Random Networks
 Complex Networks，CSYS／MATH 303，Spring， 2010

Prof．Peter Dodds

Department of Mathematics \＆Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
（c）（1）（3）（e）

Frame 1／89

官 つのく

Outline Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
References

Frame 2／89
司 \quad のく
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useitil resulis
Size of the Giant
Component
Average Component Size
References

Outline Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 3／89
References

Random networks

Pure，abstract random networks：
－Consider set of all networks with N labelled nodes and m edges．
－Standard random network＝randomly chosen network from this set．
－To be clear：each network is equally probable．
－Sometimes equiprobability is a good assumption，but it is always an assumption．
－Known as Erdős－Rényi random networks or ER graphs．

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 4／89
司 \quad のく

Random networks

Pure, abstract random networks:

- Consider set of all networks with N labelled nodes and m edges.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Sometimes equiprobability is a good assumption, but it is always an assumption.
- Known as Erdős-Rényi random networks or ER graphs.

Random networks

Basics
Definitions
How to build
Some visual examples

Structure

－Consider set of all networks with N labelled nodes and m edges．
－Standard random network＝randomly chosen network from this set．
－To be clear：each network is equally probable．
－Sometimes equiprobability is a good assumption，but it is always an assumption．
－Known as Erdős－Rényi random networks or ER graphs．

Random networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Known as Erdős－Rényi random networks or ER graphs．

Random networks

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Known as Erdôs－Rényi random networks or ER graphs．

Random networks

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－Known as Erdős－Rényi random networks or ER graphs．

Random networks

Basics

Some features:

- Number of possible edges:

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

- Given m edges, there are $\left(\begin{array}{c}\binom{N}{2}\end{array}\right)$ different possible networks.
- Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$.
- Limit of $m=0$: empty graph.
- Limit of $m=\binom{N}{2}$: complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

Random networks

Basics
Some features：
－Number of possible edges：

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

－Given m edges，there are $\binom{N}{\substack{N \\ m}}$ different possible networks．
－Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$ ．
－Limit of $m=0$ ：empty graph．
－Limit of $m=\binom{N}{2}$ ：complete or fully－connected graph．
－Real world：links are usually costly so real networks are almost always sparse．

Definitions
How to build．
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 5／89
司 つQく

Random networks

Some features：

－Number of possible edges：

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

－Given m edges，there are $\binom{N}{\substack{N \\ m}}$ different possible networks．
－Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$ ．
－Limit of $m=0$ ：empty graph．
－Limit of $m=\binom{N}{2}$ ：complete or fully－connected graph．
－Real world：links are usually costly so real networks are almost always sparse．

Basics

Definitions
How to build．
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 5／89
司 \quad のく

Random networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
Average Component Size
References

Limit of $m=\binom{N}{2}$: complete or fully-connected graph.

- Real world: links are usually costly so real networks are almost always sparse.

Random networks

Basics
Some features：
－Number of possible edges：

$$
0 \leq m \leq\binom{ N}{2}=\frac{N(N-1)}{2}
$$

－Given m edges，there are $\binom{N}{\substack{N \\ m}}$ different possible networks．
－Crazy factorial explosion for $1 \ll m \ll\binom{N}{2}$ ．
－Limit of $m=0$ ：empty graph．
－Limit of $m=\binom{N}{2}$ ：complete or fully－connected graph．
Real world：links are usually costly so real networks are almost always sparse．

Random networks

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
Average Component Size
References

- Limit of $m=\binom{N}{2}$: complete or fully-connected graph.
- Real world: links are usually costly so real networks are almost always sparse.

Outline Basics

Definitions

How to build

Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size

Frame 6／89
目 つのく

Random networks

How to build standard random networks：
－Given N and m ．
－Two probablistic methods
1．Connect each of the $\binom{N}{2}$ pairs with appropriate probability p ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 7／89
司 つQく

Random networks

How to build standard random networks：
－Given N and m ．
－Two probablistic methods（we＇ll see a third later on）

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 7／89
官 \quad のく

Random networks

How to build standard random networks：
－Given N and m ．
－Two probablistic methods（we＇ll see a third later on）
Connect each of the $\binom{N}{2}$ pairs with appropriate probability p ．

2．Take N nodes and add exactly m links by selecting edges without replacement．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 7／89
桕 つQく

Random networks

How to build standard random networks：
－Given N and m ．
－Two probablistic methods（we＇ll see a third later on）
1．Connect each of the $\binom{N}{2}$ pairs with appropriate probability p ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 7／89
司 \quad のく

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.
2. Take N nodes and add exactly m links by selecting edges without replacement.

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 7/89
司 \quad Qく

Random networks

How to build standard random networks:

- Given N and m.
- Two probablistic methods (we'll see a third later on)

1. Connect each of the $\binom{N}{2}$ pairs with appropriate probability p.

- Useful for theoretical work.

2. Take N nodes and add exactly m links by selecting edges without replacement.

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Random networks

How to build standard random networks：
－Given N and m ．
－Two probablistic methods（we＇ll see a third later on）
1．Connect each of the $\binom{N}{2}$ pairs with appropriate probability p ．
－Useful for theoretical work．
2．Take N nodes and add exactly m links by selecting edges without replacement．
－Algorithm：Randomly choose a pair of nodes i and j ， $i \neq j$ ，and connect if unconnected；repeat until all m

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References edges are allocated．
－Best for adding relatively small numbers of links
（most cases）．
-1 and 2 are effectively equivalent for large N ．

Random networks

How to build standard random networks：
－Given N and m ．
－Two probablistic methods（we＇ll see a third later on）
1．Connect each of the $\binom{N}{2}$ pairs with appropriate probability p ．
－Useful for theoretical work．
2．Take N nodes and add exactly m links by selecting edges without replacement．
－Algorithm：Randomly choose a pair of nodes i and j ， $i \neq j$ ，and connect if unconnected；repeat until all m

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References edges are allocated．
－Best for adding relatively small numbers of links （most cases）．
－ 1 and 2 are effectively equivalent for large N ．

Random networks

How to build standard random networks：
－Given N and m ．
－Two probablistic methods（we＇ll see a third later on）
1．Connect each of the $\binom{N}{2}$ pairs with appropriate probability p ．
－Useful for theoretical work．
2．Take N nodes and add exactly m links by selecting edges without replacement．
－Algorithm：Randomly choose a pair of nodes i and j ， $i \neq j$ ，and connect if unconnected；repeat until all m

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References edges are allocated．
－Best for adding relatively small numbers of links （most cases）．
－ 1 and 2 are effectively equivalent for large N ．

Random networks

A few more things：
－For method 1，\＃links is probablistic：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as
Frame 8／89
官 \quad のく

Random networks

A few more things：
－For method 1，\＃links is probablistic：

Basics

Definitions
How to build
Some visual examples

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

－So the expected or average degree is

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions

Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as
Frame 8／89
官 \quad のく

Random networks

A few more things：
－For method 1，\＃links is probablistic：

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

－So the expected or average degree is

$$
\langle k\rangle=\frac{2\langle m\rangle}{N}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as
Frame 8／89
回 つQく

Random networks

A few more things：
－For method 1，\＃links is probablistic：

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

－So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{N} p^{1} \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as
Frame 8／89
司 \quad のく

Random networks

A few more things：
－For method 1，\＃links is probablistic：

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

－So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{X} p \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as
Frame 8／89
回 つQく

Random networks

Basics

Definitions
How to build
Some visual examples

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

- So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{X} p \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

- Which is what it should be...
- If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as

Frame 8/89

$$
\text { 向 } \quad \text { QQ }
$$

Random networks

A few more things：
－For method 1，\＃links is probablistic：

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

－So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{X} p \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as
Frame 8／89
吕 \quad のく

Random networks

A few more things：
－For method 1，\＃links is probablistic：

$$
\langle m\rangle=p\binom{N}{2}=p \frac{1}{2} N(N-1)
$$

－So the expected or average degree is

$$
\begin{gathered}
\langle k\rangle=\frac{2\langle m\rangle}{N} \\
=\frac{2}{N} p \frac{1}{2} N(N-1)=\frac{2}{X} p \frac{1}{2} N(N-1)=p(N-1) .
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Which is what it should be．．．
－If we keep $\langle k\rangle$ constant then $p \propto 1 / N \rightarrow 0$ as $N \rightarrow \infty$ ．

Frame 8／89
回 \quad のく

Outline Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size

Frame 9／89
回 つQく

Random networks：examples

Basics
Definitions
How to build
Some visual examples

Structure

Next slides：
Example realizations of random networks
－$N=500$
－Vary m ，the number of edges from 100 to 1000.
－Average degree $\langle k\rangle$ runs from 0.4 to 4 ．
－Look at full network plus the largest component．

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 10／89
司 \quad のく

Random networks：examples

Basics
Definitions
How to build
Some visual examples

Structure

Next slides：
Example realizations of random networks
－$N=500$
－Vary m ，the number of edges from 100 to 1000.
Average degree $\langle k\rangle$ runs from 0.4 to 4 ．
－Look at full network plus the largest component．
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 10／89
司 つQく

Random networks：examples

Basics
Definitions
How to build
Some visual examples

Structure

Next slides：
Example realizations of random networks
－$N=500$
－Vary m ，the number of edges from 100 to 1000.
－Average degree $\langle k\rangle$ runs from 0.4 to 4.
－Look at full network plus the largest component．

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 10／89
司 \quad のく

Random networks：examples

Basics
Definitions
How to build
Some visual examples

Structure

Next slides：
Example realizations of random networks
－$N=500$
－Vary m ，the number of edges from 100 to 1000.
－Average degree $\langle k\rangle$ runs from 0.4 to 4 ．
－Look at full network plus the largest component．

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Random networks：examples

Definitions
How to build
Some visual examples

Structure

Next slides：
Example realizations of random networks
－$N=500$
－Vary m ，the number of edges from 100 to 1000.
－Average degree $\langle k\rangle$ runs from 0.4 to 4 ．
－Look at full network plus the largest component．

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Random networks：examples

entire network：

$N=500$ ，number of edges $m=100$ average degree $\langle k\rangle=0.4$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 11／89
司 \quad のく

Random networks：examples

entire network：

largest component：
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=200$ average degree $\langle k\rangle=0.8$

Random networks: examples

 entire network:largest component:

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
$N=500$, number of edges $m=230$ average degree $\langle k\rangle=0.92$

Random networks：examples

entire network：
largest component：
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=240$ average degree $\langle k\rangle=0.96$

Frame 14／89
司 \quad のく

Random networks：examples

largest component：

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=250$ average degree $\langle k\rangle=1$

Random networks：examples

 entire network：largest component：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=260$ average degree $\langle k\rangle=1.04$

Random networks：examples

entire network：
largest component：
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=280$ average degree $\langle k\rangle=1.12$

Frame 17／89
司 \quad のの

Random networks：examples

 entire network：largest component：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=300$ average degree $\langle k\rangle=1.2$

Frame 18／89
回 つQく

Random networks：examples

largest component：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=500$ average degree $\langle k\rangle=2$

Random networks：examples

entire network：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
$N=500$ ，number of edges $m=1000$ average degree $\langle k\rangle=4$

Frame 20／89

$$
\text { 司 } \quad \text { のく }
$$

Random networks：examples for $N=500$

Basics

$m=230$
$\langle k\rangle=0.92$

$$
\begin{aligned}
& m=240 \\
& \langle k\rangle=0.96
\end{aligned}
$$

$m=250$
$\langle k\rangle=1$
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$m=260$
$\langle k\rangle=1.04$

$$
m=280
$$

$\langle k\rangle=1.12$
$m=300$
$\langle k\rangle=12$
$m=500$
$m=1000$
$\langle k\rangle=2$
$\langle k\rangle=4$

Frame 21／89

$$
\text { 吊 } \quad \text { のく }
$$

Random networks: largest components

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 22/89
司 \quad Qの

Random networks：examples for $N=500$

$$
m=250
$$

$\langle k\rangle=1$

$$
m=250
$$

$\langle k\rangle=1$

$$
\begin{aligned}
& m=250 \\
& \langle k\rangle=1
\end{aligned}
$$

$\langle k\rangle=1$
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating

$$
\langle k\rangle=1
$$

$$
m=250
$$

$$
m=250
$$

Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
$m=250$
$m=250$
$m=250$
$\langle k\rangle=1$
$\langle k\rangle=1$
$m=250$
$m=250$
$\langle k\rangle=1$
$\langle k\rangle=1$

Random networks：largest components

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 24／89
司 \quad のく

Outline

Basics

Definitions

How to build
Some visual examples
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 25／89
References

Random networks

Clustering：

－For method 1 ，what is the clustering coefficient for a finite network？
－Consider triangle／triple clustering coefficient
（Newman ${ }^{[11) \text { ：}}$

－Recall：$C_{2}=$ probability that two nodes are connected given they have a friend in common．
－For standard random networks，we have simply that

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 26／89

官 \quad のく

Random networks

Clustering：

－For method 1 ，what is the clustering coefficient for a finite network？
－Consider triangle／triple clustering coefficient （Newman ${ }^{[1]}$ ）：

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

－Recall：$C_{2}=$ probability that two nodes are connected given they have a friend in common．
－For standard random networks，we have simply that

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Random networks

Clustering：

－For method 1 ，what is the clustering coefficient for a finite network？
－Consider triangle／triple clustering coefficient （Newman ${ }^{[1]}$ ）：

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

－Recall：$C_{2}=$ probability that two nodes are connected given they have a friend in common．
－For standard random networks，we have simply that

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Random networks

Clustering：

－For method 1 ，what is the clustering coefficient for a finite network？
－Consider triangle／triple clustering coefficient （Newman ${ }^{[1]}$ ）：

$$
C_{2}=\frac{3 \times \# \text { triangles }}{\# \text { triples }}
$$

－Recall：$C_{2}=$ probability that two nodes are connected given they have a friend in common．
－For standard random networks，we have simply that

$$
C_{2}=p .
$$

Random networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering

Clustering：

－So for large random networks $(N \rightarrow \infty)$ ，clustering drops to zero．
－Key structural feature of random networks is that they locally look like branching networks（no loops）．

Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 27／89
官 \quad のく

Random networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering

Clustering：

－So for large random networks $(N \rightarrow \infty)$ ，clustering drops to zero．
－Key structural feature of random networks is that they locally look like branching networks（no loops）．

Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 27／89
司 つQく

Outline

Basics

Definitions

How to build
Some visual examples

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 28／89
References

Random networks

Degree distribution:

- Recall $p_{k}=$ probability that a randomly selected node has degree k.
- Consider method 1 for constructing random networks: each possible link is realized with probability p.
- Now consider one node: there are ' $N-1$ choose k ' ways the node can be connected to k of the other N-1 nodes.
- Each connection occurs with probability p, each non-connection with probability $(1-p)$.

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

- Therefore have a binomial distribution:

Random networks

Degree distribution：
－Recall $p_{k}=$ probability that a randomly selected node has degree k ．
－Consider method 1 for constructing random networks：each possible link is realized with probability p ．
－Now consider one node：there are＇N－ 1 choose k＇ ways the node can be connected to k of the other $N-1$ nodes．

Each connection occurs with probability p，each non－connection with probability $(1-p)$ ．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 29／89

司 \quad のく

Random networks

Degree distribution：
－Recall $p_{k}=$ probability that a randomly selected node has degree k ．
－Consider method 1 for constructing random networks：each possible link is realized with probability p ．
－Now consider one node：there are＇$N-1$ choose k＇ ways the node can be connected to k of the other $N-1$ nodes．
－Each connection occurs with probability p，each non－connection with probability $(1-p)$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 29／89
回 つQく

Random networks

Degree distribution：
－Recall $p_{k}=$ probability that a randomly selected node has degree k ．
－Consider method 1 for constructing random networks：each possible link is realized with probability p ．
－Now consider one node：there are＇$N-1$ choose k＇ ways the node can be connected to k of the other $N-1$ nodes．
－Each connection occurs with probability p ，each non－connection with probability $(1-p)$ ．

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 29／89
司 つQく

Random networks

Degree distribution：
－Recall $p_{k}=$ probability that a randomly selected node has degree k ．
－Consider method 1 for constructing random networks：each possible link is realized with probability p ．
－Now consider one node：there are＇$N-1$ choose k＇ ways the node can be connected to k of the other $N-1$ nodes．
－Each connection occurs with probability p ，each non－connection with probability（ $1-p$ ）．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－Therefore have a binomial distribution：

$$
P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k} .
$$

Random networks

Basics
Limiting form of $P(k ; p, N)$:

- Our degree distribution:
$P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$.
- What happens as $N \rightarrow \infty$?
- We must end up with the normal distribution right?
- If p is fixed, then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$.
- But we want to keep $\langle k\rangle$ fixed...
- So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant.

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 30/89
司 $\quad 9 Q \curvearrowright$

Random networks

Basics
Definitions
Limiting form of $P(k ; p, N)$ ：
－Our degree distribution： $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$.
－What happens as $N \rightarrow \infty$ ？
－We must end up with the normal distribution right？
－If p is fixed，then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$ ．
－But we want to keep $\langle k\rangle$ fixed．．．
－So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant．

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 30／89
官 \quad のく

Random networks

Basics
Definitions
Limiting form of $P(k ; p, N)$ ：
－Our degree distribution： $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$ ．
－What happens as $N \rightarrow \infty$ ？
－We must end up with the normal distribution right？
－If p is fixed，then we would end up with a Gaussian with average degree $\langle k\rangle \simeq p N \rightarrow \infty$ ．
－But we want to keep $\langle k\rangle$ fixed．．．
－So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant．

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 30／89
䓢 \quad のく

Random networks

Basics
Definitions
Limiting form of $P(k ; p, N)$ ：
－Our degree distribution： $P(k ; p, N)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}$ ．
－What happens as $N \rightarrow \infty$ ？
－We must end up with the normal distribution right？

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 30／89
司 $つ Q \curvearrowright$

Random networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant．

Random networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So examine limit of $P(k ; p, N)$ when $p \rightarrow 0$ and $N \rightarrow \infty$ with $\langle k\rangle=p(N-1)=$ constant．

Limiting form of $P(k ; p, N)$ ：

－Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed：

$$
P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 31／89
甸 つQく

Limiting form of $P(k ; p, N)$ ：

－Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed：

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
& \quad=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Generating
 Functions
 Definitions
 Basic Properties

Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 31／89
吊 つのく

Limiting form of $P(k ; p, N)$:

Basics

- Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed:

$$
\begin{gathered}
P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
=\frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{gathered}
$$

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 31/89

$$
\text { 向 } \quad \rightarrow Q \propto
$$

Limiting form of $P(k ; p, N)$ ：

－Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed：

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{N^{k}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k}{N}\right)}{k!N^{k}} \frac{\langle k\rangle^{k}}{\left(1-\frac{1}{N}\right)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 31／89
回 つQく

Limiting form of $P(k ; p, N)$ ：

－Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed：

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{A^{k}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k}{N}\right)}{k!A^{k}} \frac{\langle k\rangle^{k}}{\left(1-\frac{1}{N}\right)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 31／89
回 $ク \square 欠$

Limiting form of $P(k ; p, N)$ ：

－Substitute $p=\frac{\langle k\rangle}{N-1}$ into $P(k ; p, N)$ and hold k fixed：

$$
\begin{aligned}
& P(k ; p, N)=\binom{N-1}{k}\left(\frac{\langle k\rangle}{N-1}\right)^{k}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&=\frac{(N-1)!}{k!(N-1-k)!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
&= \frac{(N-1)(N-2) \cdots(N-k)}{k!} \frac{\langle k\rangle^{k}}{(N-1)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k} \\
& \simeq \frac{A^{k}\left(1-\frac{1}{N}\right) \cdots\left(1-\frac{k}{N}\right)}{k!A^{k}} \frac{\langle k\rangle^{k}}{\left(1-\frac{1}{N}\right)^{k}}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 31／89
回 つQく

Limiting form of $P(k ; p, N)$ ：

－We are now here：

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Limiting form of $P(k ; p, N)$ ：

－We are now here：

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Limiting form of $P(k ; p, N)$ ：

－We are now here：

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

$$
P(k ;\langle k\rangle) \simeq \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}\left(1-\frac{\langle k\rangle}{N-1}\right)^{-k}
$$

－This is a Poisson distribution（ \boxplus ）with mean $\langle k\rangle$ ．
Frame 32／89
回 つQく

Limiting form of $P(k ; p, N)$ ：

－We are now here：

$$
P(k ; p, N) \simeq \frac{\langle k\rangle^{k}}{k!}\left(1-\frac{\langle k\rangle}{N-1}\right)^{N-1-k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

$$
P(k ;\langle k\rangle) \simeq \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}\left(1-\frac{\langle k\rangle}{N-1}\right)^{-k} \rightarrow \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

－This is a Poisson distribution（ \boxplus ）with mean $\langle k\rangle$ ．

Outline

Basics

Definitions

How to build
Some visual examples
Basics
Definitions
How to build
Some visual examples

Structure

Clustering

Structure

Clustering
Degree distributions
Configuration model
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 33／89
References

General random networks

－So．．．standard random networks have a Poisson degree distribution

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

－But we＇ll be more interested in

Frame 34／89
桕 つQく

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－But we＇ll be more interested in

Frame 34／89
司 \quad のく

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model ${ }^{[1]}$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－But we＇ll be more interested in

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model ${ }^{[1]}$ ．
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－But we＇ll be more interested in

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model ${ }^{[1]}$ ．
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j}
$$

－But we＇ll be more interested in

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model ${ }^{[1]}$ ．
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

－But we＇ll be more interested in

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 34／89
回 つQく

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model ${ }^{[1]}$ ．
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

－But we＇ll be more interested in
1．Randomly wiring up（and rewiring）already existing nodes with fixed degrees．
2．Examining mechanisms that lead to networks with certain degree distributions．

General random networks

－So．．．standard random networks have a Poisson degree distribution
－Generalize to arbitrary degree distribution P_{k} ．
－Also known as the configuration model ${ }^{[1]}$ ．
－Can generalize construction method from ER random networks．
－Assign each node a weight w from some distribution P_{w} and form links with probability

$$
P(\text { link between } i \text { and } j) \propto w_{i} w_{j} .
$$

－But we＇ll be more interested in
1．Randomly wiring up（and rewiring）already existing nodes with fixed degrees．
2．Examining mechanisms that lead to networks with certain degree distributions．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

2．Examining man

Frame 34／89
司 \quad のく

Random networks：examples

Basics
Definitions
How to build
Coming up：
Example realizations of random networks with power law degree distributions：

Frame 35／89
回 つQく

Random networks：examples

Basics
Definitions
How to build
Coming up：
Example realizations of random networks with power law degree distributions：
－$N=1000$ ．
－Set $P_{0}=0$（no isolated nodes）．
－Vary exponent γ between 2.10 and 2．91．
－Again，look at full network plus the largest component．
－Apart from degree distribution，wiring is random．

Frame 35／89
回 つQく

Random networks：examples

Coming up：
Example realizations of random networks with power law degree distributions：
－$N=1000$ ．
－$P_{k} \propto k^{-\gamma}$ for $k \geq 1$ ．
－Set $P_{0}=0$（no isolated nodes）．
－Vary exponent γ between 2.10 and 2．91．
－Again，look at full network plus the largest component．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－Apart from degree distribution，wiring is random．

Frame 35／89
司 \quad のく

Random networks：examples

Basics
Definitions
How to build
Coming up：
Example realizations of random networks with power law degree distributions：
－$N=1000$ ．
－$P_{k} \propto k^{-\gamma}$ for $k \geq 1$ ．
－Set $P_{0}=0$（no isolated nodes）．
－Vary exponent γ between 2.10 and 2．91．
－Again，look at full network plus the largest component．
－Apart from degree distribution，wiring is random．

Frame 35／89
司 \quad のく

Random networks：examples

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
component．
－Apart from dearee distribution，wiring is random．

Frame 35／89
司 \quad のく

Random networks：examples

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References component．
－Apart from degree distribution，wiring is random．

Frame 35／89
司 \quad のく

Random networks：examples

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References component．
－Apart from degree distribution，wiring is random．

Random networks: examples for $N=1000$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 36/89

$$
\text { 官 } \quad \text { Q }
$$

Random networks: largest components

Basics

$\gamma=2.28$
$\langle k\rangle=2.306$

$$
\begin{aligned}
& \gamma=2.37 \\
& \langle k\rangle=2.504
\end{aligned}
$$

$\langle k\rangle=1.856$
$\gamma=2.55$
$\langle k\rangle=1.712$
$\gamma=2.64$
$\gamma=2.73$
$\langle k\rangle=1.6$

$\begin{array}{ll}\gamma=2.82 & \gamma=2.91 \\ \langle k\rangle=1.386 & \langle k\rangle=1.49\end{array}$
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

$$
\gamma=2.46
$$

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 37/89

$$
\text { 回 } \quad \text { Q }
$$

Poisson basics：

－Normalization：we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 38／89
司 \quad のく

Poisson basics：

－Normalization：we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

－Checking：

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 38／89
官 \quad のく

Poisson basics：

－Normalization：we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

－Checking：

$$
\begin{gathered}
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!}
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 38／89
桕 つQく

Poisson basics：

－Normalization：we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

－Checking：

$$
\begin{gathered}
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} \\
=e^{-\langle k\rangle} e^{\langle k\rangle}=1
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 38／89
桕 つQく

Poisson basics:

- Normalization: we must have

$$
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=1
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} \\
=e^{-\langle k\rangle} e^{\langle k\rangle}=1 \checkmark
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 38/89
官 \quad Qの

Poisson basics：

－Mean degree：we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

Checking：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39／89
司 \quad のく

Poisson basics：

－Mean degree：we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

－Checking：

$$
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39／89
－We＇ll get to a better way of doing this．．．
司 \quad のく

Poisson basics：

－Mean degree：we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

－Checking：

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!}
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39／89
－We＇ll get to a better way of doing this．．
司 \quad のく

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!}
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39/89

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{i=0}^{\infty} \frac{\langle k\rangle^{i}}{i!}=\langle k\rangle e^{-\langle k\rangle} e^{\langle k\rangle}=
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39/89

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{i=0}^{\infty} \frac{\langle k\rangle^{i}}{i!}=\langle k\rangle e^{-\langle k\rangle} e^{\langle k\rangle}=
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39/89

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{i=0}^{\infty} \frac{\langle k\rangle^{i}}{i!}=\langle k\rangle e^{-\langle k\rangle} e^{\langle k\rangle}=\langle k\rangle \checkmark
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39/89

Poisson basics:

- Mean degree: we must have

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)
$$

- Checking:

$$
\begin{gathered}
\sum_{k=0}^{\infty} k P(k ;\langle k\rangle)=\sum_{k=0}^{\infty} k \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \\
=e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{k=1}^{\infty} \frac{\langle k\rangle^{k-1}}{(k-1)!} \\
=\langle k\rangle e^{-\langle k\rangle} \sum_{i=0}^{\infty} \frac{\langle k\rangle^{i}}{i!}=\langle k\rangle e^{-\langle k\rangle} e^{\langle k\rangle}=\langle k\rangle \checkmark
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 39/89

- We'll get to a better way of doing this...

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
－Note：This is a special property of Poisson distribution and can trip us up．．．

Poisson basics:

- The variance of degree distributions for random networks turns out to be very important.
- Use calculation similar to one for finding $\langle k\rangle$ to find the second moment:

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

- Variance is then

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

- So standard deviation σ is equal to $\sqrt{\langle k\rangle}$.
- Note: This is a special property of Poisson distribution and can trip us up...

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
－Note：This is a special property of Poisson distribution and can trip us up．．．

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}
$$

－So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
－Note：This is a special property of Poisson distribution and can trip us up．．．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 40／89
司 つQく

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle .
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
－Note：This is a special property of Poisson distribution and can trip us up．．．

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle .
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
－Note：This is a special property of Poisson distribution and can trip us up．．．

Poisson basics：

－The variance of degree distributions for random networks turns out to be very important．
－Use calculation similar to one for finding $\langle k\rangle$ to find the second moment：

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Variance is then

$$
\sigma^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle^{2}=\langle k\rangle .
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So standard deviation σ is equal to $\sqrt{\langle k\rangle}$ ．
－Note：This is a special property of Poisson distribution and can trip us up．．．

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks

Basics
Definitions
How to build
Some visual examples
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
－Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（i．e．， size）：

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Normalized form：

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}
$$

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Normalized form：

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
－Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（i．e．， size）：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Normalized form：

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
\rightarrow Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（ie． size）：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Normalized form：

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
－Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（i．e．， size）：

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Normalized form：

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
－Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（i．e．， size）：

$$
Q_{k} \propto k P_{k}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Normalized form：

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
－Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（i．e．， size）：

$$
Q_{k} \propto k P_{k}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－Normalized form：

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}
$$

The edge－degree distribution：

－The degree distribution P_{k} is fundamental for our description of many complex networks
－Again：P_{k} is the degree of randomly chosen node．
－A second very important distribution arises from choosing randomly on edges rather than on nodes．
－Define Q_{k} to be the probability the node at a random end of a randomly chosen edge has degree k ．
－Now choosing nodes based on their degree（i．e．， size）：

$$
Q_{k} \propto k P_{k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Normalized form：

$$
Q_{k}=\frac{k P_{k}}{\sum_{k^{\prime}=0}^{\infty} k^{\prime} P_{k^{\prime}}}=\frac{k P_{k}}{\langle k\rangle} .
$$

The edge－degree distribution：

－For random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends． Useful variant on Q_{k}

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Equivalent to friend having degree $k+1$ ．
－Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

－For random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends．
－Useful variant on Q_{k} ：
$R_{k}=$ probability that a friend of a random node has k other friends．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Equivalent to friend having degree $k+1$ ．
－Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

－For random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends．
－Useful variant on Q_{k} ：
$R_{k}=$ probability that a friend of a random node has k other friends．

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Equivalent to friend having degree $k+1$ ．
－Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

－For random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends．
－Useful variant on Q_{k} ：
$R_{k}=$ probability that a friend of a random node has k other friends．

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Equivalent to friend having degree $k+1$ ．
－Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

－For random networks，Q_{k} is also the probability that a friend（neighbor）of a random node has k friends．
－Useful variant on Q_{k} ：
$R_{k}=$ probability that a friend of a random node has k other friends．

$$
R_{k}=\frac{(k+1) P_{k+1}}{\sum_{k^{\prime}=0}\left(k^{\prime}+1\right) P_{k^{\prime}+1}}=\frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Equivalent to friend having degree $k+1$ ．
Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Equivalent to friend having degree $k+1$ ．
－Natural question：what＇s the expected number of other friends that one friend has？

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other
friends，then the average number of friends＇other friends is

$$
\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
（where we have sneakily matched up indices）

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\begin{aligned}
\langle k\rangle_{R} & =\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
& =\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1}
\end{aligned}
$$

（where we have sneakily matched up indices）

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

（where we have sneakily matched up indices）

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

（where we have sneakily matched up indices）

$$
=\frac{1}{\langle k\rangle} \sum_{j=0}^{\infty}\left(j^{2}-j\right) P_{j} \quad(\text { using } j=k+1)
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 43／89
司 \quad のく

The edge－degree distribution：

－Given R_{k} is the probability that a friend has k other friends，then the average number of friends＇other friends is

$$
\begin{aligned}
&\langle k\rangle_{R}=\sum_{k=0}^{\infty} k R_{k}=\sum_{k=0}^{\infty} k \frac{(k+1) P_{k+1}}{\langle k\rangle} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty} k(k+1) P_{k+1} \\
&=\frac{1}{\langle k\rangle} \sum_{k=1}^{\infty}\left((k+1)^{2}-(k+1)\right) P_{k+1}
\end{aligned}
$$

（where we have sneakily matched up indices）

$$
\begin{gathered}
\left.=\frac{1}{\langle k\rangle} \sum_{j=0}^{\infty}\left(j^{2}-j\right) P_{j} \quad \text { (using } j=k+1\right) \\
=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 43／89
回 つのく

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Again，neatness of results is a special property of the Poisson distribution．
－So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．．．

Frame 44／89

官 \quad のく

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Therefore：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Again，neatness of results is a special property of the Poisson distribution．
－So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．．．

Frame 44／89
回 つQの

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Therefore：

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)
$$

－Again，neatness of results is a special property of the Poisson distribution．
－So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Therefore：

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

－Again，neatness of results is a special property of the Poisson distribution．
－So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Therefore：

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

－Again，neatness of results is a special property of the Poisson distribution．
－So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．

The edge－degree distribution：

－Note：our result，$\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)$ ，is true for all random networks，independent of degree distribution．
－For standard random networks，recall

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle .
$$

－Therefore：

$$
\langle k\rangle_{R}=\frac{1}{\langle k\rangle}\left(\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle\right)=\langle k\rangle
$$

－Again，neatness of results is a special property of the Poisson distribution．
－So friends on average have $\langle k\rangle$ other friends，and $\langle k\rangle+1$ total friends．．．

Frame 44／89
回 つQく

Two reasons why this matters

Reason \#1:

- Average \# friends of friends per node is
- Key: Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment.
- Three peculiarities:

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 45/89
司 \quad の@

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 45／89

司 \quad のく

Two reasons why this matters

Reason \＃1：

－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 45／89

官 \quad のく

Two reasons why this matters

Reason \＃1：

－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 45／89

官 \quad のく

Two reasons why this matters

Reason \#1:

- Average \# friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

- Key: Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment.

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 45/89

问 \quad 䠉

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．
－Three peculiarities：
1．We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it＇s actually $\langle k(k-1)\rangle$ ．
2．If P_{k} has a large second moment， then $\left\langle k_{2}\right\rangle$ will be big．

3．Your friends are different to you．．．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．
－Three peculiarities：
1．We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it＇s actually $\langle k(k-1)\rangle$ ．
2．If P_{k} has a large second moment， then $\left\langle k_{2}\right\rangle$ will be big．
（e．g．，in the case of a power－law distribution）
3．Your friends are different to you．．．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．
－Three peculiarities：
1．We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it＇s actually $\langle k(k-1)\rangle$ ．
2．If P_{k} has a large second moment， then $\left\langle k_{2}\right\rangle$ will be big．
（e．g．，in the case of a power－law distribution）

Two reasons why this matters

Reason \＃1：
－Average \＃friends of friends per node is

$$
\left\langle k_{2}\right\rangle=\langle k\rangle \times\langle k\rangle_{R}=\langle k\rangle \frac{1}{\langle k\rangle}\left(\left\langle k^{2}\right\rangle-\langle k\rangle\right)=\left\langle k^{2}\right\rangle-\langle k\rangle .
$$

－Key：Average depends on the 1st and 2nd moments of P_{k} and not just the 1st moment．
－Three peculiarities：
1．We might guess $\left\langle k_{2}\right\rangle=\langle k\rangle(\langle k\rangle-1)$ but it＇s actually $\langle k(k-1)\rangle$ ．
2．If P_{k} has a large second moment， then $\left\langle k_{2}\right\rangle$ will be big．
（e．g．，in the case of a power－law distribution）
3．Your friends are different to you．．．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Two reasons why this matters

More on peculiarity \＃3：
－A node＇s average \＃of friends：$\langle k\rangle$

－Comparison：

－So only if everyone has the same degree （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 46／89

司 \quad のく

Two reasons why this matters

More on peculiarity \＃3：
－A node＇s average \＃of friends：$\langle k\rangle$
－Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
－So only if everyone has the same degree （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Average Component Size
References

Two reasons why this matters

More on peculiarity \＃3：

－A node＇s average \＃of friends：$\langle k\rangle$
－Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
－Comparison：

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}
$$

－So only if everyone has the same degree （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 46／89

官 \quad のく

Two reasons why this matters

More on peculiarity \＃3：

－A node＇s average \＃of friends：$\langle k\rangle$
－Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
－Comparison：

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}
$$

－So only if everyone has the same degree （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 46／89
回 つQの

Two reasons why this matters

More on peculiarity \＃3：

－A node＇s average \＃of friends：$\langle k\rangle$
－Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
－Comparison：

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right)
$$

－So only if everyone has the same degree （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Two reasons why this matters

More on peculiarity \＃3：

－A node＇s average \＃of friends：$\langle k\rangle$
－Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
－Comparison：

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle
$$

Generating

Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Two reasons why this matters

More on peculiarity \＃3：

－A node＇s average \＃of friends：$\langle k\rangle$
－Friend＇s average \＃of friends：$\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
－Comparison：

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References （variance $=\sigma^{2}=0$ ）can a node be the same as its friends．
－Intuition：for random networks，the more connected a node，the more likely it is to be chosen as a friend．

Two reasons why this matters

More on peculiarity \#3:

- A node's average \# of friends: $\langle k\rangle$
- Friend's average \# of friends: $\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}$
- Comparison:

$$
\frac{\left\langle k^{2}\right\rangle}{\langle k\rangle}=\langle k\rangle \frac{\left\langle k^{2}\right\rangle}{\langle k\rangle^{2}}=\langle k\rangle \frac{\sigma^{2}+\langle k\rangle^{2}}{\langle k\rangle^{2}}=\langle k\rangle\left(1+\frac{\sigma^{2}}{\langle k\rangle^{2}}\right) \geq\langle k\rangle
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References (variance $=\sigma^{2}=0$) can a node be the same as its friends.

- Intuition: for random networks, the more connected a node, the more likely it is to be chosen as a friend.

Two reasons why this matters

（Big）Reason \＃2：
－$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
＞e．g．，we＇d like to know what＇s the size of the largest component within a network．
$-\Delta s N \rightarrow \infty$ ，does our network have a giant component？
－Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork is connected to it．
－Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
－Note：Component＝Cluster

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 47／89

官 \quad のく

Two reasons why this matters

（Big）Reason \＃2：
－$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
－e．g．，we＇d like to know what＇s the size of the largest component within a network．
－As $N \rightarrow \infty$ ，does our network have a giant component？
－Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork is connected to it
\rightarrow Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
－Note：Component＝Cluster

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 47／89

官 \quad のく

Two reasons why this matters

（Big）Reason \＃2：
－$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
－e．g．，we＇d like to know what＇s the size of the largest component within a network．
－As $N \rightarrow \infty$ ，does our network have a giant component？
\rightarrow Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork is connected to it．
－Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
－Note：Component＝Cluster

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 47／89
官 \quad のく

Two reasons why this matters

（Big）Reason \＃2：
－$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
－e．g．，we＇d like to know what＇s the size of the largest component within a network．
－As $N \rightarrow \infty$ ，does our network have a giant component？
－Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References is connected to it．
\rightarrow Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
－Note：Component $=$ Cluster

Two reasons why this matters

（Big）Reason \＃2：
－$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
－e．g．，we＇d like to know what＇s the size of the largest component within a network．
－As $N \rightarrow \infty$ ，does our network have a giant component？
－Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References is connected to it．
－Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
＞Note：Component＝Cluster

Two reasons why this matters

（Big）Reason \＃2：
－$\langle k\rangle_{R}$ is key to understanding how well random networks are connected together．
－e．g．，we＇d like to know what＇s the size of the largest component within a network．
－As $N \rightarrow \infty$ ，does our network have a giant component？
－Defn：Component＝connected subnetwork of nodes such that \exists path between each pair of nodes in the subnetwork，and no node outside of the subnetwork

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References is connected to it．
－Defn：Giant component＝component that comprises a non－zero fraction of a network as $N \rightarrow \infty$ ．
－Note：Component＝Cluster

Frame 47／89
官 \quad のく

Outline

Basics

Definitions

How to build
Some visual examples
Basics
Definitions
How to build
Some visual examples
Structure
Clustering

Structure

Clustering
Degree distributions
Configuration model
Degree distributions Configuration model

Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 48／89
References

Structure of random networks

Giant component：

－A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
－Equivalently，expect exponential growth in node number as we move out from a random node． All of this is the same as requiring $\langle k\rangle_{B}>1$ Giant component condition（or percolation condition）：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Again，see that the second moment is an essential part of the story．
＞Equivalent statement：$\left\langle k^{2}\right\rangle>2\langle k\rangle$

Frame 49／89
回 つQの

Structure of random networks

Giant component：

－A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
－Equivalently，expect exponential growth in node number as we move out from a random node．
－All of this is the same as requiring $\langle k\rangle_{R}>1$ ．
－Giant component condition（or percolation condition）：

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Again，see that the second moment is an essential part of the story．
－Equivalent statement：$\left\langle k^{2}\right\rangle>2\langle k\rangle$

Frame 49／89
回 つQく

Structure of random networks

Giant component：

－A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
－Equivalently，expect exponential growth in node number as we move out from a random node．
－All of this is the same as requiring $\langle k\rangle_{R}>1$ ．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Structure of random networks

Giant component：

－A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
－Equivalently，expect exponential growth in node number as we move out from a random node．
－All of this is the same as requiring $\langle k\rangle_{R}>1$ ．
－Giant component condition（or percolation condition）：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Structure of random networks

Giant component：

－A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
－Equivalently，expect exponential growth in node number as we move out from a random node．
－All of this is the same as requiring $\langle k\rangle_{R}>1$ ．
－Giant component condition（or percolation condition）：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－Again，see that the second moment is an essential part of the story．
－Equivalent statement：$\left\langle k^{2}\right\rangle$

Structure of random networks

Giant component：

－A giant component exists if when we follow a random edge，we are likely to hit a node with at least 1 other outgoing edge．
－Equivalently，expect exponential growth in node number as we move out from a random node．
－All of this is the same as requiring $\langle k\rangle_{R}>1$ ．
－Giant component condition（or percolation condition）：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Again，see that the second moment is an essential part of the story．
－Equivalent statement：$\left\langle k^{2}\right\rangle>2\langle k\rangle$

Frame 49／89
回 つQく

Giant component

Standard random networks：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous phase transition（ \boxplus ）．
－We say $\langle k\rangle=1$ marks the critical point of the system．

Useful results
Size of the Giant
Component
Average Component Size
References

Frame 50／89
桕 つQく

Giant component

Standard random networks：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}
$$

－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous phase transition（ \boxplus ）．
－We say $\langle k\rangle=1$ marks the critical point of the system．

Giant component

Standard random networks:

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}
$$

- Therefore when $\langle k\rangle>1$, standard random networks have a giant component.
- When $\langle k\rangle<1$, all components are finite.
- Fine example of a continuous phase transition (\boxplus).
- We say $\langle k\rangle=1$ marks the critical point of the system.

Giant component

Standard random networks:

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

- Therefore when $\langle k\rangle>1$, standard random networks have a giant component.
- When $\langle k\rangle<1$, all components are finite.
- Fine example of a continuous phase transition (\boxplus).
- We say $\langle k\rangle=1$ marks the critical point of the system.

Giant component

Standard random networks：

－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous
－We say $\langle k\rangle=1$ marks the critical point of the system．

Frame 50／89
回 つQく

Giant component

Standard random networks：

－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous phase transition（ \square ）．
$>$ We say $\langle k\rangle=1$ marks the critical point of the system．

Frame 50／89
回 \quad のく

Giant component

Standard random networks：

－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous phase transition（ \boxplus ）．
－We say $\langle k\rangle=1$ marks the critical point of the system．

Giant component

Basics

Standard random networks：

－Recall $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$ ．
－Condition for giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\frac{\langle k\rangle^{2}+\langle k\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

－Therefore when $\langle k\rangle>1$ ，standard random networks have a giant component．
－When $\langle k\rangle<1$ ，all components are finite．
－Fine example of a continuous phase transition（ \boxplus ）．
－We say $\langle k\rangle=1$ marks the critical point of the system．

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3$ then

$$
\left\langle k^{2}\right\rangle=c \sum_{k=0}^{\infty} k^{2} k^{-\gamma}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．

Frame 51／89
桕 つQく

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3$ then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=0}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d} x
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．

Frame 51／89
司 つQく

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3$ then

$$
\begin{array}{r}
\left\langle k^{2}\right\rangle=c \sum_{k=0}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d} x \\
\left.\propto x^{3-\gamma}\right|_{x=0} ^{\infty}
\end{array}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3$ then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=0}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d} x \\
\left.\propto x^{3-\gamma}\right|_{x=0} ^{\infty}=\infty
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3$ then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=0}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d} x \\
\left.\propto x^{3-\gamma}\right|_{x=0} ^{\infty}=\infty \quad(>\langle k\rangle) .
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3$ then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=0}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d} x \\
\left.\propto x^{3-\gamma}\right|_{x=0} ^{\infty}=\infty \quad(>\langle k\rangle)
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．

Giant component

Random networks with skewed P_{k} ：
－e．g，if $P_{k}=c k^{-\gamma}$ with $2<\gamma<3$ then

$$
\begin{gathered}
\left\langle k^{2}\right\rangle=c \sum_{k=0}^{\infty} k^{2} k^{-\gamma} \\
\sim \int_{x=0}^{\infty} x^{2-\gamma} \mathrm{d} x \\
\left.\propto x^{3-\gamma}\right|_{x=0} ^{\infty}=\infty \quad(>\langle k\rangle)
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So giant component always exists for these kinds of networks．
－Cutoff scaling is k^{-3} ：if $\gamma>3$ then we have to look harder at $\langle k\rangle_{R}$ ．

Frame 51／89
回 つのく

Giant component

And how big is the largest component？

－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{i} with a back－of－the－envelope argument．
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So

－Substitute in Poisson distribution．．．

Frame 52／89
司 つQく

Giant component

And how big is the largest component？

－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．

Structure

Clustering
Degree distributions
Configuration model
Largest component
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So

－Substitute in Poisson distribution．．．

Giant component

And how big is the largest component？

－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．
\rightarrow Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta-1-S_{1}$
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

－Substitute in Poisson distribution．．．

Frame 52／89

官 つのく

Giant component

And how big is the largest component？

－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Substitute in Poisson distribution．．．

Giant component

And how big is the largest component？

－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Substitute in Poisson distribution．．

Giant component

And how big is the largest component？

－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
Average Component Size
References
－Substitute in Poisson distribution．．．

Giant component

And how big is the largest component？

－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－So

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

－Substitute in Poisson distribution．

Giant component

And how big is the largest component？
－Define S_{1} as the size of the largest component．
－Consider an infinite ER random network with average degree $\langle k\rangle$ ．
－Let＇s find S_{1} with a back－of－the－envelope argument．
－Define δ as the probability that a randomly chosen node does not belong to the largest component．
－Simple connection：$\delta=1-S_{1}$ ．
－Dirty trick：If a randomly chosen node is not part of the largest component，then none of its neighbors are．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－So

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}
$$

－Substitute in Poisson distribution．．．

Giant component

- Carrying on:

$$
\delta=\sum_{k=0}^{\infty} \boldsymbol{P}_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant

Component
Average Component Size
References

- Now substitute in $\delta=1-S_{1}$ and rearrange to obtain:

$$
S_{1}=1-e^{-\langle k\rangle S_{1}} .
$$

Giant component

－Carrying on：

$$
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

Frame 53／89
官 \quad のく

Giant component

－Carrying on：

$$
\begin{gathered}
\delta=\sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!}
\end{gathered}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
－Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

Frame 53／89
桕 つQく

Giant component

－Carrying on：

$$
\begin{aligned}
\delta= & \sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
& =e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
= & e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)}
\end{aligned}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

Frame 53／89
回 つQく

Giant component

－Carrying on：

$$
\begin{aligned}
& \delta= \sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
&=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
&=e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)}
\end{aligned}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

Frame 53／89
桕 つQく

Giant component

－Carrying on：

$$
\begin{aligned}
& \delta= \sum_{k=0}^{\infty} P_{k} \delta^{k}=\sum_{k=0}^{\infty} \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \delta^{k} \\
&=e^{-\langle k\rangle} \sum_{k=0}^{\infty} \frac{(\langle k\rangle \delta)^{k}}{k!} \\
&=e^{-\langle k\rangle} e^{\langle k\rangle \delta}=e^{-\langle k\rangle(1-\delta)}
\end{aligned}
$$

－Now substitute in $\delta=1-S_{1}$ and rearrange to obtain：

$$
S_{1}=1-e^{-\langle k\rangle S_{1}} .
$$

Giant component

－We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$ ．
First，we can write $\langle k\rangle$ in terms of S_{1} ：

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 54／89
司 \quad のく

Giant component

Basics
Definitions
－We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$.
－First，we can write $\langle k\rangle$ in terms of S_{1} ：

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

－Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
－Only solvable for $S>0$ when $\langle k\rangle>1$ ．
－Really a transcritical bifurcation

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 54／89
司 \quad のく

Giant component

Basics
Definitions
－We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$ ．
－First，we can write $\langle k\rangle$ in terms of S_{1} ：

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

－As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$.
－Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
－Only solvable for $S>0$ when $\langle k\rangle>1$ ．
－Really a transcritical bifurcation

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 54／89
司 \quad のく

Giant component

Basics
Definitions
－We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$ ．
－First，we can write $\langle k\rangle$ in terms of S_{1} ：

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

－As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$ ．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ ．
－Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
－Only solvable for $S>0$ when $\langle k\rangle>1$ ．
－Really a transcritical bifurcation

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 54／89
司 \quad のく

Giant component

Basics
Definitions
－We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$ ．
－First，we can write $\langle k\rangle$ in terms of S_{1} ：

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

－As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$ ．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ ．
－Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
Only solvable for $S>0$ when $\langle k\rangle>1$ ．
－Really a transcritical bifurcation

Frame 54／89
回 つQく

Giant component

Basics
Definitions
－We can figure out some limits and details for $S_{1}=1-e^{-\langle k\rangle S_{1}}$ ．
－First，we can write $\langle k\rangle$ in terms of S_{1} ：

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

－As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$ ．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ ．
－Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Only solvable for $S>0$ when $\langle k\rangle>1$ ．
－Really a transcritical bifurcation

Frame 54／89
回 つQく

Giant component

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

$$
\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}} .
$$

－As $\langle k\rangle \rightarrow 0, s_{1} \rightarrow 0$ ．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ ．
－Notice that at $\langle k\rangle=1$ ，the critical point，$S_{1}=0$ ．
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Only solvable for $S>0$ when $\langle k\rangle>1$ ．
－Really a transcritical bifurcation ${ }^{[2]}$ ．

Giant component

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
Average Component Size
References

Frame 55／89
回 つQく

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that a node at the end of a random edge is part of the largest component．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Giant Component
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－We can do this but we need to enhance our toolkit with Generatingfunctionology．．．
－（Well，not really but it＇s fun and we get all sorts of other things．．．）

Frame 56／89

官 \quad のく

Giant component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$.
- We need a separate probability δ^{\prime} for the chance that a node at the end of a random edge is part of the largest component.
- We can do this but we need to enhance our toolkit with Generatingfunctionology..
- (Well, not really but it's fun and we get all sorts of other things...)

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 56/89
官 \quad Qの

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that a node at the end of a random edge is part of the largest component．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－We can do this but we need to enhance our toolkit with Generatingfunctionology．．．
（Well，not really but it＇s fun and we get all sorts of other things．．．）

Frame 56／89

官 \quad のく

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that a node at the end of a random edge is part of the largest component．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－We can do this but we need to enhance our toolkit with Generatingfunctionology．．．
（Well，not really but it＇s fun and we get all sorts of other things．．．）

Frame 56／89
回 つQく

Giant component

Turns out we were lucky...

- Our dirty trick only works for ER random networks.
- The problem: We assumed that neighbors have the same probability δ of belonging to the largest component.
- But we know our friends are different from us...
- Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$.
- We need a separate probability δ^{\prime} for the chance that a node at the end of a random edge is part of the largest component.

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

- We can do this but we need to enhance our toolkit with Generatingfunctionology...
(Well, not really but it's fun and we get all sorts of other things...)

Frame 56/89
司 \quad Qの

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that a node at the end of a random edge is part of the largest component．
－We can do this but we need to enhance our toolkit with Generatingfunctionology．．．${ }^{[3]}$
（Well，not really but it＇s fun and we get all sorts of other things．．．）

Giant component

Turns out we were lucky．．．
－Our dirty trick only works for ER random networks．
－The problem：We assumed that neighbors have the same probability δ of belonging to the largest component．
－But we know our friends are different from us．．．
－Works for ER random networks because $\langle k\rangle=\langle k\rangle_{R}$ ．
－We need a separate probability δ^{\prime} for the chance that a node at the end of a random edge is part of the largest component．
－We can do this but we need to enhance our toolkit with Generatingfunctionology．．．${ }^{[3]}$
－（Well，not really but it＇s fun and we get all sorts of other things．．．）

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 56／89
回 つQく

Outline

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 57／89
司 つQの

Generating functions

- Idea: Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$, associate each element with a distinct function or other mathematical object.
- Well-chosen functions allow us to manipulate sequences and retrieve sequence elements.

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 58/89
司 \quad Qく

Generating functions

－Idea：Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$ ，associate each element with a distinct function or other mathematical object．
－Well－chosen functions allow us to manipulate sequences and retrieve sequence elements．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 58／89
官 \quad のく

Generating functions

－Idea：Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$ ，associate each element with a distinct function or other mathematical object．
－Well－chosen functions allow us to manipulate sequences and retrieve sequence elements．

Definition：
－The generating function（g．f．）for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

\rightarrow Roughly：transforms a vector in R^{∞} into a function defined on R^{1} ．
－Related to Fourier，Laplace，Mellin，

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Generating functions

－Idea：Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$ ，associate each element with a distinct function or other mathematical object．
－Well－chosen functions allow us to manipulate sequences and retrieve sequence elements．

Definition：
－The generating function（g．f．）for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Roughly：transforms a vector in R^{∞} into a function defined on R^{1} ．
－Related to Fourier，Laplace，Mellin，

Generating functions

－Idea：Given a sequence $a_{0}, a_{1}, a_{2}, \ldots$ ，associate each element with a distinct function or other mathematical object．
－Well－chosen functions allow us to manipulate sequences and retrieve sequence elements．

Definition：
－The generating function（g．f．）for a sequence $\left\{a_{n}\right\}$ is

$$
F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Roughly：transforms a vector in R^{∞} into a function defined on R^{1} ．
－Related to Fourier，Laplace，Mellin，．．．

Frame 58／89
回 つQく

Simple example

Basics
Definitions
How to build
Rolling dice：
－$p_{k}^{(\square)}=\operatorname{Pr}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$ ．

－We＇ll come back to this simple example as we derive various delicious properties of generating functions．

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 59／89
司 つQく

Simple example

Basics
Definitions
How to build
Some visual examples
Rolling dice：
－$p_{k}^{(\square)}=\operatorname{Pr}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$ ．

$$
F^{(\square)}(x)=\sum_{k=1}^{6} p_{k} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) .
$$

－We＇ll come back to this simple example as we derive various delicious properties of generating functions．

Frame 59／89

$$
\text { 官 } つ Q く
$$

Simple example

Rolling dice：
－$p_{k}^{(\square)}=\operatorname{Pr}($ throwing a $k)=1 / 6$ where $k=1,2, \ldots, 6$ ．

$$
F^{(\square)}(x)=\sum_{k=1}^{6} p_{k} x^{k}=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) .
$$

－We＇ll come back to this simple example as we derive various delicious properties of generating functions．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 59／89
甸 つQく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
The generating function for this distribution is

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 60／89
司 \quad のく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
－The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 60／89
官 \quad のく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
－The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 60／89
甸 つQく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
－The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 60／89
回 つQく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
－The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 60／89
回 つQく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
－The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

$$
F(1)=\sum_{k=0}^{\infty} P_{k} 1^{k}=\sum_{k=0}^{\infty} P_{k}=1
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component

Generating
 Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 60／89
回 つQく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
－The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

$$
F(1)=\sum_{k=0}^{\infty} P_{k} 1^{k}=\sum_{k=0}^{\infty} P_{k}=1
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 60／89
回 つのく

Example

－Take a degree distribution with exponential decay：

$$
P_{k}=c e^{-\lambda k}
$$

where $c=1-e^{-\lambda}$ ．
－The generating function for this distribution is

$$
F(x)=\sum_{k=0}^{\infty} P_{k} x^{k}=\sum_{k=0}^{\infty} c e^{-\lambda k} x^{k}=\frac{c}{1-x e^{-\lambda}}
$$

－Notice that $F(1)=c /\left(1-e^{-\lambda}\right)=1$ ．
－For probability distributions，we must always have $F(1)=1$ since

$$
F(1)=\sum_{k=0}^{\infty} P_{k} 1^{k}=\sum_{k=0}^{\infty} P_{k}=1
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 60／89
回 \quad のヘ

Outline

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Definitions

Basic Properties

Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 61／89
References

Properties of generating functions

－Average degree：

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P_{k}=\sum_{k=0}^{\infty} k P_{k} x^{k-1}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 62／89
官 \quad のく

Properties of generating functions

－Average degree：

$$
\langle k\rangle=\sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 62／89
桕 つQく

Properties of generating functions

－Average degree：

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}
\end{aligned}
$$

－In general，many calculations become simple，if a little abstract．
－For our exponential example：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 62／89
桕 つQく

Properties of generating functions

－Average degree：

$$
\begin{aligned}
\langle k\rangle= & \sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

－In general，many calculations become simple，if a little abstract．
－For our exponential example：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 62／89
桕 つQく

Properties of generating functions

- Average degree:

$$
\begin{aligned}
\langle k\rangle & =\sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 62/89

Properties of generating functions

- Average degree:

$$
\begin{aligned}
\langle k\rangle & =\sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

- In general, many calculations become simple, if a little abstract.
- For our exponential example:

$$
F^{\prime}(x)=\frac{\left(1-e^{-\lambda}\right) e^{-\lambda}}{\left(1-x e^{-\lambda}\right)^{2}}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 62/89

Properties of generating functions

－Average degree：

$$
\begin{aligned}
\langle k\rangle & =\sum_{k=0}^{\infty} k P_{k}=\left.\sum_{k=0}^{\infty} k P_{k} x^{k-1}\right|_{x=1} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} x} F(x)\right|_{x=1}=F^{\prime}(1)
\end{aligned}
$$

－In general，many calculations become simple，if a little abstract．
－For our exponential example：

$$
F^{\prime}(x)=\frac{\left(1-e^{-\lambda}\right) e^{-\lambda}}{\left(1-x e^{-\lambda}\right)^{2}}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－So：

$$
\langle k\rangle=F^{\prime}(1)=\frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)}
$$

Properties of generating functions

Useful pieces for probability distributions：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 63／89
司 \quad のく

Properties of generating functions

Useful pieces for probability distributions：

－Normalization：

$$
F(1)=1
$$

－First moment：
－Higher moments：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－k th element of sequence（general）：

Frame 63／89
司 つQく

Properties of generating functions

Useful pieces for probability distributions:

- Normalization:

$$
F(1)=1
$$

- First moment:

$$
\langle k\rangle=F^{\prime}(1)
$$

- Higher moments:

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

- k th element of sequence (general):

Properties of generating functions

Useful pieces for probability distributions：

－Normalization：

$$
F(1)=1
$$

－First moment：

$$
\langle k\rangle=F^{\prime}(1)
$$

－Higher moments：

$$
\left\langle k^{n}\right\rangle=\left.\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} F(x)\right|_{x=1}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－k th element of sequence（general）：

Properties of generating functions

Useful pieces for probability distributions：

－Normalization：

$$
F(1)=1
$$

－First moment：

$$
\langle k\rangle=F^{\prime}(1)
$$

－Higher moments：

$$
\left\langle k^{n}\right\rangle=\left.\left(x \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n} F(x)\right|_{x=1}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－k th element of sequence（general）：

$$
P_{k}=\left.\frac{1}{k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} F(x)\right|_{x=0}
$$

Frame 63／89
回 つQく

Outline

Basics

Definitions

How to build

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 64／89
References

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
 －We first need the g．f．for R_{k} ．
 －We＇ll now use this notation：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Condition in terms of g．f．is：

－Now find how F_{R} is related to $F_{P} \ldots$

Frame 65／89
回 つQく

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k}
－We＇ll now use this notation：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Condition in terms of g．f．is：

Frame 65／89
回 つQく

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k} ．
－We＇ll now use this notation：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Condition in terms of g．f．is：

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k} ．
－We＇ll now use this notation：

－Condition in terms of g．f．is：

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Now find how F_{R} is related to F_{P} ．

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k} ．
－We＇ll now use this notation：
$F_{P}(x)$ is the g．f．for P_{k}.
－Condition in terms of g．f．is：

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Now find how F_{R} is related to F_{P} ．

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k} ．
－We＇ll now use this notation：
$F_{P}(x)$ is the g．f．for P_{k}.
$F_{R}(x)$ is the g．f．for R_{k} ．
－Condition in terms of g．f．is：

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Now find how F_{R} is related to F_{P} ．

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k} ．
－We＇ll now use this notation：
$F_{P}(x)$ is the g．f．for P_{k}.
$F_{R}(x)$ is the g．f．for R_{k} ．
－Condition in terms of g．f．is：

$$
\langle k\rangle_{R}=F_{R}^{\prime}(1)>1
$$

－Now find how F_{R} is related to F_{P} ．．

Edge－degree distribution

－Recall our condition for a giant component：

$$
\langle k\rangle_{R}=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}>1 .
$$

－Let＇s rëexpress our condition in terms of generating functions．
－We first need the g．f．for R_{k} ．
－We＇ll now use this notation：
$F_{P}(x)$ is the g．f．for P_{k}.
$F_{R}(x)$ is the g．f．for R_{k} ．
－Condition in terms of g．f．is：

$$
\langle k\rangle_{R}=F_{R}^{\prime}(1)>1 .
$$

－Now find how F_{R} is related to $F_{P} \ldots$

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{(k\rangle} x^{k}
$$

Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Finally，since $\langle k\rangle=F_{P}^{\prime}(1)$ ，

Frame 66／89
官 \quad のく

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Finally，since $\langle k\rangle=F_{P}^{\prime}(1)$ ，

Frame 66／89

$$
\text { 吊 } \quad \text { のく }
$$

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Finally，since $\langle k\rangle=F_{P}^{\prime}(1)$ ，

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

$$
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Generating
 Functions
 Definitions
 Basic Properties

Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Finally，since $\langle k\rangle=F_{P}^{\prime}(1)$ ，

Edge-degree distribution

- We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

$$
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} \chi} x^{j}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Finally, since $\langle k\rangle=F_{P}^{\prime}(1)$,

Frame 66/89

$$
\text { 追 } \quad \text { Qく }
$$

Edge-degree distribution

- We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$:

$$
\begin{gathered}
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d} x}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle} F_{p}^{\prime}(x) .
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Generating
 Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Finally, since $\langle k\rangle=F_{p}^{\prime}(1)$,

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

$$
\begin{array}{r}
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle}
\end{array}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Generating
 Functions
 Definitions

Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Finally，since $\langle k\rangle=F_{p}^{\prime}(1)$ ，

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

$$
\begin{gathered}
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle} F_{P}^{\prime}(x) .
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Generating
 Functions
 Definitions

Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Finally，since $\langle k\rangle=F_{p}^{\prime}(1)$ ，

Edge－degree distribution

－We have

$$
F_{R}(x)=\sum_{k=0}^{\infty} R_{k} x^{k}=\sum_{k=0}^{\infty} \frac{(k+1) P_{k+1}}{\langle k\rangle} x^{k} .
$$

Shift index to $j=k+1$ and pull out $\frac{1}{\langle k\rangle}$ ：

$$
\begin{gathered}
F_{R}(x)=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} j P_{j} x^{j-1}=\frac{1}{\langle k\rangle} \sum_{j=1}^{\infty} P_{j} \frac{\mathrm{~d}}{\mathrm{~d} x} x^{j} \\
=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x} \sum_{j=1}^{\infty} P_{j} x^{j}=\frac{1}{\langle k\rangle} \frac{\mathrm{d}}{\mathrm{~d} x}\left(F_{P}(x)-P_{0}\right)=\frac{1}{\langle k\rangle} F_{P}^{\prime}(x) .
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Finally，since $\langle k\rangle=F_{P}^{\prime}(1)$ ，

$$
F_{R}(X)=\frac{F^{\prime}(X)}{F_{P}^{\prime}(1)}
$$

Edge－degree distribution

Basics
Definitions
－Recall giant component condition is $\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$ ．
\Rightarrow Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$ ， Setting $x=1$ ，our condition becomes

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 67／89
官 \quad のく

Edge-degree distribution

- Recall giant component condition is
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$.
- Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$,

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 67/89
问 \quad 信

Edge－degree distribution

Basics
Definitions
How to build
Some visual examples
$\langle k\rangle_{R}=F_{R}^{\prime}(1)>1$ ．
－Since we have $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$ ，

$$
F_{R}^{\prime}(x)=\frac{F_{P}^{\prime \prime}(x)}{F_{P}^{\prime}(1)} .
$$

－Setting $x=1$ ，our condition becomes

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 67／89
司 \quad のく

Edge－degree distribution

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

$$
F_{R}^{\prime}(x)=\frac{F_{P}^{\prime \prime}(x)}{F_{P}^{\prime}(1)} .
$$

－Setting $x=1$ ，our condition becomes

$$
\frac{F_{P}^{\prime \prime}(1)}{F_{P}^{\prime}(1)}>1
$$

Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 67／89
司 つQく

Outline

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating Functions
Definitions
Basic Properties
Giant Component Condition
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Component sizes
Useful results
Size of the Giant Component
Average Component Size
Frame 68／89
官 \quad のく

Size distributions

To figure out the size of the largest component $\left(S_{1}\right)$ ，we need more resolution on component sizes．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 69／89
桕 つQく

Size distributions

To figure out the size of the largest component $\left(S_{1}\right)$ ，we need more resolution on component sizes．
Definitions：
－$\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$ ．
$\rho_{n}=$ probability a random link leads to a finite
subcomponent of size $n<\infty$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References
neighbors \Leftrightarrow components

Size distributions

To figure out the size of the largest component $\left(S_{1}\right)$ ，we need more resolution on component sizes．
Definitions：
－$\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$ ．
－$\rho_{n}=$ probability a random link leads to a finite subcomponent of size $n<\infty$ ．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Size distributions

To figure out the size of the largest component $\left(S_{1}\right)$ ，we need more resolution on component sizes．
Definitions：
－$\pi_{n}=$ probability that a random node belongs to a finite component of size $n<\infty$ ．
－$\rho_{n}=$ probability a random link leads to a finite subcomponent of size $n<\infty$ ．

Local－global connection：

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

$$
P_{k}, R_{k} \Leftrightarrow \pi_{n}, \rho_{n}
$$

neighbors \Leftrightarrow components

Size distributions

G.f.'s for component size distributions:

The largest component:
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Our mission, which we accept:

Frame 70/89
司 \quad Qの

Size distributions

G.f.'s for component size distributions:

$$
F_{\pi}(x)=\sum_{n=0}^{\infty} \pi_{n} x^{n} \text { and } F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Our mission, which we accept:

Frame 70/89
司 \quad Qの

Size distributions

G．f．＇s for component size distributions：

$$
F_{\pi}(x)=\sum_{n=0}^{\infty} \pi_{n} x^{n} \text { and } F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}
$$

The largest component：
－Subtle key：$F_{\pi}(1)$ is the probability that a node belongs to a finite component．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Our mission，which we accept：

Size distributions

G．f．＇s for component size distributions：

$$
F_{\pi}(x)=\sum_{n=0}^{\infty} \pi_{n} x^{n} \text { and } F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}
$$

The largest component：
－Subtle key：$F_{\pi}(1)$ is the probability that a node belongs to a finite component．
－Therefore：$S_{1}=1-F_{\pi}(1)$ ．

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Our mission，which we accept：

Size distributions

G．f．＇s for component size distributions：

$$
F_{\pi}(x)=\sum_{n=0}^{\infty} \pi_{n} x^{n} \text { and } F_{\rho}(x)=\sum_{n=0}^{\infty} \rho_{n} x^{n}
$$

The largest component：
－Subtle key：$F_{\pi}(1)$ is the probability that a node belongs to a finite component．
－Therefore：$S_{1}=1-F_{\pi}(1)$ ．

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Our mission，which we accept：
－Find the four generating functions

$$
F_{P}, F_{R}, F_{\pi} \text {, and } F_{\rho} .
$$

Outline

Basics

Definitions

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Definitions
Basic Properties
Giant Component Condition
Component sizes
Size of the Giant
Component
Average Component Size
References

Useful results

Size of the Giant Component
Average Component Size
Frame 71／89
References

Useful results we＇ll need for g．f．＇s

Sneaky Result 1：

> －Consider two random variables U and V whose values may be $0,1,2$ ，
> －Write probability distributions as U_{k} and V_{k} and g．f．＇s as F_{U} and F_{V} ．
> －SR1：If a third random variable is defined as

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 72／89
吕 \quad のく

Useful results we＇ll need for g．f．＇s

Sneaky Result 1：

－Consider two random variables U and V whose values may be $0,1,2, \ldots$
－Write probability distributions as U_{k} and V_{k} and g．f．＇s as F_{U} and F_{V} ．
－SR1：If a third random variable is defined as

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 72／89
桕 つQく

Useful results we＇ll need for g．f．＇s

Sneaky Result 1：

－Consider two random variables U and V whose values may be $0,1,2, \ldots$
－Write probability distributions as U_{k} and V_{k} and g．f．＇s as F_{U} and F_{V} ．
－SR1：If a third random variable is defined as

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 72／89
回 つQく

Useful results we＇ll need for g．f．＇s

Sneaky Result 1：

－Consider two random variables U and V whose values may be $0,1,2, \ldots$
－Write probability distributions as U_{k} and V_{k} and g．f．＇s as F_{U} and F_{V} ．
－SR1：If a third random variable is defined as

$$
W=\sum_{i=1}^{U} V^{(i)} \text { with each } V^{(i)} \stackrel{d}{=} V
$$

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
then

Useful results we'll need for g.f.'s

Sneaky Result 1:

- Consider two random variables U and V whose values may be $0,1,2, \ldots$
- Write probability distributions as U_{k} and V_{k} and g.f.'s as F_{U} and F_{V}.
- SR1: If a third random variable is defined as

$$
W=\sum_{i=1}^{U} V^{(i)} \text { with each } V^{(i)} \stackrel{d}{=} V
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
then

$$
F_{W}(x)=F_{U}\left(F_{V}(x)\right)
$$

Proof of SR1:

Write probability that variable W has value k as W_{k}.

Proof of SR1：

Write probability that variable W has value k as W_{k} ．

$$
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k)
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 73／89
司 \quad のく

Proof of SR1：

Write probability that variable W has value k as W_{k} ．

$$
\begin{aligned}
W_{k}=\sum_{j=0}^{\infty} & U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{i}, \ldots, \ldots, i_{j}\right\} \\
i_{1}+i_{2}+\ldots+i=k}} V_{i_{1}} v_{i_{2}} \cdots V_{i_{j}}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 73／89
回 つQく

Proof of SR1：

Write probability that variable W has value k as W_{k} ．

$$
\begin{gathered}
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
=\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \\
i_{1}+i_{2}+\ldots+j=k}} V_{i_{1}} v_{i_{2}} \cdots v_{i_{j}} \\
\therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{i, 2} v_{i_{1}} v_{i_{2}} \cdots
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 73／89
回 つQく

Proof of SR1：

Write probability that variable W has value k as W_{k} ．

$$
\begin{gathered}
W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
=\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{j}\right\} \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} v_{i_{2}} \cdots V_{i_{j}} \\
\therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left.i_{1}, i_{2}, \ldots, i_{j} \mid\right\} \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j} x^{k}}
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 73／89
回 つのく

Proof of SR1：

Write probability that variable W has value k as W_{k} ．

$$
\begin{aligned}
& W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{1_{1}, i_{2}, \ldots, i_{1}\right\} \\
i_{1}+i_{2}+\ldots+j_{j}=k}} V_{i_{1}} v_{i_{2}} \cdots V_{i_{j}} \\
& \therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left.i_{1}, i_{2}, \ldots, j_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j} x^{k}} \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 73／89
回 つQく

Proof of SR1：

Write probability that variable W has value k as W_{k} ．

$$
\begin{aligned}
& W_{k}=\sum_{j=0}^{\infty} U_{j} \times \operatorname{Pr}(\text { sum of } j \text { draws of variable } V=k) \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{2}\right\} \\
i_{1}+i_{2}+\ldots+j_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j}} \\
& \therefore F_{W}(x)=\sum_{k=0}^{\infty} W_{k} x^{k}=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} U_{j} \sum_{\substack{\left\{_{1}, i_{2}, \ldots, i_{j}\right\} \mid \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} V_{i_{2}} \cdots V_{i_{j} x^{k}} \\
& =\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{i j} \mid \\
i_{1}+i_{2}+\ldots+j_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{j_{j}}
\end{aligned}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 73／89
回 つのく

Proof of SR1：

With some concentration，observe：

$$
F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \underbrace{\sum_{\substack{\left\{i_{1}, i_{2}, \ldots, i_{2}\right\} \\ i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{j_{j}}}_{x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 74／89
回 つのく

Proof of SR1:

With some concentration, observe:

$$
\begin{aligned}
& F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \underbrace{\sum_{\substack{\left\{i_{i}, \ldots, \ldots, i_{2}\right\} \\
i_{1}+i_{2}+\ldots+i_{j}=k}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j} x^{j_{j}}}}_{x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}} \\
& \left(\sum_{i^{\prime}=0}^{\infty} v_{i^{\prime}} x^{i}\right)^{j}=\left(F_{V}(x)\right)^{j}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 74/89

$$
\text { 可 } \quad \text { ac }
$$

Proof of SR1:

With some concentration, observe:

$$
\begin{aligned}
& F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\left\{\left\{_{i}, 2, \ldots, \ldots, j\right\} \mid\right.} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i j} x^{i_{j}} \\
& i_{1}+i_{2}+\ldots+i_{i}=k \\
& x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{\prime}\right)^{j} \\
& \left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}=\left(F_{V}(x)\right)^{j} \\
& =\sum_{j=0}^{\infty} U_{j}\left(F_{V}(x)\right)^{j}
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 74/89

$$
\text { 可 } \quad \Omega Q
$$

Proof of SR1：

With some concentration，observe：

$$
\begin{aligned}
& F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\left\{\left\{_{1}, 2_{2}, \ldots, \ldots, i_{1}\right\}\right.} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{i_{j}} \\
& i_{1}+i_{2}+\ldots+i_{j}=k \\
& x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} v_{i^{\prime}} x^{i}\right)^{j} \\
& \left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}=\left(F_{V}(x)\right)^{j} \\
& =\sum_{j=0}^{\infty} U_{j}\left(F_{V}(x)\right)^{j} \\
& =F_{U}\left(F_{V}(x)\right)
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 74／89
可 \quad のの

Proof of SR1：

With some concentration，observe：

$$
\begin{aligned}
& F_{W}(x)=\sum_{j=0}^{\infty} U_{j} \sum_{k=0}^{\infty} \sum_{\substack{\left.\left\{1,,_{2}, \ldots, i_{i},\right\}\right\}}} V_{i_{1}} x^{i_{1}} V_{i_{2}} x^{i_{2}} \ldots V_{i_{j}} x^{j_{j}} \\
& i_{1}+i_{2}+\ldots+i_{j}=k \\
& x^{k} \text { piece of }\left(\sum_{i^{\prime}=0}^{\infty} v_{i^{\prime}} x^{i}\right)^{j} \\
& \left(\sum_{i^{\prime}=0}^{\infty} V_{i^{\prime}} x^{i^{\prime}}\right)^{j}=\left(F_{V}(x)\right)^{j} \\
& =\sum_{j=0}^{\infty} U_{j}\left(F_{V}(x)\right)^{j} \\
& =F_{U}\left(F_{V}(x)\right)
\end{aligned}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 74／89
回 つQく

Useful results we＇ll need for g．f．＇s

Random Networks

Sneaky Result 2：

－Start with a random variable U with distribution U_{k} （ $k=0,1,2, \ldots$ ）
 －SR2：If a second random variable is defined as

Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
司 \quad のく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k} （ $k=0,1,2, \ldots$ ）
－SR2：If a second random variable is defined as

$$
\text { Reason: } V_{k}=U_{k-1} \text { for } k \geq 1 \text { and } V_{0}=0 \text {. }
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
回 つQく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
回つのく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
回 つのく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
甸 つQく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

$$
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
回 つQく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

$$
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
甸 つQく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

$$
\begin{gathered}
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
=x \sum_{j=0}^{\infty} U_{j} x^{j}=x F_{U}(x) .
\end{gathered}
$$

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
回 $つ$ のく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

$$
\begin{gathered}
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
=x \sum_{j=0}^{\infty} U_{j} x^{j}=x F_{U}(x) .
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
回 つQく

Useful results we＇ll need for g．f．＇s

Sneaky Result 2：

－Start with a random variable U with distribution U_{k}

$$
(k=0,1,2, \ldots)
$$

－SR2：If a second random variable is defined as

$$
V=U+1 \text { then } F_{V}(x)=x F_{U}(x)
$$

－Reason：$V_{k}=U_{k-1}$ for $k \geq 1$ and $V_{0}=0$ ．

$$
\begin{gathered}
\therefore F_{V}(x)=\sum_{k=0}^{\infty} V_{k} x^{k}=\sum_{k=1}^{\infty} U_{k-1} x^{k} \\
=x \sum_{j=0}^{\infty} U_{j} x^{j}=x F_{U}(x) \cdot \checkmark
\end{gathered}
$$

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 75／89
回 \quad のく

Useful results we'll need for g.f.'s

Generalization of SR2:
Basics
Definitions
How to build
Some visual examples
$\rightarrow(1)$ If $V=U+i$ then

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 76/89
司 \quad Qの

Useful results we＇ll need for g．f．＇s

Basics
Definitions
Generalization of SR2：
－（1）If $V=U+i$ then

$$
F_{V}(x)=x^{i} F_{U}(x) .
$$

－（2）If $V=U-i$ then
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 76／89
官 \quad のく

Useful results we＇ll need for g．f．＇s

Basics
Definitions
Generalization of SR2：
－（1）If $V=U+i$ then

$$
F_{V}(x)=x^{i} F_{U}(x) .
$$

－（2）If $V=U$－i then

$$
F_{V}(x)=x^{-i} F_{U}(x)
$$

How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 76／89
官 \quad のく

Useful results we＇ll need for g．f．＇s

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions

$$
F_{V}(x)=x^{i} F_{U}(x) .
$$

－（2）If $V=U-i$ then

$$
\begin{aligned}
& F_{V}(x)=x^{-i} F_{U}(x) \\
& \quad=x^{-i} \sum_{k=0}^{\infty} U_{k} x^{k}
\end{aligned}
$$

Frame 76／89
回 つQく

Outline

Definitions
Definitions
How to build
Some visual examples
Some visual examples

Structure

Clustering
Clustering
Degree distributions
Confíguration model
Largest component
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Basic Properties
Giant Component Condition
References
Component sizes
Useful result＇s
Size of the Giant Component
Average Component Size
Frame 77／89
References
司 つQく

Connecting generating functions

Basics
－Goal：figure out forms of the component generating
Definitions
How to build
Some visual examples functions，F_{π} and F_{ρ} ．

Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Therefore：$\quad F_{\pi}(x)=$
References
－Extra factor of x accounts for random node itself．

Connecting generating functions

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
Therefore：
$F_{\pi}(x)=$
References

Frame 78／89
司 つQく

Connecting generating functions

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
Therefore：

References

Frame 78／89
司 つQく

Connecting generating functions

－Goal：figure out forms of the component generating functions，F_{π} and F_{ρ} ．
－$\pi_{n}=$ probability that a random node belongs to a finite component of size n
$=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$

Therefore：

$$
F_{\pi}(x)=\underbrace{x} \underbrace{F_{p}\left(F_{p}(x)\right)}
$$

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 78／89
回 つQく

Connecting generating functions

－Goal：figure out forms of the component generating functions，F_{π} and F_{ρ} ．
－$\pi_{n}=$ probability that a random node belongs to a finite component of size n
$=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{$ sum of sizes of subcomponents }{ at end of k random links $=n-1}$

Therefore：

$$
F_{\pi}(x)=\underbrace{x}_{\text {SRR2 }} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text {SRil }}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Frame 78／89
回 つQく

Connecting generating functions

－Goal：figure out forms of the component generating functions，F_{π} and F_{ρ} ．
－$\pi_{n}=$ probability that a random node belongs to a finite component of size n

$$
=\sum_{k=0}^{\infty} P_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Therefore：

$$
F_{\pi}(x)=\underbrace{x}_{\text {shr2 }} \underbrace{F_{P}\left(F_{\rho}(x)\right)}_{\text {GRil }}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Extra factor of x accounts for random node itself．

Connecting generating functions

－$\rho_{n}=$ probability that a random link leads to a finite
subcomponent of size n ．
Invoke one step of recursion：$\rho_{n}=$ probability that in
following a random edge，the outgoing edges of the
node reached lead to finite subcomponents of
combined size $n-1$ ，
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
Therefore：$F_{\rho}(x)=$
－Again，extra factor of x accounts for random node itself．

Connecting generating functions

－$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n ．
－Invoke one step of recursion：$\rho_{n}=$ probability that in following a random edge，the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$ ，

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Therefore：

－Again，extra factor of x accounts for random node itself．

Connecting generating functions

－$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n ．
－Invoke one step of recursion：$\rho_{n}=$ probability that in following a random edge，the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$ ，

$$
=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Basics

Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Therefore：

－Again，extra factor of x accounts for random node itself．

Connecting generating functions

－$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n ．
－Invoke one step of recursion：$\rho_{n}=$ probability that in following a random edge，the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$ ，

$$
=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Usefuil resulis
Size of the Giant
Component
Average Component Size
References

Therefore：

$$
F_{\rho}(x)=\underbrace{x} \underbrace{F_{R}\left(F_{\rho}(x)\right)}
$$

Again，extra factor of x accounts for random node itself．

Connecting generating functions

－$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n ．
－Invoke one step of recursion：$\rho_{n}=$ probability that in following a random edge，the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$ ，

$$
=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
Average Component Size
References

Therefore：

$$
F_{\rho}(x)=\underbrace{x}_{\text {SR2 }} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text {SR1 }}
$$

Again，extra factor of x accounts for random node itself．

Connecting generating functions

－$\rho_{n}=$ probability that a random link leads to a finite subcomponent of size n ．
－Invoke one step of recursion：$\rho_{n}=$ probability that in following a random edge，the outgoing edges of the node reached lead to finite subcomponents of combined size $n-1$ ，

$$
=\sum_{k=0}^{\infty} R_{k} \times \operatorname{Pr}\binom{\text { sum of sizes of subcomponents }}{\text { at end of } k \text { random links }=n-1}
$$

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulis
Size of the Giant
Component
Average Component Size
References

Therefore：

$$
F_{\rho}(x)=\underbrace{x}_{\text {SR2 }} \underbrace{F_{R}\left(F_{\rho}(x)\right)}_{\text {SR1 }}
$$

－Again，extra factor of x accounts for random node itself．

Connecting generating functions

－We now have two functional equations connecting our generating functions：

$$
F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right) \text { and } \quad F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)
$$

＞Taking stock：We know $F_{P}(x)$ and $F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)$ ．
－We first untangle the second equation to find F_{ρ}
－We can do this because it only involves F_{ρ} and F_{R} ．
－The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R} ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 80／89
回 つQく

Connecting generating functions

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

- The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R}.

Connecting generating functions

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R} ．

Connecting generating functions

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

The first equation then immediately gives us F_{π} in
terms of F_{ρ} and F_{R}.

Connecting generating functions

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－The first equation then immediately gives us F_{π} in terms of F_{ρ} and F_{R} ．

Component sizes

－Remembering vaguely what we are doing：
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
－Set $x=1$ in our two equations：
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
－Solve second equation numerically for $F_{\rho}(1)$ ．
－Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$ ．

Component sizes

Basics
Definitions
How to build
－Remembering vaguely what we are doing：
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
－Set $x=1$ in our two equations：
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions

Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－Solve second equation numerically for $F_{\rho}(1)$ ．
－Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$ ．

Component sizes

－Remembering vaguely what we are doing：
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
－Set $x=1$ in our two equations：

－Solve second equation numerically for $F_{\rho}(1)$ ．
－Plua $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$ ．

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 81／89
司 つQく

Component sizes

Basics
Definitions
How to build
－Remembering vaguely what we are doing：
Finding F_{π} to obtain the fractional size of the largest component $S_{1}=1-F_{\pi}(1)$ ．
－Set $x=1$ in our two equations：

$$
F_{\pi}(1)=F_{P}\left(F_{\rho}(1)\right) \text { and } \quad F_{\rho}(1)=F_{R}\left(F_{\rho}(1)\right)
$$

－Solve second equation numerically for $F_{\rho}(1)$ ．
－Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$ ．

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 81／89
回 つQく

Component sizes

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Solve second equation numerically for $F_{\rho}(1)$ ．
－Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$ ．

Component sizes

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Solve second equation numerically for $F_{\rho}(1)$ ．
－Plug $F_{\rho}(1)$ into first equation to obtain $F_{\pi}(1)$ ．

Component sizes

Basics

Example: Standard random graphs.

- We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component

- RHS's of our two equations are the same.
- So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
- Why our dirty (but wrong) trick worked earlier...

Average Component Size

References

Component sizes

Basics
Definitions

Example：Standard random graphs．
－We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$
$\therefore F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)=e^{-\langle k)(1-x)} /\left.e^{-\langle k)\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1}$
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
－RHS＇s of our two equations are the same．
－So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
－Why our dirty（but wrong）trick worked earlier．．．

Component sizes

Basics
Definitions

Example: Standard random graphs.

- We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\therefore F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)=e^{-\langle k\rangle(1-x)} /\left.e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1}
$$

- RHS's of our two equations are the same.
- So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
- Why our dirty (but wrong) trick worked earlier...

Component sizes

Basics
Definitions
Example：Standard random graphs．
－We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\therefore F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)=e^{-\langle k\rangle(1-x)} /\left.e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1}
$$

$$
=e^{-\langle k\rangle(1-x)}
$$

..aha!
－RHS＇s of our two equations are the same．
－So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
－Why our dirty（but wrong）trick worked earlier．．．

Component sizes

Basics
Definitions

Example: Standard random graphs.

- We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\therefore F_{R}(x)=F_{P}^{\prime}(x) / F_{P}^{\prime}(1)=e^{-\langle k\rangle(1-x)} /\left.e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1}
$$

$$
=e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \text {...aha! }
$$

- RHS's of our two equations are the same.
- So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
- Why our dirty (but wrong) trick worked earlier...

Component sizes

Basics
Definitions
Example：Standard random graphs．
－We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{aligned}
\therefore F_{R}(x)= & F_{P}^{\prime}(x) / F_{P}^{\prime}(1)=e^{-\langle k\rangle(1-x)} /\left.e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
& =e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \ldots \text { aha! }
\end{aligned}
$$

－RHS＇s of our two equations are the same．
－So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
－Why our dirty（but wrong）trick worked earlier．．．

Component sizes

Basics
Definitions
Example：Standard random graphs．
－We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{aligned}
\therefore F_{R}(x)= & F_{P}^{\prime}(x) / F_{P}^{\prime}(1)=e^{-\langle k\rangle(1-x)} /\left.e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
& =e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \ldots \text { aha! }
\end{aligned}
$$

－RHS＇s of our two equations are the same．
－So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
Why our dirty（but wrong）trick worked earlier．．．

Frame 82／89
回 つQく

Component sizes

Basics

Definitions
Example: Standard random graphs.

- We can show $F_{P}(x)=e^{-\langle k\rangle(1-x)}$

$$
\begin{aligned}
\therefore F_{R}(x)= & F_{P}^{\prime}(x) / F_{P}^{\prime}(1)=e^{-\langle k\rangle(1-x)} /\left.e^{-\langle k\rangle\left(1-x^{\prime}\right)}\right|_{x^{\prime}=1} \\
& =e^{-\langle k\rangle(1-x)}=F_{P}(x) \quad \ldots \text { aha! }
\end{aligned}
$$

- RHS's of our two equations are the same.
- So $F_{\pi}(x)=F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)=x F_{R}\left(F_{\pi}(x)\right)$
- Why our dirty (but wrong) trick worked earlier...

Component sizes

－We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
－We＇re first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$ ：

Degree distributions
Configuration model
Largest component

Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant Component
Average Component Size
References
－Just as we found with our dirty trick
－Again，we（usually）have to resort to numerics
Frame 83／89
官 \quad のく

Component sizes

－We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)}
$$

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

－We＇re first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$ ：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Just as we found with our dirty trick
Frame 83／89
桕 つQく

Component sizes

－We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)}
$$

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

－We＇re first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$ ：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Just as we found with our dirty trick
－Again，we（usually）have to resort to numerics
Frame 83／89
回 つQの

Component sizes

- We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)}
$$

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

- We're first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$:

$$
1-S_{1}=e^{-\langle k\rangle S_{1}}
$$

Or: $\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}$

Random Networks

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 83/89
司 \quad の

Component sizes

- We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)}
$$

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

- We're first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$:

$$
1-S_{1}=e^{-\langle k\rangle S_{1}}
$$

Or: $\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 83/89
司 \quad の

Component sizes

－We are down to

$$
F_{\pi}(x)=x F_{R}\left(F_{\pi}(x)\right) \text { and } F_{R}(x)=e^{-\langle k\rangle(1-x)}
$$

$$
\therefore F_{\pi}(x)=x e^{-\langle k\rangle\left(1-F_{\pi}(x)\right)}
$$

－We＇re first after $S_{1}=1-F_{\pi}(1)$ so set $x=1$ and replace $F_{\pi}(1)$ by $1-S_{1}$ ：

$$
1-S_{1}=e^{-\langle k\rangle S_{1}}
$$

Or：$\langle k\rangle=\frac{1}{S_{1}} \ln \frac{1}{1-S_{1}}$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 83／89
回 つQく

Outline

Basics

Definitions

How to build

Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
Basic Properties
Giant Component Condition
References
Component sizes
Useful results
Size of the Giant Component

Average Component Size

Frame 84／89
官 \quad のく

Average component size

－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x) \ldots$
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{p}^{\prime}(x) F_{R}^{\prime}\left(F_{p}(x)\right)
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－Now set $x=1$ in both equations．
－We solve the second equation for $F_{\rho}^{\prime}(1)$（we must already have $\left.F_{\rho}(1)\right)$ ．
－Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

References

Frame 85／89
官 \quad のく

Average component size

- Next: find average size of finite components $\langle n\rangle$.
- Using standard G.F. result: $\langle n\rangle=F_{\pi}^{\prime}(1)$.
- Try to avoid finding $F_{\pi}(x)$...
- Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$, we differentiaate:

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{p}(x)\right)+x F_{p}^{\prime}(x) F_{p}^{\prime}\left(F_{p}(x)\right)
$$

- While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size

- Now set $x=1$ in both equations.
- We solve the second equation for $F_{\rho}^{\prime}(1)$ (we must already have $F_{\rho}(1)$).
- Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$.

Average component size

－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x) \ldots$
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
\Gamma_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－Now set $x=1$ in both equations．
－We solve the second equation for $F_{p}^{\prime}(1)$（we must already have $\left.F_{\rho}(1)\right)$ ．
－Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

References

Average component size

－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x) \ldots$
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

－Now set $x=1$ in both equations．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－We solve the second equation for $F_{p}^{\prime}(1)$（we must already have $\left.F_{\rho}(1)\right)$ ．
－Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

Average component size

－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x) \ldots$
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

\Rightarrow Now set $x=1$ in both equations．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－We solve the second equation for $F_{\rho}^{\prime}(1)$（we must already have $F_{\rho}(1)$ ）．
\rightarrow Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

Average component size

－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x)$ ．．．
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

－Now set $x=1$ in both equations．
We solve the second equation for $F_{\rho}^{\prime}(1)$（we must already have $F_{\rho}(1)$ ）．
－Plug $F^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

Average component size

－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x) \ldots$
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

－Now set $x=1$ in both equations．
－We solve the second equation for $F_{\rho}^{\prime}(1)$（we must already have $\left.F_{\rho}(1)\right)$ ．
－Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

Average component size

－Next：find average size of finite components $\langle n\rangle$ ．
－Using standard G．F．result：$\langle n\rangle=F_{\pi}^{\prime}(1)$ ．
－Try to avoid finding $F_{\pi}(x) \ldots$
－Starting from $F_{\pi}(x)=x F_{P}\left(F_{\rho}(x)\right)$ ，we differentiate：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{P}^{\prime}\left(F_{\rho}(x)\right)
$$

－While $F_{\rho}(x)=x F_{R}\left(F_{\rho}(x)\right)$ gives

$$
F_{\rho}^{\prime}(x)=F_{R}\left(F_{\rho}(x)\right)+x F_{\rho}^{\prime}(x) F_{R}^{\prime}\left(F_{\rho}(x)\right)
$$

－Now set $x=1$ in both equations．
－We solve the second equation for $F_{\rho}^{\prime}(1)$（we must already have $F_{\rho}(1)$ ）．
－Plug $F_{\rho}^{\prime}(1)$ and $F_{\rho}(1)$ into first equation to find $F_{\pi}^{\prime}(1)$ ．

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{p}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{p}^{\prime}\left(F_{\pi}(x)\right)
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．
－Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 86／89
司 \quad のく

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$ ．

Frame 86／89
回 \quad のく

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size

Frame 86／89
回 つQく

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

Rearrange：$\quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}$
－Simplify denominator using $F_{p}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size

Frame 86／89
回 つQく

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

$$
\text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$ ．

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

$$
\text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

$$
\text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$ ．

Average component size

Example：Standard random graphs．
－Use fact that $F_{P}=F_{R}$ and $F_{\pi}=F_{\rho}$ ．
－Two differentiated equations reduce to only one：

$$
F_{\pi}^{\prime}(x)=F_{P}\left(F_{\pi}(x)\right)+x F_{\pi}^{\prime}(x) F_{P}^{\prime}\left(F_{\pi}(x)\right)
$$

$$
\text { Rearrange: } \quad F_{\pi}^{\prime}(x)=\frac{F_{P}\left(F_{\pi}(x)\right)}{1-x F_{P}^{\prime}\left(F_{\pi}(x)\right)}
$$

－Simplify denominator using $F_{P}^{\prime}(x)=\langle k\rangle F_{P}(x)$
－Replace $F_{P}\left(F_{\pi}(x)\right)$ using $F_{\pi}(x)=x F_{P}\left(F_{\pi}(x)\right)$ ．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful resulits
Size of the Giant
Component
Average Component Size
References
－Set $x=1$ and replace $F_{\pi}(1)$ with $1-S_{1}$ ．
End result：$\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}$

Average component size

－Our result for standard random networks：

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks．
－Look at what happens when we increase $\langle k\rangle$ to 1 from below．
－We have $S_{1}=0$ for all $\langle k\rangle<1$
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

This blows up as $\langle k\rangle \rightarrow 1$ ．
－Reason：we have a power law distribution of component sizes at $\langle k\rangle=1$ ．
－Typical critical point behavior．．．．
Frame 87／89
官 \quad のく

Average component size

－Our result for standard random networks：

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks．
－Look at what happens when we increase $\langle k\rangle$ to 1 from below．
－We have $S_{1}=0$ for all $\langle k\rangle<1$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－This blows up as $\langle k\rangle \rightarrow 1$
－Reason：we have a power law distribution of component sizes at $\langle k\rangle=1$
Typical critical point behavior．．．．
Frame 87／89
回 \quad のく

Average component size

- Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

- Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
- Look at what happens when we increase $\langle k\rangle$ to 1 from below.
- We have $S_{1}=0$ for all $\langle k\rangle<1$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

- This blows up as $\langle k\rangle \rightarrow 1$
- Reason: we have a power law distribution of component sizes at $\langle k\rangle=1$.
- Typical critical point behavior....

Average component size

－Our result for standard random networks：

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks．
－Look at what happens when we increase $\langle k\rangle$ to 1 from below．
－We have $S_{1}=0$ for all $\langle k\rangle<1$ so

Basics
Definitions
How to build
Some visual examples
Structure
Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References
－This blows up as $\langle k\rangle \rightarrow 1$
－Reason：we have a power law distribution of component sizes at $\langle k\rangle=1$ ．
－Typical critical point behavior．．．．
Frame 87／89
回 \quad のく

Average component size

- Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

- Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
- Look at what happens when we increase $\langle k\rangle$ to 1 from below.
- We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

- This blows up as $\langle k\rangle \rightarrow 1$.
- Reason: we have a power law distribution of component sizes at $\langle k\rangle=1$.
- Tynical critical noint behavior....

Average component size

- Our result for standard random networks:

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

- Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks.
- Look at what happens when we increase $\langle k\rangle$ to 1 from below.
- We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

- This blows up as $\langle k\rangle \rightarrow 1$.
- Reason: we have a power law distribution of component sizes at $\langle k\rangle=1$.

Average component size

－Our result for standard random networks：

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－Recall that $\langle k\rangle=1$ is the critical value of average degree for standard random networks．
－Look at what happens when we increase $\langle k\rangle$ to 1 from below．
－We have $S_{1}=0$ for all $\langle k\rangle<1$ so

$$
\langle n\rangle=\frac{1}{1-\langle k\rangle}
$$

－This blows up as $\langle k\rangle \rightarrow 1$ ．
－Reason：we have a power law distribution of component sizes at $\langle k\rangle=1$ ．
－Typical critical point behavior．．．．

Frame 87／89
回 $つ Q く$

Average component size

－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
Extra on largest component size：

Frame 88／89
桕 つQく

Average component size

－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－As $\langle k\rangle \rightarrow 0, S_{1}=0$ ，and $\langle n\rangle \rightarrow 1$ ．
－All nodes are isolated．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$ ．
－No nodes are outside of the giant component．

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
Extra on largest component size：

Frame 88／89
回 つQく

Average component size

－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－As $\langle k\rangle \rightarrow 0, S_{1}=0$ ，and $\langle n\rangle \rightarrow 1$ ．
－All nodes are isolated．
－No nodes are outside of the giant component．
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
Extra on largest component size：

Frame 88／89
司 \quad のく

Average component size

－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－As $\langle k\rangle \rightarrow 0, S_{1}=0$ ，and $\langle n\rangle \rightarrow 1$ ．
－All nodes are isolated．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$ ．
－No nodes are outside of the giant component．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Frame 88／89
司 \quad のく

Average component size

－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－As $\langle k\rangle \rightarrow 0, S_{1}=0$ ，and $\langle n\rangle \rightarrow 1$ ．
－All nodes are isolated．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$ ．
－No nodes are outside of the giant component．

Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
References

Extra on largest component size：

Frame 88／89
回 つQく

Average component size

－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－As $\langle k\rangle \rightarrow 0, S_{1}=0$ ，and $\langle n\rangle \rightarrow 1$ ．
－All nodes are isolated．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$ ．
－No nodes are outside of the giant component．
Extra on largest component size：

Basics

Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－For $\langle k\rangle=1, S_{1} \sim N^{2 / 3}$ ．
\Rightarrow For $\langle k\rangle<1, S_{1} \sim \log N$ ．

Average component size

－Limits of $\langle k\rangle=0$ and ∞ make sense for

$$
\langle n\rangle=F_{\pi}^{\prime}(1)=\frac{\left(1-S_{1}\right)}{1-\langle k\rangle\left(1-S_{1}\right)}
$$

－As $\langle k\rangle \rightarrow 0, S_{1}=0$ ，and $\langle n\rangle \rightarrow 1$ ．
－All nodes are isolated．
－As $\langle k\rangle \rightarrow \infty, S_{1} \rightarrow 1$ and $\langle n\rangle \rightarrow 0$ ．
－No nodes are outside of the giant component．
Extra on largest component size：
Basics
Definitions
How to build
Some visual examples

Structure

Clustering
Degree distributions
Configuration model
Largest component
Generating
Functions
Definitions
Basic Properties
Giant Component Condition
Component sizes
Useful results
Size of the Giant
Component
Average Component Size
－For $\langle k\rangle=1, S_{1} \sim N^{2 / 3}$ ．
－For $\langle k\rangle<1, S_{1} \sim \log N$ ．

References I

Basics
Definitions
How to build
Some visual examples
［1］M．E．J．Newman．
The structure and function of complex networks．
SIAM Review，45（2）：167－256，2003．pdf（ \boxplus ）
：［2］S．H．Strogatz．
Nonlinear Dynamics and Chaos．
Addison Wesley，Reading，Massachusetts， 1994.
：［3］H．S．Wilf．
Generatingfunctionology．
A K Peters，Natick，MA，3rd edition，2006．pdf（ \boxplus ）

