

I The variance of degree distributions for random
networks turns out to be very important.

I Use calculation similar to one for finding 〈k〉 to find
the second moment:

〈k2〉 = 〈k〉2 + 〈k〉.

I Variance is then

σ2 = 〈k2〉 − 〈k〉2 = 〈k〉2 + 〈k〉 − 〈k〉2 = 〈k〉.

I So standard deviation σ is equal to
√
〈k〉.

I Note: This is a special property of Poisson
distribution and can trip us up...
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The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 41/89

The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 41/89

The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 41/89

The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 41/89

The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 41/89

The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 41/89

The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 41/89

The edge-degree distribution:

I The degree distribution Pk is fundamental for our
description of many complex networks

I Again: Pk is the degree of randomly chosen node.
I A second very important distribution arises from

choosing randomly on edges rather than on nodes.
I Define Qk to be the probability the node at a random

end of a randomly chosen edge has degree k .
I Now choosing nodes based on their degree (i.e.,

size):
Qk ∝ kPk

I Normalized form:

Qk =
kPk∑∞

k ′=0 k ′Pk ′
=

kPk

〈k〉
.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 42/89

The edge-degree distribution:

I For random networks, Qk is also the probability that
a friend (neighbor) of a random node has k friends.

I Useful variant on Qk :

Rk = probability that a friend of a random node has
k other friends.

I

Rk =
(k + 1)Pk+1∑

k ′=0(k ′ + 1)Pk ′+1
=

(k + 1)Pk+1

〈k〉

I Equivalent to friend having degree k + 1.
I Natural question: what’s the expected number of

other friends that one friend has?
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The edge-degree distribution:

I Note: our result, 〈k〉R = 1
〈k〉

(
〈k2〉 − 〈k〉

)
, is true for

all random networks, independent of degree
distribution.

I For standard random networks, recall

〈k2〉 = 〈k〉2 + 〈k〉.

I Therefore:

〈k〉R =
1
〈k〉

(
〈k〉2 + 〈k〉 − 〈k〉

)
= 〈k〉

I Again, neatness of results is a special property of the
Poisson distribution.

I So friends on average have 〈k〉 other friends, and
〈k〉+ 1 total friends...
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Two reasons why this matters

Reason #1:

I Average # friends of friends per node is

〈k2〉 = 〈k〉 × 〈k〉R = 〈k〉 1
〈k〉

(
〈k2〉 − 〈k〉

)
= 〈k2〉 − 〈k〉.

I Key: Average depends on the 1st and 2nd moments of Pk
and not just the 1st moment.

I Three peculiarities:

1. We might guess 〈k2〉 = 〈k〉(〈k〉 − 1) but it’s actually
〈k(k − 1)〉.

2. If Pk has a large second moment,
then 〈k2〉 will be big.
(e.g., in the case of a power-law distribution)

3. Your friends are different to you...
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Two reasons why this matters

More on peculiarity #3:

I A node’s average # of friends: 〈k〉
I Friend’s average # of friends: 〈k2〉

〈k〉
I Comparison:

〈k2〉
〈k〉

= 〈k〉〈k
2〉

〈k〉2
= 〈k〉σ

2 + 〈k〉2

〈k〉2
= 〈k〉

(
1 +

σ2

〈k〉2

)
≥ 〈k〉

I So only if everyone has the same degree
(variance= σ2 = 0) can a node be the same as its
friends.

I Intuition: for random networks, the more connected a
node, the more likely it is to be chosen as a friend.
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node, the more likely it is to be chosen as a friend.
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Two reasons why this matters

(Big) Reason #2:

I 〈k〉R is key to understanding how well random
networks are connected together.

I e.g., we’d like to know what’s the size of the largest
component within a network.

I As N →∞, does our network have a giant
component?

I Defn: Component = connected subnetwork of nodes
such that ∃ path between each pair of nodes in the
subnetwork, and no node outside of the subnetwork
is connected to it.

I Defn: Giant component = component that comprises
a non-zero fraction of a network as N →∞.

I Note: Component = Cluster
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Structure of random networks

Giant component:

I A giant component exists if when we follow a random
edge, we are likely to hit a node with at least 1 other
outgoing edge.

I Equivalently, expect exponential growth in node
number as we move out from a random node.

I All of this is the same as requiring 〈k〉R > 1.
I Giant component condition (or percolation condition):

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
> 1

I Again, see that the second moment is an essential
part of the story.

I Equivalent statement: 〈k2〉 > 2〈k〉
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Giant component

Standard random networks:
I Recall 〈k2〉 = 〈k〉2 + 〈k〉.
I Condition for giant component:

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
=
〈k〉2 + 〈k〉 − 〈k〉

〈k〉
= 〈k〉

I Therefore when 〈k〉 > 1, standard random networks
have a giant component.

I When 〈k〉 < 1, all components are finite.
I Fine example of a continuous phase transition (�).
I We say 〈k〉 = 1 marks the critical point of the system.

http://en.wikipedia.org/wiki/Phase_transition
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Giant component

Standard random networks:
I Recall 〈k2〉 = 〈k〉2 + 〈k〉.
I Condition for giant component:

〈k〉R =
〈k2〉 − 〈k〉
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=
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Giant component

Standard random networks:
I Recall 〈k2〉 = 〈k〉2 + 〈k〉.
I Condition for giant component:

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
=
〈k〉2 + 〈k〉 − 〈k〉

〈k〉
= 〈k〉

I Therefore when 〈k〉 > 1, standard random networks
have a giant component.

I When 〈k〉 < 1, all components are finite.
I Fine example of a continuous phase transition (�).
I We say 〈k〉 = 1 marks the critical point of the system.

http://en.wikipedia.org/wiki/Phase_transition
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Giant component

Standard random networks:
I Recall 〈k2〉 = 〈k〉2 + 〈k〉.
I Condition for giant component:

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
=
〈k〉2 + 〈k〉 − 〈k〉

〈k〉
= 〈k〉

I Therefore when 〈k〉 > 1, standard random networks
have a giant component.

I When 〈k〉 < 1, all components are finite.
I Fine example of a continuous phase transition (�).
I We say 〈k〉 = 1 marks the critical point of the system.

http://en.wikipedia.org/wiki/Phase_transition
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Giant component

Random networks with skewed Pk :

I e.g, if Pk = ck−γ with 2 < γ < 3 then

〈k2〉 = c
∞∑

k=0

k2k−γ

∼
∫ ∞

x=0
x2−γdx

∝ x3−γ
∣∣∣∞
x=0

= ∞ (> 〈k〉).

I So giant component always exists for these kinds of
networks.

I Cutoff scaling is k−3: if γ > 3 then we have to look
harder at 〈k〉R.
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And how big is the largest component?

I Define S1 as the size of the largest component.

I Consider an infinite ER random network with average
degree 〈k〉.

I Let’s find S1 with a back-of-the-envelope argument.

I Define δ as the probability that a randomly chosen node
does not belong to the largest component.

I Simple connection: δ = 1− S1.

I Dirty trick: If a randomly chosen node is not part of the
largest component, then none of its neighbors are.

I So

δ =
∞∑

k=0

Pkδk

I Substitute in Poisson distribution...
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Giant component

I Carrying on:

δ =
∞∑

k=0

Pkδk =
∞∑

k=0

〈k〉k

k !
e−〈k〉δk

= e−〈k〉
∞∑

k=0

(〈k〉δ)k

k !

= e−〈k〉e〈k〉δ = e−〈k〉(1−δ).

I Now substitute in δ = 1− S1 and rearrange to obtain:

S1 = 1− e−〈k〉S1 .



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 53/89

Giant component

I Carrying on:

δ =
∞∑

k=0

Pkδk =
∞∑

k=0

〈k〉k

k !
e−〈k〉δk

= e−〈k〉
∞∑

k=0

(〈k〉δ)k

k !

= e−〈k〉e〈k〉δ = e−〈k〉(1−δ).

I Now substitute in δ = 1− S1 and rearrange to obtain:

S1 = 1− e−〈k〉S1 .



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 53/89

Giant component

I Carrying on:

δ =
∞∑

k=0

Pkδk =
∞∑

k=0

〈k〉k

k !
e−〈k〉δk

= e−〈k〉
∞∑

k=0

(〈k〉δ)k

k !

= e−〈k〉e〈k〉δ = e−〈k〉(1−δ).

I Now substitute in δ = 1− S1 and rearrange to obtain:

S1 = 1− e−〈k〉S1 .



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 53/89

Giant component

I Carrying on:

δ =
∞∑

k=0

Pkδk =
∞∑

k=0

〈k〉k

k !
e−〈k〉δk

= e−〈k〉
∞∑

k=0

(〈k〉δ)k

k !

= e−〈k〉e〈k〉δ = e−〈k〉(1−δ).

I Now substitute in δ = 1− S1 and rearrange to obtain:

S1 = 1− e−〈k〉S1 .



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 53/89

Giant component

I Carrying on:

δ =
∞∑

k=0

Pkδk =
∞∑

k=0

〈k〉k

k !
e−〈k〉δk

= e−〈k〉
∞∑

k=0

(〈k〉δ)k

k !

= e−〈k〉e〈k〉δ = e−〈k〉(1−δ).

I Now substitute in δ = 1− S1 and rearrange to obtain:

S1 = 1− e−〈k〉S1 .



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 53/89

Giant component

I Carrying on:

δ =
∞∑

k=0

Pkδk =
∞∑

k=0

〈k〉k

k !
e−〈k〉δk

= e−〈k〉
∞∑

k=0

(〈k〉δ)k

k !

= e−〈k〉e〈k〉δ = e−〈k〉(1−δ).

I Now substitute in δ = 1− S1 and rearrange to obtain:

S1 = 1− e−〈k〉S1 .



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 54/89

Giant component

I We can figure out some limits and details for
S1 = 1− e−〈k〉S1 .

I First, we can write 〈k〉 in terms of S1:

〈k〉 =
1

S1
ln

1
1− S1

.

I As 〈k〉 → 0, S1 → 0.
I As 〈k〉 → ∞, S1 → 1.
I Notice that at 〈k〉 = 1, the critical point, S1 = 0.
I Only solvable for S > 0 when 〈k〉 > 1.
I Really a transcritical bifurcation [2].
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Turns out we were lucky...

I Our dirty trick only works for ER random networks.
I The problem: We assumed that neighbors have the

same probability δ of belonging to the largest
component.

I But we know our friends are different from us...
I Works for ER random networks because 〈k〉 = 〈k〉R.
I We need a separate probability δ′ for the chance that

a node at the end of a random edge is part of the
largest component.

I We can do this but we need to enhance our toolkit
with Generatingfunctionology... [3]

I (Well, not really but it’s fun and we get all sorts of
other things...)
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I The problem: We assumed that neighbors have the

same probability δ of belonging to the largest
component.

I But we know our friends are different from us...
I Works for ER random networks because 〈k〉 = 〈k〉R.
I We need a separate probability δ′ for the chance that

a node at the end of a random edge is part of the
largest component.

I We can do this but we need to enhance our toolkit
with Generatingfunctionology... [3]

I (Well, not really but it’s fun and we get all sorts of
other things...)
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Generating functions

I Idea: Given a sequence a0, a1, a2, . . . , associate
each element with a distinct function or other
mathematical object.

I Well-chosen functions allow us to manipulate
sequences and retrieve sequence elements.

Definition:
I The generating function (g.f.) for a sequence {an} is

F (x) =
∞∑

n=0

anxn.

I Roughly: transforms a vector in R∞ into a function
defined on R1.

I Related to Fourier, Laplace, Mellin, . . .
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Simple example

Rolling dice:

I p(�)
k = Pr(throwing a k) = 1/6 where k = 1, 2, . . . , 6.

I

F (�)(x) =
6∑

k=1

pkxk =
1
6
(x + x2 + x3 + x4 + x5 + x6).

I We’ll come back to this simple example as we derive
various delicious properties of generating functions.
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Example
I Take a degree distribution with exponential decay:

Pk = ce−λk

where c = 1− e−λ.
I The generating function for this distribution is

F (x) =
∞∑

k=0

Pkxk =
∞∑

k=0

ce−λkxk =
c

1− xe−λ
.

I Notice that F (1) = c/(1− e−λ) = 1.
I For probability distributions, we must always have

F (1) = 1 since

F (1) =
∞∑

k=0

Pk1k =
∞∑

k=0

Pk = 1.
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Properties of generating functions
I Average degree:

〈k〉 =
∞∑

k=0

kPk =
∞∑

k=0

kPk xk−1

∣∣∣∣∣
x=1

=
d

dx
F (x)

∣∣∣∣
x=1

= F ′(1)

I In general, many calculations become simple, if a little
abstract.

I For our exponential example:

F ′(x) =
(1− e−λ)e−λ

(1− xe−λ)2 .

I So:

〈k〉 = F ′(1) =
e−λ

(1− e−λ)
.
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Properties of generating functions

Useful pieces for probability distributions:

I Normalization:
F (1) = 1

I First moment:
〈k〉 = F ′(1)

I Higher moments:

〈kn〉 =

(
x

d
dx

)n

F (x)

∣∣∣∣
x=1

I k th element of sequence (general):

Pk =
1
k !

dk

dxk F (x)

∣∣∣∣
x=0



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 63/89

Properties of generating functions

Useful pieces for probability distributions:

I Normalization:
F (1) = 1

I First moment:
〈k〉 = F ′(1)

I Higher moments:

〈kn〉 =

(
x

d
dx

)n

F (x)

∣∣∣∣
x=1

I k th element of sequence (general):

Pk =
1
k !

dk

dxk F (x)

∣∣∣∣
x=0



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 63/89

Properties of generating functions

Useful pieces for probability distributions:

I Normalization:
F (1) = 1

I First moment:
〈k〉 = F ′(1)

I Higher moments:

〈kn〉 =

(
x

d
dx

)n

F (x)

∣∣∣∣
x=1

I k th element of sequence (general):

Pk =
1
k !

dk

dxk F (x)

∣∣∣∣
x=0



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 63/89

Properties of generating functions

Useful pieces for probability distributions:

I Normalization:
F (1) = 1

I First moment:
〈k〉 = F ′(1)

I Higher moments:

〈kn〉 =

(
x

d
dx

)n

F (x)

∣∣∣∣
x=1

I k th element of sequence (general):

Pk =
1
k !

dk

dxk F (x)

∣∣∣∣
x=0



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 63/89

Properties of generating functions

Useful pieces for probability distributions:

I Normalization:
F (1) = 1

I First moment:
〈k〉 = F ′(1)

I Higher moments:

〈kn〉 =

(
x

d
dx

)n

F (x)

∣∣∣∣
x=1

I k th element of sequence (general):

Pk =
1
k !

dk

dxk F (x)

∣∣∣∣
x=0



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 64/89

Outline
Basics

Definitions
How to build
Some visual examples

Structure
Clustering
Degree distributions
Configuration model
Largest component

Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size

References



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 65/89

Edge-degree distribution

I Recall our condition for a giant component:

〈k〉R =
〈k2〉 − 〈k〉

〈k〉
> 1.

I Let’s rëexpress our condition in terms of generating
functions.

I We first need the g.f. for Rk .
I We’ll now use this notation:

FP(x) is the g.f. for Pk .
FR(x) is the g.f. for Rk .

I Condition in terms of g.f. is:

〈k〉R = F ′
R(1) > 1.

I Now find how FR is related to FP . . .
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Edge-degree distribution
I We have

FR(x) =
∞∑

k=0

Rkxk =
∞∑

k=0

(k + 1)Pk+1

〈k〉
xk .

Shift index to j = k + 1 and pull out 1
〈k〉 :

FR(x) =
1
〈k〉

∞∑
j=1

jPjx j−1 =
1
〈k〉

∞∑
j=1

Pj
d

dx
x j

=
1
〈k〉

d
dx

∞∑
j=1

Pjx j =
1
〈k〉

d
dx

(FP(x)− P0) =
1
〈k〉

F ′
P(x).

Finally, since 〈k〉 = F ′
P(1),

FR(x) =
F ′

P(x)

F ′
P(1)
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Edge-degree distribution

I Recall giant component condition is
〈k〉R = F ′

R(1) > 1.
I Since we have FR(x) = F ′

P(x)/F ′
P(1),

F ′
R(x) =

F ′′
P(x)

F ′
P(1).

I Setting x = 1, our condition becomes

F ′′
P(1)

F ′
P(1)

> 1
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Size distributions

To figure out the size of the largest component (S1), we
need more resolution on component sizes.

Definitions:
I πn = probability that a random node belongs to a

finite component of size n < ∞.
I ρn = probability a random link leads to a finite

subcomponent of size n < ∞.

Local-global connection:

Pk , Rk ⇔ πn, ρn

neighbors ⇔ components
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Size distributions
G.f.’s for component size distributions:

I

Fπ(x) =
∞∑

n=0

πnxn and Fρ(x) =
∞∑

n=0

ρnxn

The largest component:

I Subtle key: Fπ(1) is the probability that a node
belongs to a finite component.

I Therefore: S1 = 1− Fπ(1).

Our mission, which we accept:

I Find the four generating functions

FP , FR, Fπ, and Fρ.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 70/89

Size distributions
G.f.’s for component size distributions:

I

Fπ(x) =
∞∑

n=0

πnxn and Fρ(x) =
∞∑

n=0

ρnxn

The largest component:

I Subtle key: Fπ(1) is the probability that a node
belongs to a finite component.

I Therefore: S1 = 1− Fπ(1).

Our mission, which we accept:

I Find the four generating functions

FP , FR, Fπ, and Fρ.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 70/89

Size distributions
G.f.’s for component size distributions:

I

Fπ(x) =
∞∑

n=0

πnxn and Fρ(x) =
∞∑

n=0

ρnxn

The largest component:

I Subtle key: Fπ(1) is the probability that a node
belongs to a finite component.

I Therefore: S1 = 1− Fπ(1).

Our mission, which we accept:

I Find the four generating functions

FP , FR, Fπ, and Fρ.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 70/89

Size distributions
G.f.’s for component size distributions:

I

Fπ(x) =
∞∑

n=0

πnxn and Fρ(x) =
∞∑

n=0

ρnxn

The largest component:

I Subtle key: Fπ(1) is the probability that a node
belongs to a finite component.

I Therefore: S1 = 1− Fπ(1).

Our mission, which we accept:

I Find the four generating functions

FP , FR, Fπ, and Fρ.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 70/89

Size distributions
G.f.’s for component size distributions:

I
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The largest component:

I Subtle key: Fπ(1) is the probability that a node
belongs to a finite component.

I Therefore: S1 = 1− Fπ(1).
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I Find the four generating functions
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Useful results we’ll need for g.f.’s

Sneaky Result 1:

I Consider two random variables U and V whose
values may be 0, 1, 2, . . .

I Write probability distributions as Uk and Vk and g.f.’s
as FU and FV .

I SR1: If a third random variable is defined as

W =
U∑

i=1

V (i) with each V (i) d
= V

then
FW (x) = FU (FV (x))
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Proof of SR1:
Write probability that variable W has value k as Wk .

Wk =
∞∑

j=0

Uj × Pr(sum of j draws of variable V = k )

=
∞∑

j=0

Uj
∑

{i1,i2,...,ij}|
i1+i2+...+ij=k

Vi1Vi2 · · ·Vij

∴ FW (x) =
∞∑

k=0

Wkxk =
∞∑

k=0

∞∑
j=0

Uj
∑

{i1,i2,...,ij}|
i1+i2+...+ij=k

Vi1Vi2 · · ·Vij x
k

=
∞∑

j=0

Uj

∞∑
k=0

∑
{i1,i2,...,ij}|

i1+i2+...+ij=k

Vi1x i1Vi2x i2 · · ·Vij x
ij
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Proof of SR1:

With some concentration, observe:

FW (x) =
∞∑

j=0

Uj

∞∑
k=0

∑
{i1,i2,...,ij}|

i1+i2+...+ij=k

Vi1x i1Vi2x i2 · · ·Vij x
ij

︸ ︷︷ ︸
xk piece of

(∑∞
i ′=0 Vi ′x i ′

)j

=
∞∑

j=0

Uj (FV (x))j

= FU (FV (x))X
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Useful results we’ll need for g.f.’s
Sneaky Result 2:

I Start with a random variable U with distribution Uk
(k = 0, 1, 2, . . . )

I SR2: If a second random variable is defined as

V = U + 1 then FV (x) = xFU(x)

I Reason: Vk = Uk−1 for k ≥ 1 and V0 = 0.
I

∴ FV (x) =
∞∑

k=0

Vkxk =
∞∑

k=1

Uk−1xk

= x
∞∑

j=0

Ujx j = xFU(x).X
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Sneaky Result 2:

I Start with a random variable U with distribution Uk
(k = 0, 1, 2, . . . )
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Generalization of SR2:
I (1) If V = U + i then

FV (x) = x iFU(x).

I (2) If V = U − i then

FV (x) = x−iFU(x)

= x−i
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Connecting generating functions

I Goal: figure out forms of the component generating
functions, Fπ and Fρ.

I πn = probability that a random node belongs to a
finite component of size n

=
∞∑

k=0

Pk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fπ(x) = x︸︷︷︸
SR2

FP (Fρ(x))︸ ︷︷ ︸
SR1

I Extra factor of x accounts for random node itself.
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Connecting generating functions

I ρn = probability that a random link leads to a finite
subcomponent of size n.

I Invoke one step of recursion: ρn = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n − 1,

=
∞∑

k=0

Rk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fρ(x) = x︸︷︷︸
SR2

FR (Fρ(x))︸ ︷︷ ︸
SR1

I Again, extra factor of x accounts for random node
itself.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 79/89

Connecting generating functions

I ρn = probability that a random link leads to a finite
subcomponent of size n.

I Invoke one step of recursion: ρn = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n − 1,

=
∞∑

k=0

Rk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fρ(x) = x︸︷︷︸
SR2

FR (Fρ(x))︸ ︷︷ ︸
SR1

I Again, extra factor of x accounts for random node
itself.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 79/89

Connecting generating functions

I ρn = probability that a random link leads to a finite
subcomponent of size n.

I Invoke one step of recursion: ρn = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n − 1,

=
∞∑

k=0

Rk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fρ(x) = x︸︷︷︸
SR2

FR (Fρ(x))︸ ︷︷ ︸
SR1

I Again, extra factor of x accounts for random node
itself.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 79/89

Connecting generating functions

I ρn = probability that a random link leads to a finite
subcomponent of size n.

I Invoke one step of recursion: ρn = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n − 1,

=
∞∑

k=0

Rk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fρ(x) = x︸︷︷︸
SR2

FR (Fρ(x))︸ ︷︷ ︸
SR1

I Again, extra factor of x accounts for random node
itself.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 79/89

Connecting generating functions

I ρn = probability that a random link leads to a finite
subcomponent of size n.

I Invoke one step of recursion: ρn = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n − 1,

=
∞∑

k=0

Rk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fρ(x) = x︸︷︷︸
SR2

FR (Fρ(x))︸ ︷︷ ︸
SR1

I Again, extra factor of x accounts for random node
itself.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 79/89

Connecting generating functions

I ρn = probability that a random link leads to a finite
subcomponent of size n.

I Invoke one step of recursion: ρn = probability that in
following a random edge, the outgoing edges of the
node reached lead to finite subcomponents of
combined size n − 1,

=
∞∑

k=0

Rk × Pr
(

sum of sizes of subcomponents
at end of k random links = n − 1

)

I

Therefore: Fρ(x) = x︸︷︷︸
SR2

FR (Fρ(x))︸ ︷︷ ︸
SR1

I Again, extra factor of x accounts for random node
itself.



Random Networks

Basics
Definitions

How to build

Some visual examples

Structure
Clustering

Degree distributions

Configuration model

Largest component

Generating
Functions
Definitions

Basic Properties

Giant Component Condition

Component sizes

Useful results

Size of the Giant
Component

Average Component Size

References

Frame 80/89

Connecting generating functions

I We now have two functional equations connecting
our generating functions:

Fπ(x) = xFP (Fρ(x)) and Fρ(x) = xFR (Fρ(x))

I Taking stock: We know FP(x) and
FR(x) = F ′

P(x)/F ′
P(1).

I We first untangle the second equation to find Fρ

I We can do this because it only involves Fρ and FR.
I The first equation then immediately gives us Fπ in

terms of Fρ and FR.
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Component sizes

I Remembering vaguely what we are doing:

Finding Fπ to obtain the fractional size of the largest
component S1 = 1− Fπ(1).

I Set x = 1 in our two equations:

Fπ(1) = FP (Fρ(1)) and Fρ(1) = FR (Fρ(1))

I Solve second equation numerically for Fρ(1).
I Plug Fρ(1) into first equation to obtain Fπ(1).
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Component sizes

Example: Standard random graphs.
I We can show FP(x) = e−〈k〉(1−x)

∴ FR(x) = F ′
P(x)/F ′

P(1) = e−〈k〉(1−x)/e−〈k〉(1−x ′)|x ′=1

= e−〈k〉(1−x) = FP(x) ...aha!

I RHS’s of our two equations are the same.
I So Fπ(x) = Fρ(x) = xFR(Fρ(x)) = xFR(Fπ(x))

I Why our dirty (but wrong) trick worked earlier...
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I We are down to

Fπ(x) = xFR(Fπ(x)) and FR(x) = e−〈k〉(1−x).
I

∴ Fπ(x) = xe−〈k〉(1−Fπ(x))

I We’re first after S1 = 1− Fπ(1) so set x = 1 and
replace Fπ(1) by 1− S1:

1− S1 = e−〈k〉S1

Or: 〈k〉 =
1

S1
ln

1
1− S1

I Just as we found with our dirty trick . . .
I Again, we (usually) have to resort to numerics . . .
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I Next: find average size of finite components 〈n〉.
I Using standard G.F. result: 〈n〉 = F ′

π(1).

I Try to avoid finding Fπ(x)...
I Starting from Fπ(x) = xFP (Fρ(x)), we differentiate:

F ′
π(x) = FP (Fρ(x)) + xF ′

ρ(x)F ′
P (Fρ(x))

I While Fρ(x) = xFR (Fρ(x)) gives

F ′
ρ(x) = FR (Fρ(x)) + xF ′

ρ(x)F ′
R (Fρ(x))

I Now set x = 1 in both equations.
I We solve the second equation for F ′

ρ(1) (we must
already have Fρ(1)).

I Plug F ′
ρ(1) and Fρ(1) into first equation to find F ′

π(1).
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Example: Standard random graphs.

I Use fact that FP = FR and Fπ = Fρ.
I Two differentiated equations reduce to only one:

F ′
π(x) = FP (Fπ(x)) + xF ′

π(x)F ′
P (Fπ(x))

Rearrange: F ′
π(x) =

FP (Fπ(x))

1− xF ′
P (Fπ(x))

I Simplify denominator using F ′
P(x) = 〈k〉FP(x)

I Replace FP(Fπ(x)) using Fπ(x) = xFP(Fπ(x)).
I Set x = 1 and replace Fπ(1) with 1− S1.

End result: 〈n〉 = F ′
π(1) =

(1− S1)

1− 〈k〉(1− S1)
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P (Fπ(x))

I Simplify denominator using F ′
P(x) = 〈k〉FP(x)

I Replace FP(Fπ(x)) using Fπ(x) = xFP(Fπ(x)).
I Set x = 1 and replace Fπ(1) with 1− S1.

End result: 〈n〉 = F ′
π(1) =

(1− S1)

1− 〈k〉(1− S1)
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I Our result for standard random networks:

〈n〉 = F ′
π(1) =

(1− S1)

1− 〈k〉(1− S1)

I Recall that 〈k〉 = 1 is the critical value of average
degree for standard random networks.

I Look at what happens when we increase 〈k〉 to 1
from below.

I We have S1 = 0 for all 〈k〉 < 1 so

〈n〉 =
1

1− 〈k〉

I This blows up as 〈k〉 → 1.
I Reason: we have a power law distribution of

component sizes at 〈k〉 = 1.
I Typical critical point behavior....
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I Limits of 〈k〉 = 0 and ∞ make sense for

〈n〉 = F ′
π(1) =

(1− S1)

1− 〈k〉(1− S1)

I As 〈k〉 → 0, S1 = 0, and 〈n〉 → 1.
I All nodes are isolated.
I As 〈k〉 → ∞, S1 → 1 and 〈n〉 → 0.
I No nodes are outside of the giant component.

Extra on largest component size:

I For 〈k〉 = 1, S1 ∼ N2/3.
I For 〈k〉 < 1, S1 ∼ log N.
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