Contagion Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Frame 1/<u>58</u>

母 り00

Outline

Basic Contagion Models

Social Contagion Models Network version All-to-all networks Theory

References

Contagion models

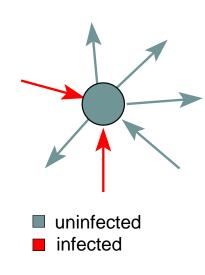
Some large questions concerning network contagion:

- For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?
- Next up: We'll look at some fundamental kinds of spreading on generalized random networks.

Contagion Models Social Contagion Models Network version All-to-all networks Theory References

Frame 3/58

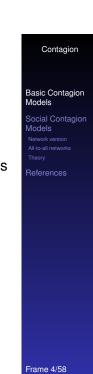
Spreading mechanisms



 General spreading mechanism:
 State of node i depends on history of i and i's

neighbors' states.

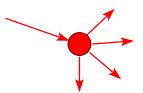
- Doses of entity may be stochastic and history-dependent.
- May have multiple, interacting entities spreading at once.

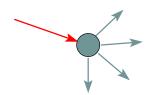


Spreading on Random Networks

- ► For random networks, we know local structure is pure branching.
- Successful spreading is ∴ contingent on single edges infecting nodes.

Success





Focus on binary case with edges and nodes either infected or not.

Contagion condition

- ▶ We need to find:
 - *r* = the average # of infected edges that one random infected edge brings about.
- ▶ Define β_k as the probability that a node of degree k is infected by a single infected edge.

$$r = \sum_{k=0}^{\infty} \underbrace{\frac{kP_k}{\langle k \rangle}}_{\begin{subarray}{c} \text{prob. of} \\ \text{connecting to} \\ \text{a degree } k \end{subarray}} \cdot \underbrace{\frac{\beta_k}{\text{Prob. of}}}_{\begin{subarray}{c} \text{prob. of} \\ \text{infected} \\ \text{edges} \end{subarray}}_{\begin{subarray}{c} \text{# outgoin} \\ \text{infected} \\ \text{edges} \end{subarray}}$$

$$+\sum_{k=0}^{\infty} \widehat{\frac{kP_k}{\langle k \rangle}} \cdot \underbrace{\begin{pmatrix} 1-\beta_k \end{pmatrix}}_{\text{Prob. of no infection}} \cdot \underbrace{\begin{matrix} 0 \\ \text{# outgoing infected edges} \end{matrix}}_{\text{location}}$$

Contagion

Basic Contagion Models

Social Contagion Models

All-to-all networks
Theory

References

Frame 6/58

Contagion condition

▶ Our contagion condition is then:

$$r = \sum_{k=0}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} \beta_k > 1.$$

▶ Case 1: If $\beta_k = 1$ then

$$r=\frac{\langle k(k-1)\rangle}{\langle k\rangle}>1.$$

► Good: This is just our giant component condition again.

Contagio

Frame 5/58

母 り00

Contagion

Basic Contagion

Models

Models

Basic Contagion Models

Social Contagion
Models
Network version
All-to-all networks

References

Contagion condition

▶ Case 2: If $\beta_k = \beta < 1$ then

$$r = \beta \frac{\langle k(k-1) \rangle}{\langle k \rangle} > 1.$$

- ▶ A fraction $(1-\beta)$ of edges do not transmit infection.
- ▶ Analogous phase transition to giant component case but critical value of $\langle k \rangle$ is increased.
- ► Aka bond percolation.
- ► Resulting degree distribution P'_k :

$$P'_{k} = \beta^{k} \sum_{i=k}^{\infty} {i \choose k} (1-\beta)^{i-k} P_{i}.$$

• We can show $F_{P'}(x) = F_P(\beta x + 1 - \beta)$.

Contagion

Basic Contagion Models

odels etwork version

All-to-all networks Theory

References

Frame 8/58

Frame 7/58

Contagion condition

- ▶ Cases 3, 4, 5, ...: Now allow β_k to depend on k
- ► Asymmetry: Transmission along an edge depends on node's degree at other end.
- ▶ Possibility: β_k increases with k... unlikely.
- ▶ Possibility: β_k is not monotonic in k... unlikely.
- ▶ Possibility: β_k decreases with k... hmmm.
- $\triangleright \beta_k \searrow$ is a plausible representation of a simple kind of social contagion.
- ► The story:

 More well connected people are harder to influence.

ontagion

Basic Contagior

Social Contagion

Network version All-to-all networks

References

Contagion condition

▶ Example: $\beta_k = 1/k$.

$$r = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} \beta_k = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle k}$$

$$=\sum_{k=1}^{\infty}\frac{(k-1)P_k}{\langle k\rangle}=\frac{\langle k\rangle-1}{\langle k\rangle}=1-\frac{1}{\langle k\rangle}$$

- Since r is always less than 1, no spreading can occur for this mechanism.
- ▶ Decay of β_k is too fast.
- Result is independent of degree distribution.

Contagion

Basic Contagion Models

Social Contagion Models

Network version
All-to-all networks

References

Frame 10/58

Contagion condition

- **Example:** $\beta_k = H(\frac{1}{k} \phi)$ where $0 < \phi \le 1$ is a threshold and H is the Heaviside function.
- Infection only occurs for nodes with low degree.
- Call these nodes vulnerables: they flip when only one of their friends flips.

$$r = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} \beta_k = \sum_{k=1}^{\infty} \frac{(k-1)kP_k}{\langle k \rangle} H(\frac{1}{k} - \phi)$$

$$=\sum_{k=1}^{\lfloor\frac{1}{\phi}\rfloor}\frac{(k-1)kP_k}{\langle k\rangle}\quad\text{where }\lfloor\cdot\rfloor\text{ means floor.}$$

Contagio

Frame 9/58

母 りゅつ

Basic Contagion Models

Social Contagion Models Network version

All-to-all network Theory

References

Contagion condition

► The contagion condition:

$$r = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} \frac{(k-1)kP_k}{\langle k \rangle} > 1.$$

- ▶ As $\phi \rightarrow$ 1, all nodes become resilient and $r \rightarrow$ 0.
- ▶ As $\phi \rightarrow 0$, all nodes become vulnerable and the contagion condition matches up with the giant component condition.
- ▶ Key: If we fix ϕ and then vary $\langle k \rangle$, we may see two phase transitions.
- Added to our standard giant component transition, we will see a cut off in spreading as nodes become more connected.

Contagion

Basic Contagion

Social Contagion Models

Network version All-to-all networks Theory

References

Frame 12/58

Social Contagion

Some important models (recap from CSYS 300)

- ► Tipping models—Schelling (1971)^[8, 9, 10]
 - Simulation on checker boards.
 - Idea of thresholds.
- ► Threshold models—Granovetter (1978) [7]
- ► Herding models—Bikhchandani et al. (1992)^[1, 2]
 - ▶ Social learning theory, Informational cascades,...

Threshold model on a network

Original work:

"A simple model of global cascades on random networks" D. J. Watts. Proc. Natl. Acad. Sci., 2002 [12]

- ► Mean field Granovetter model → network model
- ▶ Individuals now have a limited view of the world

Contagion

Basic Contagion

Models

Social Contagion

Models

Network version

All-to-all networks

Theory

References

Interactions between individuals now represented by a network

- ▶ Network is sparse
- ▶ Individual *i* has *k_i* contacts

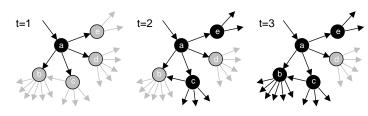
Threshold model on a network

- ► Influence on each link is reciprocal and of unit weight
- ▶ Each individual *i* has a fixed threshold ϕ_i
- Individuals repeatedly poll contacts on network
- Synchronous, discrete time updating
- ▶ Individual *i* becomes active when fraction of active contacts $a_i \ge \phi_i k_i$
- Activation is permanent (SI)

Frame 14/58

母 り00

Threshold model on a network



▶ All nodes have threshold $\phi = 0.2$.

Contagion

Basic Contagion
Models

Social Contagion
Models

Network version
Alt-to-all networks
Theory

References

Frame 16/58

The most gullible

Vulnerables:

- Recall definition: individuals who can be activated by just one contact being active are vulnerables.
- ▶ The vulnerability condition for node i: $1/k_i \ge \phi_i$.
- ▶ Means # contacts $k_i \leq |1/\phi_i|$.
- ► Key: For global cascades on random networks, must have a *global component of vulnerables* [12]
- For a uniform threshold ϕ , our contagion condition tells us when such a component exists:

$$r = \sum_{k=1}^{\lfloor \frac{1}{\phi} \rfloor} \frac{(k-1)kP_k}{\langle k \rangle} > 1.$$

Contagion

Basic Contagion
Models

Social Contagion
Models

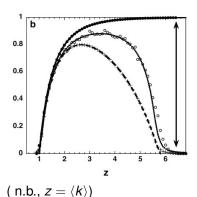
Network version
All-to-all networks
Theory

References

Frame 18/<u>58</u>

母 り00

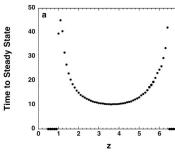
Cascades on random networks



- ► Top curve: final fraction infected if successful.
- Middle curve: chance of starting a global spreading event (cascade).
- Bottom curve: fractional size of vulnerable subcomponent. [12]
- Cascades occur only if size of vulnerable subcomponent > 0.
- ➤ System is robust-yet-fragile just below upper boundary [3, 4, 11]
- 'Ignorance' facilitates spreading.

Contagion Basic Contagion Models Social Contagion Models Network version Altico-all networks Theory References

Cascades on random networks



- Time taken for cascade to spread through network. [12]
- ► Two phase transitions.

(n.b.,
$$z = \langle k \rangle$$
)

- ► Largest vulnerable component = critical mass.
- Now have endogenous mechanism for spreading from an individual to the critical mass and then beyond.

Contagior

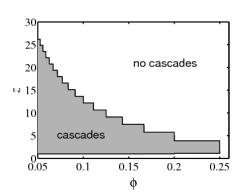
Basic Contagion Models

Social Contagion
Models
Network version
All-to-all networks

Reference

Frame 20/58

Cascade window for random networks



$$(n.b., z = \langle k \rangle)$$

Outline of cascade window for random networks.

Contagion

Basic Contagion

Models

Social Contagion

Models

Network version

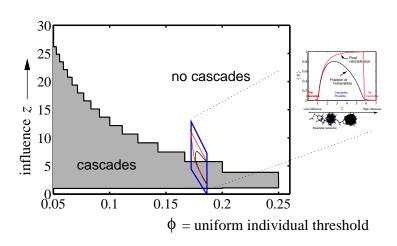
All-to-all networks

Theory

References

母 り00

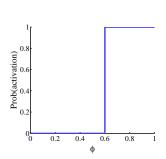
Cascade window for random networks



Contagion Basic Contagion Social Contagion References

Social Contagion

Granovetter's Threshold model—recap



- Assumes deterministic response functions
- $ightharpoonup \phi_* = \text{threshold of an}$ individual.
- \blacktriangleright $f(\phi_*) = \text{distribution of}$ thresholds in a population.
- $ightharpoonup F(\phi_*) = \text{cumulative}$ distribution = $\int_{\phi'_{*}=0}^{\phi_{*}} f(\phi'_{*}) d\phi'_{*}$
- $\phi_t =$ fraction of people 'rioting' at time step t.

Contagion Basic Contagion Social Contagior All-to-all networks References Frame 24/58

Social Sciences—Threshold models

▶ At time t+1, fraction rioting = fraction with $\phi_* < \phi_t$.

 $\phi_{t+1} = \int_0^{\phi_t} f(\phi_*) d\phi_* = F(\phi_*)|_0^{\phi_t} = F(\phi_t)$

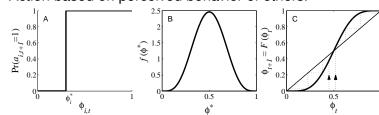
ightharpoonup \Rightarrow Iterative maps of the unit interval [0, 1].

Frame 22/58

母 り00

Social Sciences—Threshold models

Action based on perceived behavior of others.

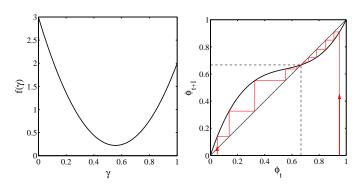


- Two states: S and I
- Recover now possible (SIS)
- ϕ = fraction of contacts 'on' (e.g., rioting)
- ▶ Discrete time, synchronous update (strong assumption!)
- This is a Critical mass model

Contagion Basic Contagion Models Social Contagion Models All-to-all network References Frame 26/58

Frame 2<u>5/58</u>

Social Sciences—Threshold models



Example of single stable state model

Contagion Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

Social Sciences—Threshold models

Implications for collective action theory:

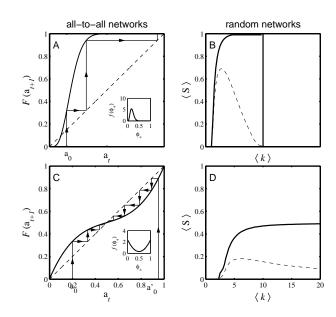
- 1. Collective uniformity ≠ individual uniformity
- 2. Small individual changes ⇒ large global changes

Next:

- Connect mean-field model to network model.
- ▶ Single seed for network model: $1/N \rightarrow 0$.
- ► Comparison between network and mean-field model sensible for vanishing seed size for the latter.

Contagion Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

All-to-all versus random networks



Contagion Basic Contagion Models Social Contagion Models Network version Alti-o-all networks Theory References

Threshold contagion on random networks

Three key pieces to describe analytically:

- 1. The fractional size of the largest subcomponent of vulnerable nodes, S_{vuln} .
- 2. The chance of starting a global spreading event, $P_{\text{trig}} = S_{\text{trig}}$.
- 3. The expected final size of any successful spread, S.
 - ▶ n.b., the distribution of *S* is almost always bimodal.

Threshold contagion on random networks

- ► First goal: Find the largest component of vulnerable nodes.
- Recall that for finding the giant component's size, we had to solve:

$$F_{\pi}(x) = xF_{P}(F_{\rho}(x))$$
 and $F_{\rho}(x) = xF_{R}(F_{\rho}(x))$

- ▶ We'll find a similar result for the subset of nodes that are vulnerable.
- ▶ This is a node-based percolation problem.
- For a general monotonic threshold distribution $f(\phi)$, a degree k node is vulnerable with probability

$$\beta_k = \int_0^{1/k} f(\phi) \mathrm{d}\phi.$$

Basic Contagion Models

Social Contagion Models Network version All-to-all networks

References

Contagion

Threshold contagion on random networks

Everything now revolves around the modified generating function:

$$F_P^{(\text{vuln})}(x) = \sum_{k=0}^{\infty} \beta_k P_k x^k.$$

Generating function for friends-of-friends distribution is related in same way as before:

$$F_{R}^{(\text{vuln})}(x) = \frac{\frac{d}{dx}F_{P}^{(\text{vuln})}(x)}{\frac{d}{dx}F_{P}^{(\text{vuln})}(x)|_{x=1}}.$$

Contagion

Basic Contagion

Social Contagion Models Network version

All-to-all network

References

Frame 33/58

Threshold contagion on random networks

► Functional relations for component size g.f.'s are almost the same...

$$F_{\pi}^{(\text{vuln})}(x) = \underbrace{1 - F_{P}^{(\text{vuln})}(1)}_{\text{central node is not vulnerable}} + x F_{P}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

$$F_{\rho}^{(\text{vuln})}(x) = \underbrace{1 - F_{R}^{(\text{vuln})}(1)}_{\text{first node is not vulnerable}} + x F_{R}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

▶ Can now solve as before to find $S_{\text{vuln}} = 1 - F_{\pi}^{(\text{vuln})}(1)$.

Contagion

Frame 32/<u>58</u>

母 りゅつ

Basic Contagion Models

Social Contagion Models

All-to-all netwo

References

Frame 34/58

Threshold contagion on random networks

- Second goal: Find probability of triggering largest vulnerable component.
- Assumption is first node is randomly chosen.
- Same set up as for vulnerable component except now we don't care if the initial node is vulnerable or not:

$$F_{\pi}^{(\mathrm{trig})}(x) = x F_{P}\left(F_{\rho}^{(\mathrm{vuln})}(x)\right)$$

$$F_{\rho}^{(\text{vuln})}(x) = 1 - F_{R}^{\nu)}(1) + x F_{R}^{(\text{vuln})} \left(F_{\rho}^{(\text{vuln})}(x) \right)$$

▶ Solve as before to find $P_{\text{trig}} = S_{\text{trig}} = 1 - F_{\pi}^{(\text{trig})}(1)$.

Contagion

Basic Contagion Models

Social Contagio

Models Network version All-to-all networks

References

Frame 35/58

Threshold contagion on random networks

- ▶ Third goal: Find expected fractional size of spread.
- ▶ Not obvious even for uniform threshold problem.
- ▶ Difficulty is in figuring out if and when nodes that $need \ge 2$ hits switch on.
- Problem solved for infinite seed case by Gleeson and Cahalane:
 - "Seed size strongly affects cascades on random networks," Phys. Rev. E, 2007. [6]
- ▶ Developed further by Gleeson in "Cascades on correlated and modular random networks," Phys. Rev. E, 2008. [5]

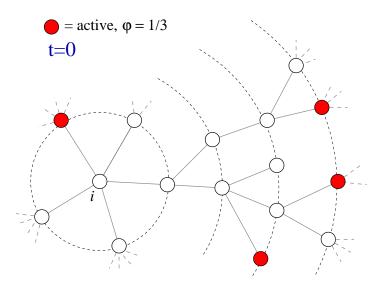
Basic Contagion Social Contagion References Frame 36/58 母 りゅつ

Expected size of spread

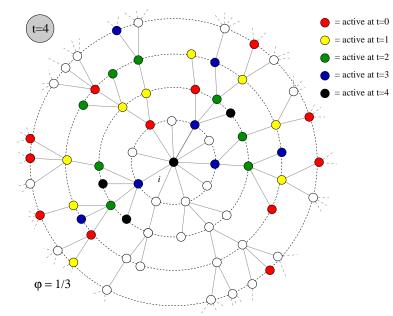
Idea:

- ▶ Randomly turn on a fraction ϕ_0 of nodes at time t = 0
- Capitalize on local branching network structure of random networks (again)
- Now think about what must happen for a specific node i to become active at time t:
- t = 0: i is one of the seeds (prob = ϕ_0)
- t = 1: i was not a seed but enough of i's friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = 2: enough of *i*'s friends and friends-of-friends switched on at time t = 0 so that i's threshold is now exceeded.
- t = n: enough nodes within n hops of i switched on at t = 0 and their effects have propagated to reach i.

Expected size of spread



Expected size of spread



母 りゅつ

Expected size of spread

Notes:

- Calculations are possible nodes do not become inactive.
- ► Not just for threshold model—works for a wide range of contagion processes.
- ► We can analytically determine the entire time evolution, not just the final size.
- ▶ We can in fact determine Pr(node of degree k switches on at time t).
- Asynchronous updating can be handled too.

ontagion

Basic Contagior Models

Social Contagion Models Network version All-to-all networks

References

Expected size of spread

Pleasantness:

- ► Taking off from a single seed story is about expansion away from a node.
- Extent of spreading story is about contraction at a node.

Contagion Basic Contagion Models Social Contagion Models Network version All-to-all networks Theory References

Expected size of spread

- Notation: **Pr**(node *i* becomes active at time t) = $\phi_{i,t}$.
- Notation: $\beta_{kj} = \mathbf{Pr}$ (a degree k node becomes active if j neighbors are active).
- ▶ Our starting point: $\phi_{i,0} = \phi_0$.
- $\binom{k_i}{j} \phi_0^j (1 \phi_0)^{k_i j} = \mathbf{Pr}$ (*j* of node *i*'s k_i neighbors were seeded at time t = 0).
- ▶ Probability node *i* was a seed at t = 0 is ϕ_0 (as above).
- ▶ Probability node *i* was not a seed at t = 0 is $(1 \phi_0)$.
- ► Combining everything, we have:

$$\phi_{i,1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {k_i \choose j} \phi_0^j (1 - \phi_0)^{k_i - j} \beta_{k_i j}.$$

Contagion

Frame 40/58

母 り00

Basic Contagion Models

Social Contagion Models Network version All-to-all networks

References

Frame 42/<u>58</u>

Expected size of spread

- ► For general *t*, we need to know the probability an edge coming into node *i* at time *t* is active.
- **Notation**: call this probability θ_t .
- ▶ We already know $\theta_0 = \phi_0$.
- Story analogous to t = 1 case:

$$\phi_{i,t+1} = \phi_0 + (1 - \phi_0) \sum_{j=0}^{k_i} {k_i \choose j} \theta_t^j (1 - \theta_t)^{k_i - j} \beta_{k_i j}.$$

▶ Average over all nodes to obtain expression for ϕ_{t+1} :

$$\phi_{t+1} = \phi_0 + (1 - \phi_0) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} \beta_{kj}.$$

▶ So we need to compute θ_t ... massive excitement...

Contagion

Basic Contagion

Social Contagion
Models
Network version

References

Frame 43/<u>58</u>

Expected size of spread

First connect θ_0 to θ_1 :

• $\theta_1 = \phi_0 +$

$$(1-\phi_0)\sum_{k=1}^{\infty} \frac{\frac{kP_k}{\langle k \rangle}}{\frac{\langle k \rangle}{j}} \sum_{i=0}^{k-1} {k-1 \choose j} \theta_0^j (1-\theta_0)^{k-1-j} \beta_{kj}$$

- $ightharpoonup rac{kP_k}{\langle k \rangle} = R_k = \mathbf{Pr}$ (edge connects to a degree k node).
- ▶ $\sum_{j=0}^{k-1}$ piece gives **Pr**(degree node k activates) of its neighbors k-1 incoming neighbors are active.
- ϕ_0 and $(1 \phi_0)$ terms account for state of node at time t = 0.
- ▶ See this all generalizes to give θ_{t+1} in terms of θ_t ...

Contagion

Basic Contagior Models

Social Contagion Models

Network version All-to-all networks Theory

References

Expected size of spread

Two pieces:

1. $\theta_{t+1} = \phi_0 +$

$$(1-\phi_0)\sum_{k=1}^{\infty}\frac{kP_k}{\langle k\rangle}\sum_{i=0}^{k-1}\binom{k-1}{j}\theta_t^{j}(1-\theta_t)^{k-1-j}\beta_{kj}$$

with $\theta_0 = \phi_0$.

2. $\phi_{t+1} = \phi_0 +$

 $(1-\phi_0)\sum_{k=0}^{\infty}P_k\sum_{j=0}^{k}\binom{k}{j}\theta_t^j(1-\theta_t)^{k-j}\beta_{kj}.$

Contagion

Basic Contagion

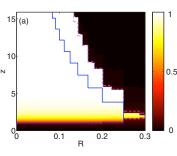
Social Contagion

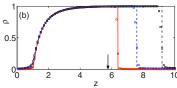
Network version All-to-all networks

References

Frame 45/58

Comparison between theory and simulations





From Gleeson and Cahalane [6]

- Pure random networks with simple threshold responses
- ► R = uniform threshold (our ϕ_*); z = average degree; $\rho = \phi$; $q = \theta$; $N = 10^5$.
- $\phi_0 = 10^{-3}, 0.5 \times 10^{-2},$ and 10^{-2} .
- Cascade window is for $\phi = 10^{-2}$ case.
- Sensible expansion of cascade window as ϕ_0 increases.

Contagio

Frame 44/58

母 りゅつ

Basic Contagion Models

Social Contagior Models Network version

Theory

References

Frame 46/58

Notes:

- ▶ Retrieve cascade condition for spreading from a single seed in limit $\phi_0 \rightarrow 0$.
- ▶ Depends on map $\theta_{t+1} = G(\theta_t; \phi_0)$.
- First: if self-starters are present, some activation is assured:

$$G(0; \phi_0) = \sum_{k=1}^{\infty} \frac{kP_k}{\langle k \rangle} \beta_{k0} > 0.$$

meaning $\beta_{k0} > 0$ for at least one value of $k \ge 1$.

▶ If $\theta = 0$ is a fixed point of G (i.e., $G(0; \phi_0) = 0$) then spreading occurs if

$$G'(0;\phi_0) = \frac{1}{\langle k \rangle} \sum_{k=0}^{\infty} (k-1)k P_k \beta_{k1} > 1.$$

Insert question from assignment 6 (⊞)

Contagion

Basic Contagior Models

> Social Contagio Models

ull-to-all networks

References

Frame 47/<u>58</u>

Notes:

In words:

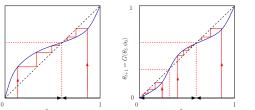
- If $G(0; \phi_0) > 0$, spreading must occur because some nodes turn on for free.
- If G has an unstable fixed point at $\theta = 0$, then cascades are also always possible.

Non-vanishing seed case:

- ▶ Cascade condition is more complicated for $\phi_0 > 0$.
- ▶ If G has a stable fixed point at $\theta = 0$, and an unstable fixed point for some $0 < \theta_* < 1$, then for $\theta_0 > \theta_*$, spreading takes off.
- ▶ Tricky point: G depends on ϕ_0 , so as we change ϕ_0 , we also change G.

References

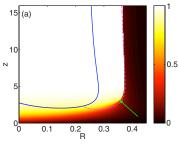
General fixed point story:

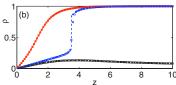


- ▶ Given θ_0 (= ϕ_0), θ_∞ will be the nearest stable fixed point, either above or below.
- n.b., adjacent fixed points must have opposite stability types.
- ▶ Important: Actual form of G depends on ϕ_0 .
- ▶ So choice of ϕ_0 dictates both *G* and starting point—can't start anywhere for a given G.

Contagion

Comparison between theory and simulations





From Gleeson and Cahalane [6]

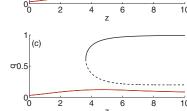
- Now allow thresholds to be distributed according to a Gaussian with mean R.
- R = 0.2, 0.362, and0.38; $\sigma = 0.2$.
- $ightharpoonup \phi_0 = 0$ but some nodes have thresholds < 0 so effectively $\phi_0 > 0$.
- ► Now see a (nasty) discontinuous phase transition for low $\langle k \rangle$.

Basic Contagion Social Contagion

Frame 50/58

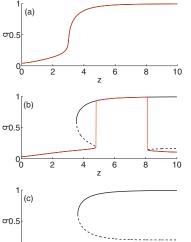
Frame 48/58

母 りゅつ



From Gleeson and Cahalane [6]

Comparison between theory and simulations



- ► Plots of stability points for $\theta_{t+1} = G(\theta_t; \phi_0)$.
- ▶ n.b.: 0 is not a fixed point here: $\theta_0 = 0$ always takes off.
- ► Top to bottom: R = 0.35, 0.371, and 0.375.
- ▶ n.b.: higher values of θ_0 for (b) and (c) lead to higher fixed points of G.
- Saddle node bifurcations appear and merge (b and c).

Basic Contagion Models Social Contagion References

Frame 51/58

Spreadarama

Bridging to single seed case:

- Consider largest vulnerable component as initial set of seeds.
- Not quite right as spreading must move through vulnerables.
- But we can usefully think of the vulnerable component as activating at time t = 0 because order doesn't matter.
- ▶ Rebuild ϕ_t and θ_t expressions...

Basic Contagion Models

Social Contagion Models

References

Spreadarama

Two pieces modified for single seed:

1. $\theta_{t+1} = \theta_{\text{vuln}} +$

$$(1 - \theta_{\text{vuln}}) \sum_{k=1}^{\infty} \frac{k P_k}{\langle k \rangle} \sum_{j=0}^{k-1} {k-1 \choose j} \theta_t^{j} (1 - \theta_t)^{k-1-j} \beta_{kj}$$

with $\theta_0 = \theta_{\text{vuln}} = \mathbf{Pr}$ an edge leads to the giant vulnerable component (if it exists).

2. $\phi_{t+1} = S_{\text{vuln}} +$

$$(1 - S_{\text{vuln}}) \sum_{k=0}^{\infty} P_k \sum_{j=0}^{k} {k \choose j} \theta_t^j (1 - \theta_t)^{k-j} \beta_{kj}.$$

Contagion

Basic Contagion

Social Contagion

Frame 53/58

Contagion

Basic Contagion

Social Contagion

References

Time-dependent solutions

Synchronous update

▶ Done: Evolution of ϕ_t and θ_t given exactly by the maps we have derived.

Asynchronous updates

- ▶ Update nodes with probability α .
- ▶ As $\alpha \rightarrow 0$, updates become effectively independent.
- Now can talk about $\phi(t)$ and $\theta(t)$.
- More on this later...

Frame 52/58

母 り00

Basic Contagion

Social Contagion

References

References I

J. Polit. Econ., 100:992-1026, 1992.

[2] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades.

J. Econ. Perspect., 12(3):151–170, 1998. pdf (⊞)

[3] J. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in design systems.

Phys. Rev. E, 60(2):1412–1427, 1999. pdf (⊞)

Frame 54/58

Frame 55/58

References II

[4] J. Carlson and J. Doyle. Highly optimized tolerance: Robustness and design

in complex systems.

Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (⊞)

[5] J. P. Gleeson.

Cascades on correlated and modular random networks.

Phys. Rev. E, 77:046117, 2008. pdf (⊞)

[6] J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random networks.

Phys. Rev. E, 75:056103, 2007. pdf (⊞)

[7] M. Granovetter. Threshold models of collective behavior. Am. J. Sociol., 83(6):1420-1443, 1978. pdf (⊞)

Contagion Basic Contagion Models Social Contagion Models <u>References</u> Frame 56/58 **母 り**00

References III

[8] T. Schelling. Dynamic models of segregation. J. Math. Sociol., 1:143-186, 1971.

[9] T. C. Schelling. Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. J. Conflict Resolut., 17:381-428, 1973. pdf (⊞)

[10] T. C. Schelling. Micromotives and Macrobehavior. Norton, New York, 1978.

[11] D. Sornette. Critical Phenomena in Natural Sciences. Springer-Verlag, Berlin, 2nd edition, 2003.

References IV

[12] D. J. Watts.

A simple model of global cascades on random networks.

Proc. Natl. Acad. Sci., 99(9):5766-5771, 2002. pdf (⊞)

