Branching Networks II Complex Networks, CSYS/MATH 303, Spring, 2010

Prof. Peter Dodds

Department of Mathematics & Statistics
Center for Complex Systems
Vermont Advanced Computing Center
University of Vermont

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 1/74

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Horton ⇔ Tokunaga

Reducing Horton

atuatiana

Models

A - Is - II

.....

erences

Frame 2/74

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question 2, assignment 2 (⊞)
- ▶ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 3/74

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question 2, assignment 2 (⊞)
- ▶ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question 2, assignment 2 (⊞)
- ➤ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question 2, assignment 2 (\boxplus)
- ➤ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 3/74

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question 2, assignment 2 (\boxplus)
- ➤ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 3/74

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n , R_a , R_ℓ , and R_s versus T_1 and R_T . One simple redundancy: $R_\ell = R_s$.

 Insert question 2, assignment 2 (⊞)
- ➤ To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- In terms of network achitecture, Horton's laws appear to contain less detailed information than Tokunaga's law.
- Oddly, Horton's laws have four parameters and Tokunaga has two parameters.
- ▶ R_n, R_a, R_ℓ, and R_s versus T₁ and R_T. One simple redundancy: R_ℓ = R_s.
 Insert question 2, assignment 2 (⊞)
- To make a connection, clearest approach is to start with Tokunaga's law...
- ► Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 3/74

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics

 $ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}}$

Horton ⇔ Tokunaga

Reducing Horton

Joannig Forditionic

Models

Nutshell

References

Frame 4/74

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- ▶ In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^{\Omega} n_\omega ar{s}_\omega}{a_\Omega}$$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

Frame 4/74

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- ▶ In terms of basin characteristics:

```
ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}
```

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Let us make them happy

We need one more ingredient:

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- ▶ In terms of basin characteristics:

```
ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}}{a_{\Omega}}
```

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

```
ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{w=1}^{\Omega} n_w ar{s}_w}{a_\Omega}
```

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

i iuciualio

Models

Nutshell

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream \ segment \ lengths}}{{
m basin \ area}} = rac{\sum_{\omega=1}^{\Omega} n_{\omega} ar{s}_{\omega}}{a_{\Omega}}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

References

Frame 4/74

Space-fillingness

- A network is space-filling if the average distance between adjacent streams is roughly constant.
- Reasonable for river and cardiovascular networks
- For river networks:

 Drainage density ρ_{dd} = inverse of typical distance between channels in a landscape.
- In terms of basin characteristics:

$$ho_{
m dd} \simeq rac{\sum {
m stream\ segment\ lengths}}{{
m basin\ area}} = rac{\sum_{\omega=1}^\Omega n_\omega ar{s}_\omega}{a_\Omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

references

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ▶ Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega + 1$.
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega$...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:
 - 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
 - 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$

 \triangleright n', T_w streams of order ω do this

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$

 \triangleright $n'_{\omega}, I_{\omega'=\omega}$ streams of order ω do this

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

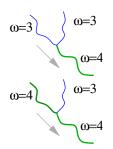
Fluctuations

Models

Nutshell

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - $ightharpoonup 2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $ightharpoonup n'_{\omega} T_{\omega'-\omega}$ streams of order ω do this

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

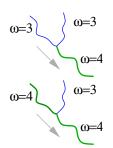
Nutshell

References

Frame 5/74

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ► Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $ightharpoonup n'_{\omega}, T_{\omega'-\omega}$ streams of order ω do this

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

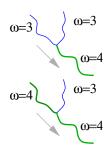
Nutshell

References

Frame 5/74

Start with Tokunaga's law: $T_k = T_1 R_T^{k-1}$

- Start looking for Horton's stream number law: $n_{\omega}/n_{\omega+1} = R_n$.
- ▶ Estimate n_{ω} , the number of streams of order ω in terms of other $n_{\omega'}$, $\omega' > \omega$.
- ▶ Observe that each stream of order ω terminates by either:



- 1. Running into another stream of order ω and generating a stream of order $\omega+1...$
 - ▶ $2n_{\omega+1}$ streams of order ω do this
- 2. Running into and being absorbed by a stream of higher order $\omega' > \omega...$
 - $n'_{\omega}T_{\omega'-\omega}$ streams of order ω do this

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Frame 5/74

$$n_{\omega} = 2n_{\omega+1} + \sum_{\omega'=\omega+1}^{\Omega} T_{\omega'-\omega}n_{\omega'}$$
absorption

- ► Use Tokunaga's law and manipulate expression to create *B*_a's.
- ▶ Insert question 3, assignment 2 (⊞)
- ► Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- ► Use Tokunaga's law and manipulate expression to create R_n's.
- ▶ Insert question 3, assignment 2 (⊞)
- ► Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

$$n_{\omega} = \underbrace{\frac{2n_{\omega+1}}{\text{generation}}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{\frac{\mathcal{T}_{\omega'-\omega}n_{\omega'}}{\text{absorption}}}_{\text{absorption}}$$

- ► Use Tokunaga's law and manipulate expression to create R_n's.
- ▶ Insert question 3, assignment 2 (⊞)
- ► Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

$$n_{\omega} = \underbrace{2n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega}n_{\omega'}}_{\text{absorption}}$$

- ► Use Tokunaga's law and manipulate expression to create R_n's.
- ▶ Insert question 3, assignment 2 (⊞)
- Solution:

$$R_n = \frac{(2 + R_T + T_1) \pm \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

(The larger value is the one we want.)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Finding other Horton ratios

Connect Tokunaga to R_s

- ▶ Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/ρ_{dd}.
- \blacktriangleright For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

► Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{\mathbf{s}}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega - 1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Connect Tokunaga to R_s

- Now use uniform drainage density $\rho_{\rm dd}$.
- Assume side streams are roughly separated by distance 1/ρ_{dd}.
- \blacktriangleright For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

► Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{\mathbf{s}}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connect Tokunaga to R_s

- ▶ Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/ρ_{dd}.
- ightharpoonup For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

► Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega - 1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connect Tokunaga to R_s

- ▶ Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/ρ_{dd}.
- ightharpoonup For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$ar{\mathbf{s}}_{\omega} \simeq
ho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connect Tokunaga to Rs

- Now use uniform drainage density ρ_{dd} .
- Assume side streams are roughly separated by distance 1/ρ_{dd}.
- ightharpoonup For an order ω stream segment, expected length is

$$\bar{s}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + \sum_{k=1}^{\omega - 1} T_k \right)$$

Substitute in Tokunaga's law $T_k = T_1 R_T^{k-1}$:

$$\bar{\mathbf{s}}_{\omega} \simeq \rho_{\mathrm{dd}}^{-1} \left(1 + T_1 \sum_{k=1}^{\omega-1} R_T^{k-1} \right) \propto R_T^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Altogether then:

$$\Rightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Horton ⇔ Tokunaga

Reducing Horton

Scalling relation

Fluctuations

Models

Nutshell

Altogether then:

$$\Rightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Horton ⇔ Tokunaga

Reducing Horton

Scalling relation

Fluctuations

Models

Nutshell

Altogether then:

$$\Rightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Altogether then:

$$ightarrow ar{s}_{\omega}/ar{s}_{\omega-1} = R_T \Rightarrow R_s = R_T$$

▶ Recall $R_{\ell} = R_s$ so

$$R_{\ell} = R_T$$

And from before:

$$R_n = \frac{(2 + R_T + T_1) + \sqrt{(2 + R_T + T_1)^2 - 8R_T}}{2}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Horton and Tokunaga are happy

Some observations:

- ▶ R_n and R_ℓ depend on T_1 and R_T .
- ▶ Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

References

- ▶ R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutshell

References

- ▶ R_n and R_ℓ depend on T_1 and R_T .
- ▶ Seems that *R_a* must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

References

- ▶ R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

References

- ▶ R_n and R_ℓ depend on T_1 and R_T .
- Seems that R_a must as well...
- Suggests Horton's laws must contain some redundancy
- ▶ We'll in fact see that $R_a = R_n$.
- Also: Both Tokunaga's law and Horton's laws can be generalized to relationships between non-trivial statistical distributions. [3, 4]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$

$$T_1 = R_n - R_\ell - 2 + 2R_\ell/R_n$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 10/74

Horton and Tokunaga are happy

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_T = R_\ell$$
.

•

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

The other way round

Note: We can invert the expresssions for R_n and R_ℓ to find Tokunaga's parameters in terms of Horton's parameters.

$$R_{\tau} = R_{\ell}$$
.

•

$$T_1=R_n-R_\ell-2+2R_\ell/R_n.$$

Suggests we should be able to argue that Horton's laws imply Tokunaga's laws (if drainage density is uniform)... Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

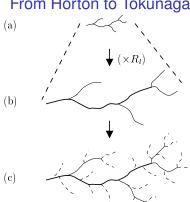
Models

Nutshell

References

Frame 10/74

From Horton to Tokunaga [2]



- Assume Horton's laws
- Start with an order ω
- Scale up by a factor of
- Maintain drainage

Horton ⇔ Tokunaga

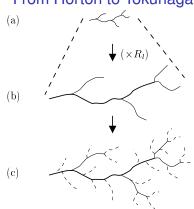
Reducing Horton

Models

Nutshell

References

From Horton to Tokunaga^[2]



 Assume Horton's laws hold for number and length

- Start with an order ω stream
- Scale up by a factor of R_ℓ, orders increment
- Maintain drainage density by adding new order 1 streams

Horton ⇔ Tokunaga

Reducing Horton

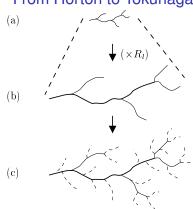
Scaling relations

Models

Nutshell

References

From Horton to Tokunaga^[2]



- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of R_ℓ, orders increment
- Maintain drainage density by adding new order 1 streams

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

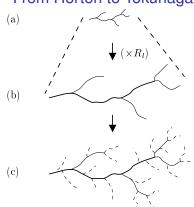
Fluetuetiese

Models

Nutshell

References

From Horton to Tokunaga [2]



- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of R_ℓ, orders increment
- Maintain drainage density by adding new order 1 streams

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

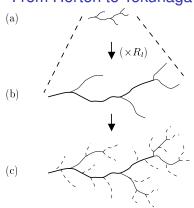
F1 1 11

Models

Nutshell

References

From Horton to Tokunaga^[2]



- Assume Horton's laws hold for number and length
- Start with an order ω stream
- Scale up by a factor of R_ℓ, orders increment
- Maintain drainage density by adding new order 1 streams

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Eluctuations

Models

Nutshell

References

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right).$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

i idoldalioi

Models

Nutshell

- Must retain same drainage density.
- ▶ Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{K} T_i + 1 \right)$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right).$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1}=(R_{\ell}-1)\left(\sum_{i=1}^{k}T_{i}+1\right).$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Must retain same drainage density.
- Add an extra $(R_{\ell} 1)$ first order streams for each original tributary.
- Since number of first order streams is now given by T_{k+1} we have:

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right).$$

▶ For large ω , Tokunaga's law is the solution—let's check...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$
$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_\ell-1) \mathcal{T}_1 rac{R_\ell^{\ \kappa}}{R_\ell-1} = \mathcal{T}_1 R_\ell^{\kappa} \quad ... ext{ yep}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_{1} R_{\ell}^{i-1} + 1 \right)$$

$$= (R_{\ell} - 1) T_{1} \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell} - 1) T_{1} \frac{R_{\ell}^{k}}{R_{\ell} - 1} = T_{1} R_{\ell}^{k} \quad \dots \text{ yep.}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

References

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$

$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell} - 1) T_1 \frac{R_{\ell}^{k}}{R_{\ell} - 1} = T_1 R_{\ell}^{k} \quad ... \text{ yep.}$$

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

.

Models Nutshell

References

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$

$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell} - 1) T_1 \frac{R_{\ell}^{k}}{R_{\ell} - 1} = T_1 R_{\ell}^{k} \quad ... \text{ yep.}$$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

Substitute Tokunaga's law $T_i = T_1 R_T^{i-1} = T_1 R_\ell^{i-1}$ into

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_i + 1 \right)$$

$$T_{k+1} = (R_{\ell} - 1) \left(\sum_{i=1}^{k} T_1 R_{\ell}^{i-1} + 1 \right)$$

$$= (R_{\ell} - 1) T_1 \left(\frac{R_{\ell}^{k} - 1}{R_{\ell} - 1} + 1 \right)$$

$$\simeq (R_{\ell} - 1) T_1 \frac{R_{\ell}^{k}}{R_{\ell} - 1} = T_1 R_{\ell}^{k} \quad ... \text{ yep.}$$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

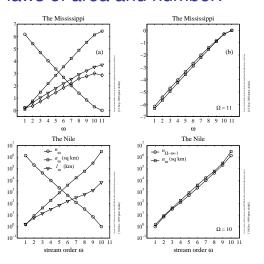
Fluctuations

Models

Nutshell

References

Horton's laws of area and number:



- In right plots, stream number graph has been flipped vertically.
- ▶ Highly suggestive that $R_n \equiv R_a$...

Branching Networks II

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations
Fluctuations

Models

Nutshell

References

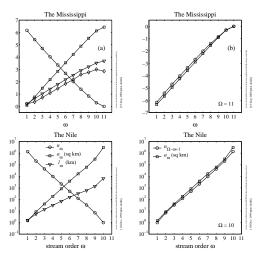
Frame 14/74

Reducing Horton Scaling relations

Fluctuations

Models Nutshell

References



- In right plots, stream number graph has been flipped vertically.
- ▶ Highly suggestive that $R_n \equiv R_a$...

Frame 14/74

Fluctuations

Models

Nutshell

References

- How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Frame 15/74

Reducing Horton

Fluctuations

.

Models

Nutshell

References

- ▶ How robust are our estimates of ratios?
- Rule of thumb: discard data for two smallest and two largest orders.

Frame 15/74

Mississippi:

ω range	R_n	R_a	R_ℓ	R_s	R_a/R_n
[2, 3]	5.27	5.26	2.48	2.30	1.00
[2, 5]	4.86	4.96	2.42	2.31	1.02
[2, 7]	4.77	4.88	2.40	2.31	1.02
[3, 4]	4.72	4.91	2.41	2.34	1.04
[3, 6]	4.70	4.83	2.40	2.35	1.03
[3,8]	4.60	4.79	2.38	2.34	1.04
[4, 6]	4.69	4.81	2.40	2.36	1.02
[4, 8]	4.57	4.77	2.38	2.34	1.05
[5, 7]	4.68	4.83	2.36	2.29	1.03
[6, 7]	4.63	4.76	2.30	2.16	1.03
[7,8]	4.16	4.67	2.41	2.56	1.12
mean μ	4.69	4.85	2.40	2.33	1.04
std dev σ	0.21	0.13	0.04	0.07	0.03
σ/μ	0.045	0.027	0.015	0.031	0.024

Tokunaga

Reducing Horton

calling relation

Models

.

References

Frame 16/74

ω range	R_n	R_a	R_ℓ	R_s	R_a/R_n
ω range	ı ın	ı ıa	<i>I</i> 1ℓ	I IS	ria/rin
[2, 3]	4.78	4.71	2.47	2.08	0.99
[2, 5]	4.55	4.58	2.32	2.12	1.01
[2, 7]	4.42	4.53	2.24	2.10	1.02
[3, 5]	4.45	4.52	2.26	2.14	1.01
[3, 7]	4.35	4.49	2.20	2.10	1.03
[4, 6]	4.38	4.54	2.22	2.18	1.03
[5, 6]	4.38	4.62	2.22	2.21	1.06
[6, 7]	4.08	4.27	2.05	1.83	1.05
mean μ	4.42	4.53	2.25	2.10	1.02
std dev σ	0.17	0.10	0.10	0.09	0.02
σ/μ	0.038	0.023	0.045	0.042	0.019

Horton ⇔ Tokunaga

Reducing Horton

caling relation

.

References

Frame 17/74

- ▶ a_{Ω} \propto sum of all stream lengths in a order Ω basin
- ► So:

$$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}/\rho_{\mathrm{dd}}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_\omega} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_\omega}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{n=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Models

References

- $a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- ► So:

$$a_\Omega \simeq \sum_{\omega=1}^\Omega n_\omega ar{s}_\omega/
ho_{
m dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{s} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{s}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{s}_1\sum_{s=-1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctualic

Models

Nutshell

References

- $a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- ► So:

$$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}}$$

$$= \underbrace{R_{n}^{\Omega}}_{R_{s}} \bar{s}_{1} \sum_{\omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- $a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- ► So:

$$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega}/\rho_{\mathrm{dd}}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_n^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underbrace{\bar{s}_1 \cdot R_s^{\omega-1}}_{\bar{s}_{\omega}}$$

$$=\frac{R_n^{\Omega}}{R_s}\bar{\mathbf{s}}_1\sum_{\omega=1}^{\Omega}\left(\frac{R_s}{R_n}\right)^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- $a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- ► So:

$$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underline{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\underline{\bar{s}_{\omega}}}$$

$$= \underbrace{R_{n}^{\Omega}}_{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}} \right)^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- $a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- ► So:

$$a_{\Omega} \simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{dd}$$

$$\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot 1}_{n_{\omega}} \underline{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\underline{\bar{s}_{\omega}}}$$

$$= \underbrace{R_{n}^{\Omega}}_{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}} \right)^{\omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

References

Rough first effort to show $R_n \equiv R_a$:

- $a_{\Omega} \propto$ sum of all stream lengths in a order Ω basin (assuming uniform drainage density)
- So:

$$\begin{aligned} a_{\Omega} &\simeq \sum_{\omega=1}^{\Omega} n_{\omega} \bar{s}_{\omega} / \rho_{\mathrm{dd}} \\ &\propto \sum_{\omega=1}^{\Omega} \underbrace{R_{n}^{\Omega-\omega} \cdot \underbrace{1}_{n_{\omega}}}_{n_{\omega}} \underline{\bar{s}_{1} \cdot R_{s}^{\omega-1}}_{\bar{s}_{\omega}} \\ &= \underbrace{R_{n}^{\Omega}}_{R_{s}} \bar{s}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega} \end{aligned}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 18/74

$$\mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$$

$$\sim R_n^{\Omega - 1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega$$

▶ So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

•

$$\mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$$

$$\sim R_n^{\Omega - 1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega$$

▶ So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

$$\begin{aligned} & \mathbf{a}_{\Omega} \propto \frac{R_{n}^{\Omega}}{R_{s}} \bar{\mathbf{s}}_{1} \sum_{\omega=1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega} \\ & = \frac{R_{n}^{\Omega}}{R_{s}} \bar{\mathbf{s}}_{1} \frac{R_{s}}{R_{n}} \frac{1 - (R_{s}/R_{n})^{\Omega}}{1 - (R_{s}/R_{n})} \\ & \sim R_{n}^{\Omega-1} \bar{\mathbf{s}}_{1} \frac{1}{1 - (R_{s}/R_{n})} \text{ as } \Omega \end{aligned}$$

▶ So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

$$\mathbf{a}_{\Omega} \propto \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \sum_{\omega=1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega}$$

$$= \frac{R_n^{\Omega}}{R_s} \bar{\mathbf{s}}_1 \frac{R_s}{R_n} \frac{1 - (R_s/R_n)^{\Omega}}{1 - (R_s/R_n)}$$

$$\sim R_n^{\Omega - 1} \bar{\mathbf{s}}_1 \frac{1}{1 - (R_s/R_n)} \text{ as } \Omega \nearrow$$

▶ So, a_{Ω} is growing like R_n^{Ω} and therefore:

$$R_n \equiv R_a$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Not quite:

- But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.

Tokunaga

Horton ⇔

Reducing Horton

Fluctuations

Models

Nutshell

References

Frame 20/74

Not quite:

- But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models Nutshell

References

Frame 20/74

Not quite:

- ... But this only a rough argument as Horton's laws do not imply a strict hierarchy
- Need to account for sidebranching.
- ► Insert question 4, assignment 2 (⊞)

Horton ⇔ Tokunaga

Reducing Horton

Coding relation

Fluctuations

Models

Nutshell

References

Frame 20/74

Intriguing division of area:

- ▶ Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = {\sf const}}$$

► Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$
 $\bar{a}_{\omega} \propto (R_a)^{\omega} \propto n_{\omega}^{-1}$

Tokunaga
Reducing Horton

Horton ⇔

ricadonig riortor

Fluctuations

Models

Nutshell

References

Frame 21/74

Intriguing division of area:

- ▶ Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = {\sf const}}$$

► Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$
 $\bar{a}_{\omega} \propto (R_a)^{\omega} \propto n_{\omega}^{-1}$

Tokunaga Reducing Horton

Horton ⇔

rioddollig riorior

Fluctuations

Models

Nutshell

Intriguing division of area:

- ▶ Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = \text{const}}$$

► Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$
 $ar{a}_{\omega} \propto (R_a)^{\omega} \propto n_{\omega}^{-\omega}$

Horton ⇔ Tokunaga Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- ▶ Observe: Combined area of basins of order ω independent of ω .
- Not obvious: basins of low orders not necessarily contained in basis on higher orders.
- ► Story:

$$R_n \equiv R_a \Rightarrow \boxed{n_\omega \bar{a}_\omega = {\sf const}}$$

► Reason:

$$n_{\omega} \propto (R_n)^{-\omega}$$
 $\bar{a}_{\omega} \propto (R_a)^{\omega} \propto n_{\omega}^{-1}$

Tokunaga Reducing Horton

Horton ⇔

Scaling relations

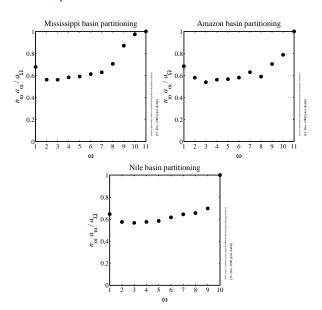
Fluctuations

Models

Nutshell

Equipartitioning:

Some examples:



Horton ⇔ Tokunaga

Reducing Horton

Ŭ

Models

Modele

Nutsileii

References

Frame 22/74

The story so far:

- Natural branching networks are hierarchical, self-similar structures
- ▶ Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- ▶ Only two Horton laws are independent ($R_n = R_a$)
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

- Natural branching networks are hierarchical, self-similar structures
- ▶ Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- ▶ Only two Horton laws are independent $(R_n = R_a)$
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Models

Nutshell

References

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- Tokunaga's law describes detailed architecture $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- ▶ Only two Horton laws are independent ($R_n = R_a$)
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Scaling relations

Models

Nutshell

References

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- ▶ Only two Horton laws are independent ($R_n = R_a$)
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Scaling relations

Fluctuations

Models

Nutshell

References

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- Only two Horton laws are independent ($R_n = R_a$)
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Fluctuations Models

Nutshell

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- ▶ Only two Horton laws are independent $(R_n = R_a)$
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Fluctuations

Models

Nutshell

References

- Natural branching networks are hierarchical, self-similar structures
- Hierarchy is mixed
- ► Tokunaga's law describes detailed architecture: $T_k = T_1 R_T^{k-1}$.
- We have connected Tokunaga's and Horton's laws
- ▶ Only two Horton laws are independent $(R_n = R_a)$
- ▶ Only two parameters are independent: $(T_1, R_T) \Leftrightarrow (R_n, R_s)$

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network *p*.
- ► Each point *p* is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? P(a) ∞ a → for large a
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell$ of for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

Frame 24/74

Ignore stream ordering for the moment

- ▶ Pick a random location on a branching network *p*.
- ► Each point *p* is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? P(a) ∝ a⁻⁺ for large a
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∞ ℓ T for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? P(a) ∝ a⁻¹ for large a
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-p}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 24/74

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? P(a) ∝ a⁻¹ for large a
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∞ ℓ T for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 24/74

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network p.
- ► Each point *p* is associated with a basin and a longest stream length
- Q: What is probability that the p's drainage basin has area a? P(a) ∝ a^{-τ} for large a
- Q: What is probability that the longest stream from p has length ℓ? P(ℓ) ∝ ℓ ¬ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network p.
- Each point p is associated with a basin and a longest stream length
- ▶ Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network p.
- ► Each point *p* is associated with a basin and a longest stream length
- ▶ Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 24/74

- Ignore stream ordering for the moment
- ▶ Pick a random location on a branching network *p*.
- ► Each point *p* is associated with a basin and a longest stream length
- ▶ Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 24/74

- Pick a random location on a branching network p.
- ► Each point *p* is associated with a basin and a longest stream length
- ▶ Q: What is probability that the *p*'s drainage basin has area *a*? $P(a) \propto a^{-\tau}$ for large *a*
- ▶ Q: What is probability that the longest stream from p has length ℓ ? $P(\ell) \propto \ell^{-\gamma}$ for large ℓ
- ▶ Roughly observed: 1.3 $\lesssim \tau \lesssim$ 1.5 and 1.7 $\lesssim \gamma \lesssim$ 2.0

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

.....

- ▶ We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - ► City sizes (Zipf's law)
 - ▶ Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

.

Models

Nutshell

References

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Horton ⇔

Fluctuations

Models

Nutshell

References

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ▶ Word frequency (Zipf's law) [21]
 - ▶ Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

i idoladiic

Models

Nutshell

References

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

-iuciualioi

Models

Nutshell

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - ► Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- ► A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 25/74

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - Statistical mechanics (phase transitions) [5]
- A big part of the story of complex systems
- Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Probability distributions with power-law decays

- We see them everywhere:
 - Earthquake magnitudes (Gutenberg-Richter law)
 - City sizes (Zipf's law)
 - Word frequency (Zipf's law) [21]
 - Wealth (maybe not—at least heavy tailed)
 - ► Statistical mechanics (phase transitions) ^[5]
- A big part of the story of complex systems
- ► Arise from mechanisms: growth, randomness, optimization, ...
- Our task is always to illuminate the mechanism...

Frame 25/74

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Tokunaga
Reducing Horton
Scaling relations

Horton ⇔

Fluctuations

Models Nutshell

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Tokunaga
Reducing Horton

Horton ⇔

Scaling relations

Models

Nutshell

References

- ▶ We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Tokunaga

Horton ⇔

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Connecting exponents

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

_ .

- ► We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

.....

References

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Reducing Horton

Scaling relations

Models

Models

Nutshell

References

- We have the detailed picture of branching networks (Tokunaga and Horton)
- ▶ Plan: Derive $P(a) \propto a^{-\tau}$ and $P(\ell) \propto \ell^{-\gamma}$ starting with Tokunaga/Horton story [17, 1, 2]
- ▶ Let's work on $P(\ell)$...
- Our first fudge: assume Horton's laws hold throughout a basin of order Ω.
- (We know they deviate from strict laws for low ω and high ω but not too much.)
- Next: place stick between teeth. Bite stick. Proceed.

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions
- ➤ The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) d\ell$$

$$P_{>}(\ell_{*}) = 1 - P(\ell < \ell_{*})$$

Also known as the exceedance probability.

Tokunaga Reducing Horton

Scaling relations

Horton ⇔

Fluctuations

Models

Nutshell

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) d\ell$$

$$P_{>}(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

Tokunaga

Horton ⇔

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_{*}) = 1 - P(\ell < \ell_{*})$$

Also known as the exceedance probability.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Often useful to work with cumulative distributions, especially when dealing with power-law distributions.
- ➤ The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

$$P_{>}(\ell_*)=1-P(\ell<\ell_*)$$

Also known as the exceedance probability.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Often useful to work with cumulative distributions, especially when dealing with power-law distributions.

The complementary cumulative distribution turns out to be most useful:

$$P_{>}(\ell_*) = P(\ell > \ell_*) = \int_{\ell = \ell_*}^{\ell_{\mathsf{max}}} P(\ell) \mathrm{d}\ell$$

•

$$P_{>}(\ell_*) = 1 - P(\ell < \ell_*)$$

Also known as the exceedance probability.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Scaling laws

Finding γ :

- ► The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \,\mathrm{d}\ell$$

$$\sim \int_{\ell=\ell_*}^{\ell_{\text{max}}} \ell^{-\gamma} d\ell$$

$$= \frac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_*}^{\ell_{\text{max}}}$$

$$\propto \ell_*^{-\gamma+1}$$
 for $\ell_{\sf max} \gg \ell_*$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

- ▶ The connection between P(x) and $P_{>}(x)$ when P(x)has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$egin{aligned} P_{>}(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \, \mathrm{d}\ell \ & \sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \ell^{-\gamma} \mathrm{d}\ell \ & = rac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \end{aligned}$$

Tokunaga

Horton ⇔

Reducing Horton

Scaling relations **Fluctuations**

Models Nutshell

References

Scaling laws

Finding γ :

- ► The connection between P(x) and $P_{>}(x)$ when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_{*}) = \int_{\ell=\ell_{*}}^{\ell_{\text{max}}} P(\ell) \, d\ell$$

$$\sim \int_{\ell=\ell_{*}}^{\ell_{\text{max}}} \ell^{-\gamma} \, d\ell$$

$$= \frac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_{*}}^{\ell_{\text{max}}}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- ► The connection between P(x) and P>(x) when P(x) has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$P_{>}(\ell_*) = \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \, \mathrm{d}\ell$$
 $\sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \ell^{-\gamma} \, \mathrm{d}\ell$
 $= \frac{\ell^{-\gamma+1}}{-\gamma+1} \Big|_{\ell=\ell_*}^{\ell_{\mathsf{max}}}$
 $\propto \ell_*^{-\gamma+1} \quad \text{for } \ell_{\mathsf{max}} \gg \ell_*$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

- ▶ The connection between P(x) and $P_{>}(x)$ when P(x)has a power law tail is simple:
- ▶ Given $P(\ell) \sim \ell^{-\gamma}$ large ℓ then for large enough ℓ_*

$$egin{aligned} P_{>}(\ell_*) &= \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} P(\ell) \, \mathrm{d}\ell \ &\sim \int_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \ell^{-\gamma} \, \mathrm{d}\ell \ &= \left. rac{\ell^{-\gamma+1}}{-\gamma+1}
ight|_{\ell=\ell_*}^{\ell_{\mathsf{max}}} \ &\propto \ell_*^{-\gamma+1} \quad ext{for } \ell_{\mathsf{max}} \gg \ell_* \end{aligned}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

- ▶ Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- ▶ Assume some spatial sampling resolution △
- ▶ Landscape is broken up into grid of $\triangle \times \triangle$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

▶ Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_s...$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Scaling laws

Finding γ :

- ▶ Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\triangle \times \triangle$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_{*}) = \frac{N_{>}(\ell_{*}; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: $s_{\alpha}/s_{\alpha-1} = R_{s}...$

Reducing Horton

Scaling relations

Models

Nutshell

- ▶ Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: $s_{\alpha}/s_{\alpha-1} = R_{s}...$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Scaling laws

Finding γ :

- ▶ Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_{>}(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

▶ Use Horton's law of stream segments: $s_{\omega}/s_{\omega-1} = R_s...$

Reducing Horton

Scaling relations

Models Nutshell

- ▶ Aim: determine probability of randomly choosing a point on a network with main stream length $> \ell_*$
- Assume some spatial sampling resolution Δ
- ▶ Landscape is broken up into grid of $\Delta \times \Delta$ sites
- ▶ Approximate $P_>(\ell_*)$ as

$$P_{>}(\ell_*) = \frac{N_{>}(\ell_*; \Delta)}{N_{>}(0; \Delta)}.$$

where $N_{>}(\ell_*; \Delta)$ is the number of sites with main stream length $> \ell_*$.

► Use Horton's law of stream segments: $s_{ci}/s_{ci-1} = R_{s...}$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{N_{>}(\ell_{\omega}; \Delta)}{N_{>}(0; \Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} / \Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'} / \Delta}$$

- ► ∆'s cancel
- ▶ Denominator is $a_{\Omega} \rho_{\rm dd}$, a constant.
- ▶ So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

i

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- ► ∆'s cancel
- ▶ Denominator is $a_{\Omega} \rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ Set $\ell_* = \ell_\omega$ for some 1 $\ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = \frac{\textit{N}_{>}(\ell_{\omega};\Delta)}{\textit{N}_{>}(0;\Delta)} \simeq \frac{\sum_{\omega'=\omega+1}^{\Omega} \textit{n}_{\omega'} \textit{s}_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} \textit{n}_{\omega'} \textit{s}_{\omega'}/\Delta}$$

- ► ∆'s cancel
- ▶ Denominator is $a_{\Omega} \rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ Set $\ell_* = \ell_\omega$ for some 1 $\ll \omega \ll \Omega$.

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega} \rho_{\rm dd}$, a constant.
- ► So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

ì

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega} \rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

ì

$$P_{>}(\ell_{\omega}) = rac{N_{>}(\ell_{\omega};\Delta)}{N_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- ► So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1/R_{H}^{\Omega_{\perp} - \omega'}) (s_{1}/R_{S}^{\omega'-1})$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

ı

$$P_{>}(\ell_{\omega}) = rac{ extsf{N}_{>}(\ell_{\omega};\Delta)}{ extsf{N}_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- ▶ So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

ı

$$P_{>}(\ell_{\omega}) = rac{ extsf{N}_{>}(\ell_{\omega};\Delta)}{ extsf{N}_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega} \rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ Set $\ell_* = \ell_\omega$ for some $1 \ll \omega \ll \Omega$.

ı

$$P_{>}(\ell_{\omega}) = rac{ extsf{N}_{>}(\ell_{\omega};\Delta)}{ extsf{N}_{>}(0;\Delta)} \simeq rac{\sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}{\sum_{\omega'=1}^{\Omega} n_{\omega'} s_{\omega'}/\Delta}$$

- Δ's cancel
- ▶ Denominator is $a_{\Omega}\rho_{\rm dd}$, a constant.
- So... using Horton's laws...

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} n_{\omega'} s_{\omega'} \simeq \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{s}_1 \cdot R_s^{\omega'-1})$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{\mathbf{s}}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- ► Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_n^{\Omega-\omega'}) (\bar{\mathbf{s}}_1 \cdot R_s^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- ► Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{\mathbf{s}}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_{s}}{R_{n}}\right)^{\omega'}$$

- ► Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- ► Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

▶ We are here:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} (1 \cdot R_{n}^{\Omega-\omega'}) (\bar{s}_{1} \cdot R_{s}^{\omega'-1})$$

Cleaning up irrelevant constants:

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega'=\omega+1}^{\Omega} \left(\frac{R_s}{R_n}\right)^{\omega'}$$

- ► Change summation order by substituting $\omega'' = \Omega \omega'$.
- Sum is now from $\omega'' = 0$ to $\omega'' = \Omega \omega 1$ (equivalent to $\omega' = \Omega$ down to $\omega' = \omega + 1$)

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(\frac{R_{\rm B}}{R_{\rm S}}\right)^{\Omega-\omega}$$

again using $\sum_{i=0}^{n-1} a^{i} = (a^{n} - 1)/(a - 1)$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(\frac{R_{n}}{R_{s}}\right)^{\Omega-\omega}$$

again using $\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

References

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{\Omega-\omega} \propto \left(\frac{R_n}{R_s}\right)^{-1}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)^n$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a - 1)$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$P_{>}(\ell_{\omega}) \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_s}{R_n}\right)^{\Omega-\omega''} \propto \sum_{\omega''=0}^{\Omega-\omega-1} \left(\frac{R_n}{R_s}\right)^{\omega''}$$

▶ Since $R_n > R_s$ and $1 \ll \omega \ll \Omega$,

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{\Omega-\omega} \propto \left(rac{R_n}{R_s}
ight)^{-\omega}$$

again using
$$\sum_{i=0}^{n-1} a^i = (a^n - 1)/(a-1)$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

.

Models

Nutshell

References

Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(\frac{R_n}{R_s}\right)^{-\omega} = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

_ .

▶ Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \, \text{ln}(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

▶ Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

0

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

▶ Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \, \text{ln}(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_\omega \propto R_\ell^\omega = R_s^\omega = e^{\omega \ln R_s}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

► Nearly there:

$$P_{>}(\ell_{\omega}) \propto \left(rac{R_n}{R_s}
ight)^{-\omega} \, = e^{-\omega \ln(R_n/R_s)}$$

- ▶ Need to express right hand side in terms of ℓ_{ω} .
- ▶ Recall that $\ell_{\omega} \simeq \bar{\ell}_1 R_{\ell}^{\omega-1}$.

$$\ell_{\omega} \propto R_{\ell}^{\omega} = R_{\rm s}^{\omega} = e^{\omega \ln R_{\rm s}}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Reducing Horton

Scaling relations
Fluctuations
Models

References

Horton ⇔ Tokunaga

Finding γ :

▶ Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}\right)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R$$

$$=\ell_{s,s}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Reducing Horton

Scaling relations **Fluctuations** Models Nutshell References

Horton ⇔ Tokunaga

Finding γ :

Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Reducing Horton Scaling relations **Fluctuations**

Horton ⇔ Tokunaga

Models Nutshell

References

Therefore:

$$P_{>}(\ell_{\omega}) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Reducing Horton

Scaling relations

Horton ⇔ Tokunaga

Fluctuations

Models

Nutshell

References

▶ Therefore:

$$P_>(\ell_\omega) \propto e^{-\omega \ln(R_n/R_s)} = \left(e^{\omega \ln R_s}
ight)^{-\ln(R_n/R_s)/\ln(R_s)}$$

$$\propto \ell_{\omega} - \ln(R_n/R_s) / \ln R_s$$

>

$$=\ell_{\omega}^{-(\ln R_n-\ln R_s)/\ln R_s}$$

$$=\ell_{\omega}^{-\ln R_n/\ln R_s+1}$$

$$=\ell_{\omega}^{-\gamma+1}$$

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

Scaling laws

Finding γ :

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (\boxplus)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 35/74

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 35/74

And so we have:

$$\gamma = \ln R_n / \ln R_s$$

Proceeding in a similar fashion, we can show

$$\tau = 2 - \ln R_s / \ln R_n = 2 - 1/\gamma$$

Insert question 5, assignment 2 (⊞)

- Such connections between exponents are called scaling relations
- Let's connect to one last relationship: Hack's law

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Scaling laws

Hack's law: [6]

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_{\omega} \propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

▶ Observe:

$$\ell_\omega \propto m{e}^{\omega \ln R_{
m s}} \propto \left(e^{\omega \ln R_{
m h}}
ight)^{\ln R_{
m s}/\ln R_{
m r}}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow h = \ln R_s/\ln R_n$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

Scaling laws

Hack's law: [6]

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_\omega \propto R_s^\omega$$
 and $a_\omega \propto R_n^\omega$

Observe

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto \left(R_n^\omega
ight)^{\ln R_s/\ln R_n} \propto a_\omega^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_{\omega} \propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

Observe

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

 $\propto (R_n^\omega)^{\ln R_s/\ln R_n} \propto a_\omega^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

References

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect h to Horton ratios:

$$\ell_{\omega} \propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_{\omega} \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^\omega)^{\ln R_s/\ln R_n} \propto a_\omega^{\ln R_s/\ln R_n} \Rightarrow \left| m{h} = \ln R_s/\ln R_n
ight|$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect h to Horton ratios:

$$\ell_{\omega} \propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^\omega)^{\ln R_s/\ln R_n} \propto a_\omega^{\ln R_s/\ln R_n} \Rightarrow \left| m{h} = \ln R_s/\ln R_n
ight|$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_{\omega} \propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow h = \ln R_s/\ln R_n$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$\ell \propto \textit{a}^{\textit{h}}$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_{\omega} \propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto \left(R_n^\omega
ight)^{\ln R_s/\ln R_n} \propto a_\omega^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

$$\ell \propto a^h$$

- ▶ Typically observed that $0.5 \lesssim h \lesssim 0.7$.
- ▶ Use Horton laws to connect *h* to Horton ratios:

$$\ell_{\omega} \propto R_s^{\omega}$$
 and $a_{\omega} \propto R_n^{\omega}$

Observe:

$$\ell_\omega \propto e^{\omega \ln R_s} \propto \left(e^{\omega \ln R_n}
ight)^{\ln R_s/\ln R_n}$$

$$\propto (R_n^{\omega})^{\ln R_s/\ln R_n} \propto a_{\omega}^{\ln R_s/\ln R_n} \Rightarrow \boxed{h = \ln R_s/\ln R_n}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Only 3 parameters are independent: e.g., take d, R_n , and R_s

relation:	scaling relation/parameter: [2]
$\ell \sim \mathcal{L}^{d}$	d
$T_k = T_1(R_T)^{k-1}$	$T_1 = R_n - R_s - 2 + 2R_s/R_n$
	$R_T = R_s$
$n_{\omega}/n_{\omega+1}=R_n$	R_n
$ar{a}_{\omega+1}/ar{a}_{\omega}=R_a$	$R_a = R_n$
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=R_{\ell}$	$R_\ell = R_s$
$\ell \sim \pmb{a^h}$	$h = \log R_s / \log R_n$
$a\sim L^D$	D = d/h
${\it L}_{\perp} \sim {\it L}^{\it H}$	H = d/h - 1
$P(a) \sim a^{- au}$	au = 2 - h
$P(\ell) \sim \ell^{-\gamma}$	$\gamma = 1/h$
$\Lambda \sim a^eta$	$\beta = 1 + h$
$\lambda \sim {\cal L}^{arphi}$	$arphi= extsf{d}$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

-iuciualioi

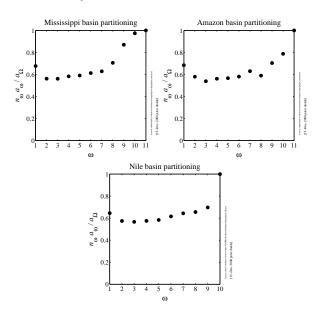
Models

References

Frame 37/74

Equipartitioning reexamined:

Recall this story:



Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshe

References

Frame 38/74

What about

$$P(a) \sim a^{-\tau}$$
 ?

▶ Since τ > 1, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{cons}$$

- ▶ *P*(*a*) overcounts basins within basins...
- while stream ordering separates basins...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

▶ What about

$$P(a) \sim a^{-\tau}$$
 ?

▶ Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- ▶ *P*(*a*) overcounts basins within basins...
- while stream ordering separates basins...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

What about

$$P(a) \sim a^{-\tau}$$
 ?

▶ Since τ > 1, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- ▶ *P*(*a*) overcounts basins within basins...
- while stream ordering separates basins...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 39/74

What about

$$P(a) \sim a^{-\tau}$$
 ?

▶ Since $\tau > 1$, suggests no equipartitioning:

$$aP(a) \sim a^{-\tau+1} \neq \text{const}$$

- ▶ *P*(*a*) overcounts basins within basins...
- while stream ordering separates basins...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Fluctuations

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_s$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$ar{s}_{\omega}/ar{s}_{\omega-1}=R_{s}$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_{s}$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Fluctuations

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_{s}$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Fluctuations

Moving beyond the mean:

▶ Both Horton's laws and Tokunaga's law relate average properties, e.g.,

$$\bar{s}_{\omega}/\bar{s}_{\omega-1}=R_{s}$$

- Natural generalization to consideration relationships between probability distributions
- Yields rich and full description of branching network structure
- See into the heart of randomness...

Horton ⇔ Tokunaga

Reducing Horton

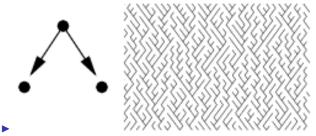
Scaling relations

Fluctuations

Models

Nutshell

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

- Flow is directed downwards
- Useful and interesting test case—more later...

Horton ⇔ Tokunaga

Reducing Horton

Jeaning relation

Fluctuations

Models

Nutshell

References

Frame 41/74

- $\blacktriangleright \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow \textit{N}(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$
- $\qquad \qquad \bar{a}_{\omega} \propto (R_a)^{\omega} \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^{\omega})$

- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Reducing Horton

Horton ⇔

Tokunaga

Fluctuations

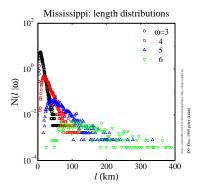
- $\blacktriangleright \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega}F_{\ell}(\ell/R_{\ell}^{\omega})$
- $lack ar a_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$

Models
Nutshell
References

- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Frame 42/74

- $\blacktriangleright \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$
- $lack ar a_\omega \propto (R_a)^\omega \Rightarrow N(a|\omega) = (R_n^2)^{-\omega} F_a(a/R_n^\omega)$



- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation:

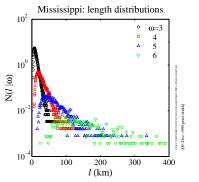
Fluctuations

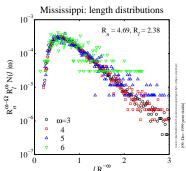
Models

Nutshell

$$\blacktriangleright \ \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$$

$$lack ar a_\omega \propto (R_a)^\omega \Rightarrow {\sf N}(a|\omega) = (R_n^2)^{-\omega} {\sf F}_a(a/R_n^\omega)$$





- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Reducing Horton

Scaling relations

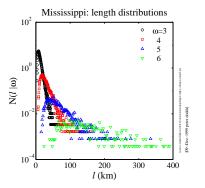
Fluctuations

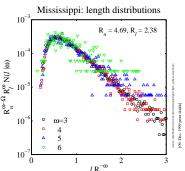
Models Nutshell

References

Frame 42/74

- $\blacktriangleright \bar{\ell}_{\omega} \propto (R_{\ell})^{\omega} \Rightarrow N(\ell|\omega) = (R_{n}R_{\ell})^{-\omega} F_{\ell}(\ell/R_{\ell}^{\omega})$
- $lack ar a_\omega \propto (R_a)^\omega \Rightarrow {\sf N}(a|\omega) = (R_n^2)^{-\omega} {\sf F}_a(a/R_n^\omega)$





- Scaling collapse works well for intermediate orders
- All moments grow exponentially with order

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

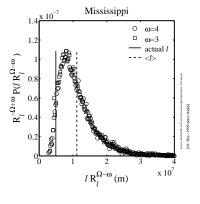
Fluctuations

Models Nutshell

References

Frame 42/74

▶ How well does overall basin fit internal pattern?



- ► Actual length = 4920 km (at 1 km res)
- ► Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- Okay.

Horton ⇔ Tokunaga

Reducing Horton

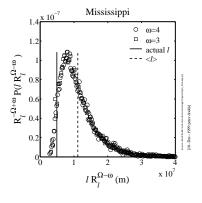
Scaling relations

Fluctuations

Models

Nutshell References

▶ How well does overall basin fit internal pattern?



- ► Actual length = 4920 km (at 1 km res)
- ▶ Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- Okay.

Horton ⇔ Tokunaga

Reducing Horton

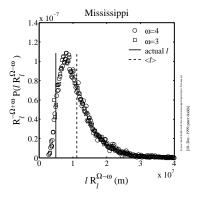
Scaling relations

Fluctuations

Models

Nutshell

▶ How well does overall basin fit internal pattern?



- ► Actual length = 4920 km (at 1 km res)
- Predicted Mean length= 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- Okay.

Horton ⇔ Tokunaga

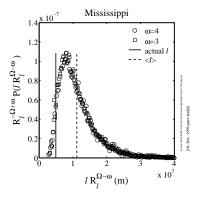
Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

How well does overall basin fit internal pattern?



- Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- ► Actual length/Mean length = 44 %
- Okay.

Horton ⇔ Tokunaga

Reducing Horton

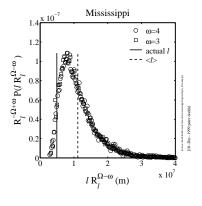
Scaling relations

Fluctuations

Models Nutshell

References

How well does overall basin fit internal pattern?



- ► Actual length = 4920 km (at 1 km res)
- Predicted Mean length= 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

Horton ⇔ Tokunaga

Reducing Horton

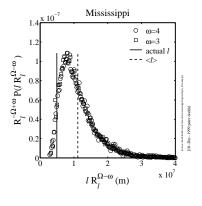
Scaling relations

Fluctuations

Models Nutshell

References

How well does overall basin fit internal pattern?



- ► Actual length = 4920 km (at 1 km res)
- Predicted Mean length = 11100 km
- Predicted Std dev = 5600 km
- Actual length/Mean length = 44 %
- Okay.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Comparison of predicted versus measured main stream lengths for large scale river networks (in 10³ km):

basin:	ℓ_Ω	$ar{\ell}_{\Omega}$	σ_ℓ	$\ell/ar{\ell}_{\Omega}$	$\sigma_\ell/ar\ell_\Omega$
Mississippi	4.92	11.10	5.60	0.44	0.51
Amazon	5.75	9.18	6.85	0.63	0.75
Nile	6.49	2.66	2.20	2.44	0.83
Congo	5.07	10.13	5.75	0.50	0.57
Kansas	1.07	2.37	1.74	0.45	0.73
	а	$ar{a}_\Omega$	σ_{a}	$a/ar{a}_\Omega$	$\sigma_{m{a}}/ar{m{a}}_{m{\Omega}}$
Mississippi	2.74	a_{Ω} 7.55	σ_a 5.58	a/\bar{a}_{Ω} 0.36	$\sigma_a/\bar{a}_{\Omega}$ 0.74
Mississippi Amazon				,	•
	2.74	7.55	5.58	0.36	0.74
Amazon	2.74 5.40	7.55 9.07	5.58 8.04	0.36	0.74 0.89

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

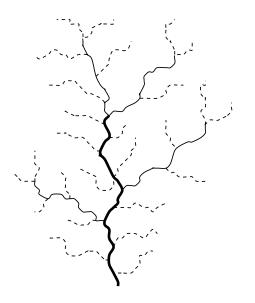
Models

Nutshell

References

Frame 44/74

Combining stream segments distributions:



 Stream segments sum to give main stream lengths

 $\ell_{\omega} = \sum_{i=0}^{\mu=\omega} s_{i}$

 $P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

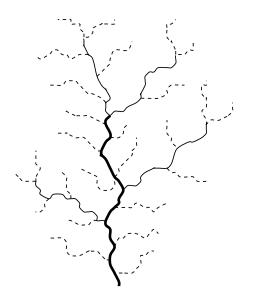
Models

Nutshell

References

Frame 45/74

Combining stream segments distributions:



 Stream segments sum to give main stream lengths

$$\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$$

 $ightharpoonup P(\ell_{\omega})$ is a convolution of distributions for the s_{ω}

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

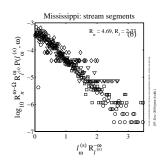
Nutshell

References

Frame 45/74

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F(s/R_{\ell}^{\omega})$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq$ 900 m

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

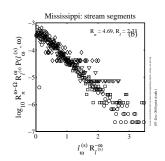
Nutshell

References

Frame 46/74

Sum of variables $\ell_{\omega} = \sum_{\mu=1}^{\mu=\omega} s_{\mu}$ leads to convolution of distributions:

$$N(\ell|\omega) = N(s|1) * N(s|2) * \cdots * N(s|\omega)$$



$$N(s|\omega) = \frac{1}{R_n^{\omega} R_{\ell}^{\omega}} F(s/R_{\ell}^{\omega})$$

$$F(x) = e^{-x/\xi}$$

Mississippi: $\xi \simeq$ 900 m.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

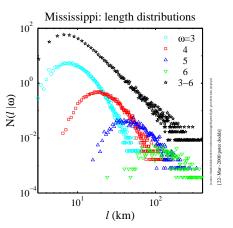
Fluctuations

Models Nutshell

References

Frame 46/74

Next level up: Main stream length distributions must combine to give overall distribution for stream length



 $ightharpoonup P(\ell) \sim \ell^{-\gamma}$

- ► Another round of convolutions [3]
- ► Interesting...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

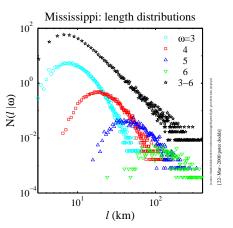
Models

Nutshell

References

Frame 47/74

Next level up: Main stream length distributions must combine to give overall distribution for stream length



- $ightharpoonup P(\ell) \sim \ell^{-\gamma}$
- Another round of convolutions [3]
 - Interesting...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

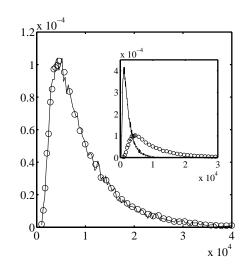
Models

Nutshel

References

Frame 47/74

Number and area distributions for the Scheidegger model $P(n_{1.6})$ versus $P(a_6)$.



Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

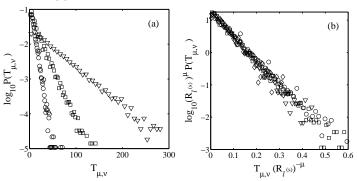
Nutshell

References

Frame 48/74

Generalizing Tokunaga's law

Scheidegger:



- Observe exponential distributions for T_{µ,ν}
- Scaling collapse works using R_s

Horton ⇔ Tokunaga

Reducing Horton

caling relation

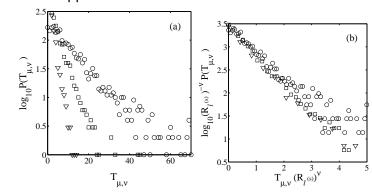
Fluctuations

Models

Nutshell

Generalizing Tokunaga's law

Mississippi:



Same data collapse for Mississippi...

Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshel

So

$$P(T_{\mu,\nu}) = (R_s)^{\mu-\nu-1} P_t \left[T_{\mu,\nu}/(R_s)^{\mu-\nu-1} \right]$$

where

$$P_t(z) = \frac{1}{\xi_t} e^{-z/\xi_t}.$$

$$P(s_{\mu}) \Leftrightarrow P(T_{\mu,\nu})$$

- Exponentials arise from randomness.
- ▶ Look at joint probability $P(s_{\mu}, T_{\mu,\nu})$.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

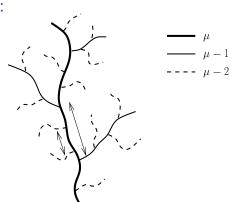
References

Frame 51/74

Generalizing Tokunaga's law

Network architecture:

- Inter-tributary lengths exponentially distributed
- Leads to random spatial distribution of stream segments



Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Frame 52/74

- Follow streams segments down stream from their beginning
- ▶ Probability (or rate) of an order μ stream segment terminating is constant:

$$\tilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ightharpoonup \Rightarrow random spatial distribution of stream segments

Tokunaga
Reducing Horton
Scaling relations

Horton ⇔

Fluctuations Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_{s})^{\mu-1} \xi_{s}$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ▶ ⇒ random spatial distribution of stream segments

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_{s})^{\mu-1} \xi_{s}$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ▶ ⇒ random spatial distribution of stream segments

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_{s})^{\mu-1} \xi_{s}$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ▶ ⇒ random spatial distribution of stream segments

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

- Follow streams segments down stream from their beginning
- Probability (or rate) of an order μ stream segment terminating is constant:

$$ilde{p}_{\mu} \simeq 1/(R_s)^{\mu-1} \xi_s$$

- Probability decays exponentially with stream order
- Inter-tributary lengths exponentially distributed
- ▶ ⇒ random spatial distribution of stream segments

Tokunaga

Horton ⇔

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu,
u}) = ilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}}
ho_{
u}^{T_{\mu,
u}} (1 -
ho_{
u} - ilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

- $p_{\nu} =$ probability of absorbing an order ν side stream
- $ightharpoonup ilde{p}_{\mu} = ext{probability of an order } \mu ext{ stream terminating}$
- lacktriangle Approximation: depends on distance units of $oldsymbol{s}_{\mu}$
- ► In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 54/74

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu,
u}) = ilde{
ho}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}}
ho_{
u}^{T_{\mu,
u}} (1 -
ho_{
u} - ilde{
ho}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

- $p_{\nu} =$ probability of absorbing an order ν side stream
- $m{\check{p}}_{\mu}=$ probability of an order μ stream terminating
- lacktriangle Approximation: depends on distance units of s_{μ}
- ► In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

Joint distribution for generalized version of Tokunaga's law:

$$P(s_{\mu}, T_{\mu,
u}) = ilde{
ho}_{\mu} inom{s_{\mu} - 1}{T_{\mu,
u}}
ho_{
u}^{T_{\mu,
u}} (1 -
ho_{
u} - ilde{
ho}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

where

- $p_{\nu}=$ probability of absorbing an order ν side stream
- $m{\check{p}}_{\mu}=$ probability of an order μ stream terminating
- Approximation: depends on distance units of s_{μ}
- In each unit of distance along stream, there is one chance of a side stream entering or the stream terminating.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 54/74

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu, \nu}} p_{
u}^{T_{\mu,
u}} (1 - p_{
u} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

- ▶ Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^{3}$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 55/74

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu, \nu}}
ho_{
u}^{T_{\mu,
u}} (1 - p_{
u} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

- ▶ Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^{3}$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models Nutshell

References

Frame 55/74

Now deal with thing:

$$P(s_{\mu}, T_{\mu, \nu}) = \tilde{p}_{\mu} inom{s_{\mu} - 1}{T_{\mu, \nu}}
ho_{
u}^{T_{\mu,
u}} (1 - p_{
u} - \tilde{p}_{\mu})^{s_{\mu} - T_{\mu,
u} - 1}$$

- ▶ Set $(x, y) = (s_{\mu}, T_{\mu, \nu})$ and $q = 1 p_{\nu} \tilde{p}_{\mu}$, approximate liberally.
- Obtain

$$P(x,y) = Nx^{-1/2} [F(y/x)]^x$$

where

$$F(v) = \left(\frac{1-v}{q}\right)^{-(1-v)} \left(\frac{v}{p}\right)^{-v}.$$

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

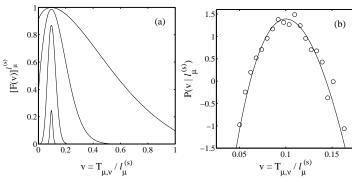
Models

Nutshell

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

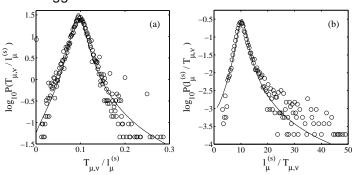
Nutshell

References

Frame 56/74

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

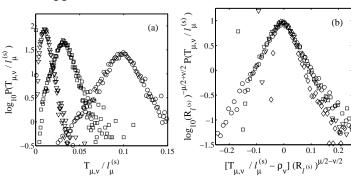
References

Frame 57/74

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Scheidegger:



Horton ⇔ Tokunaga

Reducing Horton

Scaling relation

Fluctuations

Models

Nutshell

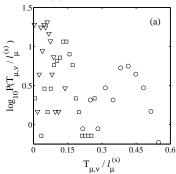
References

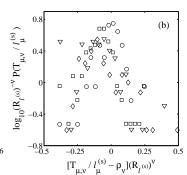
Frame 58/74

Generalizing Tokunaga's law

▶ Checking form of $P(s_{\mu}, T_{\mu,\nu})$ works:

Mississippi:





Tokunaga

Reducing Horton

Scaling relations

Fluctuations

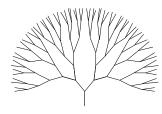
Models

Nutshel

References

Frame 59/74

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- ▶ So let's move on...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

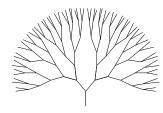
Fluctuation

Models

Nutshell

References

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- ▶ So let's move on...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

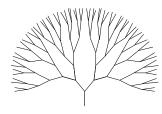
Fluctuations

Models

Nutshell

References

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- ▶ So let's move on...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

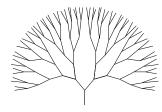
Fluctuations

Models

Nutshell

References

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- ▶ So let's move on...

Horton ⇔ Tokunaga

Reducing Horton

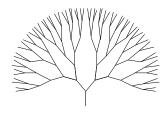
Fluctuations

Models

Nutshell

References

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- In fact, Bethe lattices ≃ infinite dimensional spaces (oops).
- ▶ So let's move on...

Horton ⇔ Tokunaga

Reducing Horton

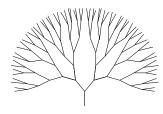
Fluctuations

Models

Nutshell

References

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- ▶ So let's move on...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

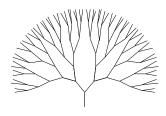
Fluctuations

Models

Nutshell

References

Random subnetworks on a Bethe lattice [13]



- Dominant theoretical concept for several decades.
- Bethe lattices are fun and tractable.
- Led to idea of "Statistical inevitability" of river network statistics [7]
- But Bethe lattices unconnected with surfaces.
- ► In fact, Bethe lattices ~ infinite dimensional spaces (oops).
- So let's move on...

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

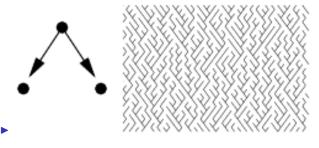
Fluctuations

Models

Nutshell

References

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

► Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Horton ⇔ Tokunaga

Reducing Horton

scaling relation

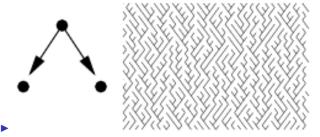
riuctuatioi

Models

Nutshell

Scheidegger's model

Directed random networks [11, 12]



$$P(\searrow) = P(\swarrow) = 1/2$$

► Functional form of all scaling laws exhibited but exponents differ from real world [15, 16, 14]

Horton ⇔ Tokunaga

Reducing Horton

Fluctuations

Models

Nutaball

Horton ⇔ Tokunaga

Reducing Horton

Scaling relatio

riuciuai

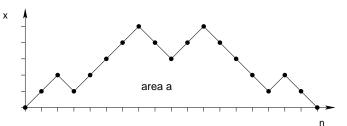
Models

Nutshe

References

Random walk basins:

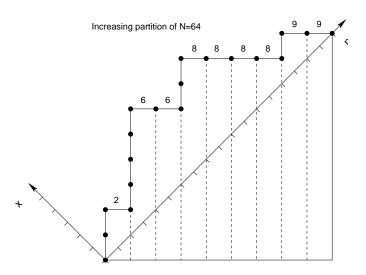
Boundaries of basins are random walks



Frame 62/74

Branching Networks II

Scheidegger's model



Horton ⇔ Tokunaga

Reducing Hortor

Models

Nutshell

References

Frame 63/74

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$

and so $P(\ell) \propto \ell^{-3/2}$

▶ Typical area for a walk of length *n* is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Þ

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length *n* is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Þ

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length n is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- $ightharpoonup R_n$ and R_ℓ have not been derived analytically.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Þ

$$P(n) \sim \frac{1}{2\sqrt{\pi}} n^{-3/2}$$
.

and so $P(\ell) \propto \ell^{-3/2}$.

▶ Typical area for a walk of length *n* is $\propto n^{3/2}$:

$$\ell \propto a^{2/3}$$
.

- Find $\tau = 4/3$, h = 2/3, $\gamma = 3/2$, d = 1.
- Note $\tau = 2 h$ and $\gamma = 1/h$.
- ▶ R_n and R_ℓ have not been derived analytically.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathrm{d} ec{r} \; (\mathrm{flux}) imes (\mathrm{force}) \sim \sum_{i} a_{i}
abla h_{i} \sim \sum_{i} a_{i}^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Tokunaga
Reducing Horton
Scaling relations

Horton ⇔

Models

Nutshell References

Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^\gamma$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- ► Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

References

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

-iuctuation

Models

Nutshell

References

Landscapes $h(\vec{x})$ evolve such that energy dissipation $\dot{\varepsilon}$ is minimized, where

$$\dot{arepsilon} \propto \int \mathsf{d} ec{r} \; (\mathsf{flux}) imes (\mathsf{force}) \sim \sum_i a_i
abla h_i \sim \sum_i a_i^{\gamma}$$

- Landscapes obtained numerically give exponents near that of real networks.
- But: numerical method used matters.
- And: Maritan et al. find basic universality classes are that of Scheidegger, self-similar, and a third kind of random network [8]

Horton ⇔ Tokunaga

Reducing Horton

caling relation

Fluctuations

Models Nutshell

References

Theoretical networks

Summary of universality classes:

network	h	d
Non-convergent flow	1	1
Directed random	2/3	1
Undirected random	5/8	5/4
Self-similar	1/2	1
OCN's (I)	1/2	1
OCN's (II)	2/3	1
OCN's (III)	3/5	1
Real rivers	0.5–0.7	1.0–1.2

 $h\Rightarrow \ell \propto a^h$ (Hack's law). $d\Rightarrow \ell \propto L^d_{||}$ (stream self-affinity).

Horton ⇔ Tokunaga

Reducing Horton

30a....g . 0.a...0

Fluctuations Models

المطمقينا

References

Frame 66/74

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- ▶ For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Models

Nutshell

References

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

··aotaati

Models

Nutshell

References

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- ▶ For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

References

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuation

Models

Nutshell

References

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- ▶ For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- Horton's laws and Tokunaga law all fit together.
- nb. for 2-d networks, these laws are 'planform' laws and ignore slope.
- Abundant scaling relations can be derived.
- ▶ Can take R_n , R_ℓ , and d as three independent parameters necessary to describe all 2-d branching networks.
- ▶ For scaling laws, only $h = \ln R_{\ell} / \ln R_n$ and d are needed.
- Laws can be extended nicely to laws of distributions.
- Numerous models of branching network evolution exist: nothing rock solid yet.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

- [1] H. de Vries, T. Becker, and B. Eckhardt.
 Power law distribution of discharge in ideal networks.

 Water Resources Research, 30(12):3541–3543,
 December 1994.
- [2] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.

 Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)
- [3] P. S. Dodds and D. H. Rothman.

 Geometry of river networks. II. Distributions of component size and number.

 Physical Review E, 63(1):016116, 2001. pdf (⊞)
 - [4] P. S. Dodds and D. H. Rothman. Geometry of river networks. III. Characterization of component connectivity. Physical Review E, 63(1):016117, 2001. pdf (⊞)

Tokunaga
Reducing Horton
Scaling relations

Horton ⇔

Models

Nutshell

References

Frame 68/74

References II

[5] N. Goldenfeld.

Lectures on Phase Transitions and the Renormalization Group, volume 85 of Frontiers in Physics.

Addison-Wesley, Reading, Massachusetts, 1992.

[6] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

[7] J. W. Kirchner.

Statistical inevitability of Horton's laws and the apparent randomness of stream channel networks. *Geology*, 21:591–594, July 1993.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 69/74

[8] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. R. Banavar Universality classes of optimal channel networks. Science, 272:984–986, 1996, pdf (⊞)

[9] S. D. Peckham.

New results for self-similar trees with applications to river networks.

Water Resources Research, 31(4):1023-1029, April 1995.

[10] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambridge, UK, 1997.

Tokunaga Reducing Horton Scaling relations **Fluctuations**

Horton ⇔

Models

Nutshell

References

Frame 70/74

[11] A. E. Scheidegger.

A stochastic model for drainage patterns into an intramontane trench.

Bull. Int. Assoc. Sci. Hydrol., 12(1):15-20, 1967.

[12] A. E. Scheidegger.

Theoretical Geomorphology.

Springer-Verlag, New York, third edition, 1991.

[13] R. L. Shreve. Infinite topologically random channel networks. *Journal of Geology*, 75:178–186, 1967.

🔋 [14] H. Takayasu.

Steady-state distribution of generalized aggregation system with injection.

Physcial Review Letters, 63(23):2563–2565, December 1989.

Horton ⇔ Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 71/74

References V

[15] H. Takayasu, I. Nishikawa, and H. Tasaki. Power-law mass distribution of aggregation systems with injection.

Physical Review A, 37(8):3110–3117, April 1988.

[16] M. Takayasu and H. Takayasu. Apparent independency of an aggregation system with injection. Physical Review A, 39(8):4345–4347, April 1989.

[17] D. G. Tarboton, R. L. Bras, and

I. Rodríguez-Iturbe.

Comment on "On the fractal dimension of stream networks" by Paolo La Barbera and Renzo Rosso. *Water Resources Research*, 26(9):2243–4, September 1990.

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Fluctuations

Models

Nutshell

References

Frame 72/74

References VI

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. *Geophysical Bulletin of Hokkaido University*, 15:1–19, 1966.

🔋 [19] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

[20] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

Horton ⇔ Tokunaga

Reducing Horton
Scaling relations

Models

Nutshell

References

Frame 73/74

[21] G. K. Zipf.

Human Behaviour as

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

Tokunaga
Reducing Horton
Scaling relations

Horton ⇔

Fluctuations

Models

Nutshell

References

Frame 74/74

