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Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

» In terms of network achitecture, Horton’s laws
appear to contain less detailed information than
Tokunaga’s law.

» Oddly, Horton’s laws have four parameters and
Tokunaga has two parameters.

» Rn, Ra, Ry, and Rs versus Ty and Ry. One simple
redundancy: R, = Rs.
Insert question 2, assignment 2 (H)

» To make a connection, clearest approach is to start

with Tokunaga’s law...
» Known result: Tokunaga — Horton '8 19.20.9. 2]
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Let us make them happy

We need one more ingredient:
Space-fillingness
» A network is space-filling if the average distance
between adjacent streams is roughly constant.
» Reasonable for river and cardiovascular networks

» For river networks:
Drainage density pqq = inverse of typical distance
between channels in a landscape.

» In terms of basin characteristics:

S stream segment lengths -2, n, 8,

Pad = basin area ao

Branching
Networks |1

Frame 2/74

F Dae

Branching
Networks Il

Horton <
Tokunaga

Frame 4/74

F Dae



http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/docs/2010-01UVM-303assignment2.pdf

Branching

More with the happy-making thing Networks | More with the happy-making thing Network 1

Start with Tokunaga’s law: Ty = T{R%™! Horton

Tokunaga

Horton <

Putting things together: i

» Start looking for Horton’s stream number law:
Ny/N,+1 = Rn.

» Estimate n,,, the number of streams of order w in
terms of other n,/, W' > w.

» Observe that each stream of order w terminates by

>

Q
Ny = 2nw+1 + Z Tw/fw Ny
~—— —_————

w!'=w+1

generation absorption

either: » Use Tokunaga'’s law and manipulate expression to
create R,’s.
w=3 @=3 4 Running into another stream of order w » Insert question 3, assignment 2 ()
and generating a stream of order w +1... » Solution:
w=¢ » 2n,.1 streams of order w do this oL R T 5T h 28R
- . + —
_ w=3 2. Running into and being absorbed by a R, = (2+Rr+ 1) \/( +Art 1) L
w=4 stream of higher order v’ > w... 2
=L » n, T, _, streams of order w do this (The larger value is the one we want.)
Frame 5/74 Frame 6/74
& Dae & vae
Finding other Horton ratios Nemorke | Horton and Tokunaga are happy Nemorke |
Connect Tokunaga to R, Horton & Horton <>

Tokunaga Altogether then: Tokunaga
» Now use uniform drainage density pqq.

» Assume side streams are roughly separated by
distance 1/paq.

» For an order w stream segment, expected length is

w—1
80 = pgg (1 +> Tk>

k=1

>
= éw/éw_1 = RT = Rs = RT

» Recall R, = Rs so

R, =Ry

» And from before:
» Substitute in Tokunaga’s law Ty = TyRE "

(2+Rr+Ty)++(2+Rr+T1)2 -8Ry

Rn: 2

w—1
5.~ pgg (1 +T RTk—‘> o R#
k=1

Frame 7/74 Frame 8/74

F Dae F Dae
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Horton and Tokunaga are happy Networks 1 Horton and Tokunaga are happy Networks I

Horton <
Tokunaga

Horton <
Tokunaga

The other way round

Some observations: _ _
» Note: We can invert the expresssions for R, and R,

to find Tokunaga’s parameters in terms of Horton’s
parameters.

» R,and R, depend on Ty and Rr.
» Seems that R; must as well...

» Suggests Horton’s laws must contain some >
redundancy Rr = Ry,
» We'll in fact see that R; = Ry. >

Ti = Rn— R, — 2+ 2R,/R,.

» Suggests we should be able to argue that Horton’s
laws imply Tokunaga'’s laws (if drainage density is

» Also: Both Tokunaga'’s law and Horton’s laws can be
generalized to relationships between non-trivial
statistical distributions. [* 4!

uniform)...
Frame 9/74 Frame 10/74
& Hae & Hae
Horton and Tokunaga are friends Networks 1 Horton and Tokunaga are friends Networks 1
Horton < Horton <
okunase ...and in detail: Torunaga

From Horton to Tokunaga !
» Must retain same drainage density.

» Add an extra (R, — 1) first order streams for each
original tributary.

» Assume Horton’s laws
hold for number and

length

s 9 h ) » Since number of first order streams is now given by
) » Start with an order w Tis1 We have:

stream

» Scale up by a factor of
Ry, orders increment

» Maintain drainage
density by adding new
order 1 streams

K
Tit1=(Re—1) (ZT/+1>.
i=

» For large w, Tokunaga’s law is the solution—let’s
check...

Frame 11/74 Frame 12/74
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Horton and Tokunaga are friends Nemorke | Horton’s laws of area and number: Netorke |
The Mississippi The Mississippi
Just CheCking: Horton < 0
Tokunaga B )
» Substitute Tokunaga’s law T; = TyR; ' = TyR,/™" § ® Reducing Horton
into v
k o
Tk+1:(Fx’g—1)<ZT;+1> -
[:1 123452)7891011 12345:3)7891011
> o The Nile W . The Nile
k ) 10 g ja:(sqkm) ) g 10° jaii';’;lkm)
Tky1 = (Re—1) (Z iR/~ + 1> i B 105
=1 10° 10°
ng —1 f ij
— H o 1 T 1 10 H 10’ Q=10 é
( e ) 1 <R£_1 + ) 10° 1234567391011: 10 1234557891011:
stream orde® stream ordet
RN K
~ (R —1)T R —1 iRy ... yep. » In right plots, stream number graph has been flipped
E— vertically. Frame 14/74
5 oac » Highly suggestive that R, = R,... 5 oac
Measuring Horton ratios is tricky: Networks 1 Mississippi: Networks 1

w range R R, R, Rs Ra/Rn
[2, 3] 527 526 248 2.30 1.00
[2,5] 486 496 242 2.31 1.02
[2,7] 477 488 240 2.31 1.02
[3, 4] 472 491 241 2.34 1.04
[3, 6] 470 483 240 2.35 1.03
[3, 8] 460 479 238 2.34 1.04
[4, 6] 469 481 240 2.36 1.02
[4,8] 457 477 238 2.34 1.05
[5,7] 468 483 236 2.29 1.03
[6,7] 463 476 230 2.16 1.03
[7,8] 416 467 241 256 1.12

meanpy 4.69 485 240 233 1.04

stddevo 0.21 0.13 0.04 0.07 0.03
o/u 0.045 0.027 0.015 0.031 0.024

Reducing Horton

Reducing Horton

» How robust are our estimates of ratios?

» Rule of thumb: discard data for two smallest and two
largest orders.

Frame 15/74

Frame 16/74
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Amazon: Networks 1 Reducing Horton’s laws: Networks 1

Rough first effort to show R, = R.:
w range R Ra Rg RS Ra/Rn Reducing Horton
[2, 3] 478 4.71 247 2.08 0.99
[2,5] 455 458 232 212 1.01

Reducing Horton

» aq o sum of all stream lengths in a order Q2 basin
(assuming uniform drainage density)

[2,7] 442 453 224 210 1.02 » So: 0
[3,5] 445 452 226 214 1.01 0= ns
[3,7] 435 449 220 210 1.03 2= — pad
[4,6] 438 454 222 218 1.03 “T
[5, 6] 438 462 222 221 1.06 L S 1
[6.7] 408 427 205 1.83 1.5 x> R™-"1 5 Ry
meanu 442 453 225 210 1.02 w=1 pe ng
stddeve 0.17 0.10 010 0.09 0.02 o )
o/u  0.038 0.023 0.045 0.042 0.019 _ R, 3 Rs
Rs ' =~ \ R,
w=1
Frame 17/74 Frame 18/74
&F LA &F LA
Reducing Horton’s laws: Networks 1 Reducing Horton’s laws: Networks 1
Continued ...
> Reducing Horton Reducing Horton
R?_ 2 <R3>‘”
ag X — 84 =
Ais ; Fin Not quite:

_ Rig Be1—(Rs/Rn)”

Ry - Rs » ... But this only a rough argument as Horton’s laws
Rs 'Ry 1— (Rs/Rn)

do not imply a strict hierarchy
» Need to account for sidebranching.

~ R 13 . .
n » Insert question 4, assignment 2 (H)

1
T (BJR. ~ R/ R as Q

» So, aq is growing like R, and therefore:

Frame 19/74

Frame 20/74
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: e : . Branchi : e : . Branchi
Equipartitioning: Networks I Equipartitioning: Networks I
Some examples:
Intriguing division of area: Reducing Horton | Misiss bosin partoning __Amazon basin partiioning Reducing Horton
» Observe: Combined area of basins of order w 08 ) 09 .
independent of w. Fod s eent B
» Not obvious: basins of low orders not necessarily :Z ol :2 s .
contained in basis on higher orders. y y !
» Story: it :
RnERai’nwéw:COnst 1 2 3 4 5(()507 8 9 10 11 Cl 2 3 4 5((17 8 9 10 11
R Nile basin partitioning
» Reason:
Ny, (Rn)iw 04
- 1 a PO °
a, X (Ra)w X nw (\::3 06 ¢ ¢ o ®
c3 0.4
0.2
Frame 21/74 i Frame 22/74
1 2 3 45 6 7 8 9 10
& Dae © & vae
H Bi hi H Bi hi
Scaling laws Networke I Scaling laws Networke I

A little further...

» Ignore stream ordering for the moment
» Pick a random location on a branching network p.

» Each point p is associated with a basin and a longest
stream length

» Q: What is probability that the p’s drainage basin has
area a? P(a) x a " forlarge a

» Q: What is probability that the longest stream from p
has length ¢? P(¢) o< ¢~7 for large ¢

» Roughly observed: 1.3 <7 <15and1.7 <y <20

The story so far:

Scaling relations Scaling relations

» Natural branching networks are hierarchical,
self-similar structures

» Hierarchy is mixed
» Tokunaga’s law describes detailed architecture:
Tk = THRE.
» We have connected Tokunaga’s and Horton’s laws
» Only two Horton laws are independent (R, = Ra)

» Only two parameters are independent:
(T1 9 RT) g (Rna RS)

Frame 23/74 Frame 24/74

F Dae F Dae




Branching Branching

Scaling laws Networke I Scaling laws Networks I

Probability distributions with power-law decays Connecting exponents

Scaling relations

Scaling relations

» We have the detailed picture of branching networks
(Tokunaga and Horton)

> Plan: Derive P(a) oc a7 and P(f) oc £77 starting with
Tokunaga/Horton story [/ 1]
» Let’s work on P(?)...

» Our first fudge: assume Horton’s laws hold
throughout a basin of order .

» (We know they deviate from strict laws for low w and
high w but not too much.)

» Next: place stick between teeth. Bite stick. Proceed.

» We see them everywhere:
» Earthquake magnitudes (Gutenberg-Richter law)
» City sizes (Zipf’s law)
» Word frequency (Zipf’s law) %]
» Wealth (maybe not—at least heavy tailed)
» Statistical mechanics (phase transitions) [°!

» A big part of the story of complex systems

» Arise from mechanisms: growth, randomness,
optimization, ...

» Our task is always to illuminate the mechanism...

Frame 25/74 Frame 26/74

F DA F DA

Branching Branching

Scaling laws Networke I Scaling laws Networke I
Finding ~:

» The connection between P(x) and P~ (x) when P(x)
has a power law tail is simple:

» Given P(¢) ~ ¢~ large ¢ then for large enough .

Finding ~:

Scaling relations

Scaling relations

» Often useful to work with cumulative distributions,
especially when dealing with power-law distributions.

» The complementary cumulative distribution turns out

Zmax
to be most useful: P~ () = /é P(¢)d¢

=0,

Zmax
J— J— Zmax
Po(l) = Pl > 0,) = /u* P(0)dt 3 / .
0=0
> l
P.(t)=1-P(t <) RN
=Y+ 1o,

» Also known as the exceedance probability.

oc 07 for fmax >
Frame 27/74

Frame 28/74
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Scaling laws Networks 1 Scaling laws Networks 1

Finding ~: Finding ~:

» Aim: determine probability of randomly choosing a
point on a network with main stream length > 7,

» Setl, =/, forsome 1 < w < Q.

Scaling relations Scaling relations

>
» Assume some spatial sampling resolution A P.(1,) = N> (bo; D) Zg,zwﬂ Ny S /A
» Landscape is broken up into grid of A x A sites TTONL(0:8) T sy /A
» Approximate P-(¢.) as
» A’s cancel
P-(t,) = M » Denominator is agpqq, @ constant.
N-(0:4) » So... using Horton’s laws...
where N (¢,; A) is the number of sites with main 9 9
stream length > /,. P (L) Z NSy ~ Z (1~R,§2*“”)(§1'RS’“”*1)
» Use Horton’s law of stream segments: W1 W1
Su/S8wu—1 = Rs...
Frame 29/74 Frame 30/74
F DA F DA
Scaling laws Networks 1 Scaling laws Networks 1
Finding ~:
» We are here: Finding +:
Scaling relations Scaling relations
Q >
Po(lu)oc > (1-R)(5 - ReT) " "
w'=w+1

Q—w—1 Rs Q—w Q—w—1 Rn w
P 3 (g) = X (F)
» Cleaning up irrelevant constants: v

Py (B)

w'=w+1

» Since R, > Rsand 1 < w <« Q,

Rn Q—w Rn —Ww

again using Y71 a' = (a" — 1)/(a— 1)

» Change summation order by substituting
W=Q -

» Sumis now fromw” =0tow” =Q —w — 1
(equivalent to ' = Q down to w’ = w + 1) Frame 31/74

Frame 32/74
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Scaling laws

Finding ~:

» Nearly there:

oty () = e
22

» Need to express right hand side in terms of Z,,.
» Recall that £, ~ 7y R,

>
by x R = Ry = e¥nfe

Scaling laws

Finding ~:

» And so we have:

v=1InRy/InRs
| |

» Proceeding in a similar fashion, we can show

[r=2-IRy/InR, =2 1/7]

Insert question 5, assignment 2 (H)

» Such connections between exponents are called
scaling relations

» Let’s connect to one last relationship: Hack’s law

Nemorke | Scaling laws
Finding ~:

» Therefore:

Scaling relations

P (£,,) oc @ <N(Fn/Rs) — (ewlnRs)_ln(R"/RS)/ln(Rs)

>
X ew - In(Hn/Rs)/ln Rs
>
— e—(ln Rn—InRs)/In Rs
w
>
—InRp/In Rs+1
:gw nRn/In Rs+
>
— €*7+1
Frame 33/74 “
& DHaAe
Nemorke | Scaling laws
Hack’s law: [©]
>

Scaling relations { x ah

» Typically observed that 0.5 < h < 0.7.
» Use Horton laws to connect h to Horton ratios:

l, x R and a, < R;

» Observe:

b o @0 o ()"0

oc (R )" e/ INFin o g A/ INFn = [ h = In Rg/In Ry |

Frame 35/74

F Dae
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Scaling relations

Frame 34/74

F Dae
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Scaling relations

Frame 36/74
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Connecting exponents
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Equipartitioning reexamined:

Branching
Networks |1

Only 3 parameters are independent: Recall this story:
e.g., take d, R,, and R;
Mississippi basin partitioning Amazon basin partitioning
relation: scaling relation/parameter: |/ Scaling rlations . caing eatons
0~ Ld d 0.9 . 0.8 . .
Tk:T1(FI’T)k_1 T1:Rn—Hs—2+2Rs/Rn Fof g g0 ” Fod o gee e
RT = Rs :Z 0.4 i1 :2 0.4
Ny/Nwy1 = Rn Rp
é_w+1/‘?w = Ra Ra = Rn . o
Kw—i—‘l/ew:'ql REZRS 123452)7891011 12345:‘)7891011
0~ a" h =log Rs/log Ry Nile basin partitioning
a~LP D=d/h
L, ~LH H=d/h-1 * L
P(a)~a " T=2-h L I *
P(K)NE_FY ’)/:1/h :30.4
A~ a° B=1+h
A~ L? p=d Frame 37/74 I Frame 38/74
5 vaco 1 2 3 4 5w6 7 8 9 10 5 vac
Equipartitioning Networks I Fluctuations Networks I

» What about

Play~a’ 7

» Since 7 > 1, suggests no equipartitioning:

Scaling relations

Moving beyond the mean:

» Both Horton’s laws and Tokunaga’s law relate
average properties, e.g.,

gw/éwf1 = RS

Fluctuations

aP(a) ~ a "' + const o . . o
(a) 7 » Natural generalization to consideration relationships

between probability distributions

» Yields rich and full description of branching network
structure

» See into the heart of randomness...

» P(a) overcounts basins within basins...
» while stream ordering separates basins...

Frame 39/74

Frame 40/74
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A toy model—Scheidegger’s model Generalizing Horton’s laws
> 0, o< (Re)” = N(l|w) = (RnRy)~“Fy(¢/RY)

Directed random networks!'" 2] _
> 2, x (Ra)* = N(alw) = (R3)“Fa(a/Ry)

RN I A
o A R T B RS R R
S S A .:"'.-'__'\-,L N o N S
WA ‘::,a.:-‘__mx;- Pty \S}"‘» :_..:_.-;..-'_’.-_ Wy Fluctuations . Mississippi: length distributions _, Mississippi: length distributions Fluctuations
EANY {; G ¥ o N 10
bR x_{‘-:{:_';': e d }f .'I}'I"'-"' } ‘;::.-" L 4 o =3 R =4.69, R=2.38
XLy, ,\.:w':\-';-;‘__ e }___-:"r.f.:-’__'\'; '1:'-':_'-\ o L
Lo sty :l'"'}.--:"!'ll -..-.-\.'.l{l' '1:.-\':.(( ":":I-._."' B .
“““ W e N W RN L 4 #
S e R L W e 10 %
e, G e b M A e M L 5 k
L ] L G Lo b x":% -\.%"\: ey 2 Z
[N PR T P =
Ha Lo PR -\.::. & '{:,_{"{ F 3 32_ 1079 § VN
(RN T N = : o
¥ L o Ao o £ y
g b "i‘-"’-" ! 5 oS
e 3 o FEtoafpn o
107 ° =3 o oadd
: 4 omf
: s 5
P(\)=P(/)=1/2 i 18
= = 4 7]
10 10
0 100 200 300 400 0 1 o 2 3
I (km) IR

Flow is directed downwards
Useful and interesting test case—more later...

v

» Scaling collapse works well for intermediate orders

v

Generalizing Horton’s laws

» How well does overall basin fit internal pattern?

Frame 41/74

F Dae
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» All moments grow exponentially with order

Generalizing Horton’s laws

Comparison of predicted versus measured main stream
lengths for large scale river networks (in 103 km):

Frame 42/74

F Dae

Branching
Networks Il

o . basin: Lo Lo gy é/fQ Ug/ﬁQ
167 Mississippi Fluctuations P n Fluctuations

14 - » Actual length = 4920 km Mississippi 4.92 11.10 5.60 0.44 0.51

1.2 e (at 1 km res) Amazon 575 9.18 6.85 063 0.75

|3" 1 -- <> » Predicted Mean Iength Nile 6.49 2.66 2.20 2.44 0.83
wod | ] - 11100 km Congo 5.07 10.13 5.75 050 0.57
2& od > Predicted Std dev Kansas 1.07 2;37 1.74 O.LES 0.7_3
04 & 5600 km a an ca alag o0a/aq
4 9 Mississippi 2.74 7.55 558 0.36 0.74

°1 8 A I h/M

L2 Jit Ief;ti tengtn/Mean Amazon 540 9.07 804 060 0.89
R ) <10 B ° Nile 3.08 096 0.79 3.19 0.82

i > Okay. Congo 3.70 10.09 828 0.37 0.82

Kansas 0.14 049 042 028 0.86

Frame 43/74

F Dae

Frame 44/74
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Combining stream segments distributions:

Generalizing Horton’s laws

» Next level up: Main stream length distributions must
combine to give overall distribution for stream length

Mississippi: length distributions
1

* Kty
Fa

% ” w=3

N(I fo)

Branching
Networks Il

» Stream segments
sum to give main
stream lengths

Fluctuations

p=w
lo=> Sy
nu=1

» P(¢,)isa
convolution of
distributions for
the s,

Frame 45/74

F Dae
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Fluctuations

> P() ~ (77

» Another round of
convolutions I°!

» Interesting...

Frame 47/74

F Dae

Generalizing Horton’s laws

» Sum of variables ¢, =
of distributions:

''—1 Su leads to convolution

N(£lw) = N(s|1) * N(s]2) * - - -  N(s|w)

Mississippi: stream segments

Rn =4.69, F‘QZ Qﬁ?

N(s|w) =

1 %

F(x) = e /¢

p——s—————  Mississippi: £ ~ 900 m.

Number and area
distributions for the
Scheidegger model
P(n4 ) versus P(ag).

Branching
Networks |1

Fluctuations

Frame 46/74

F Dae
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Fluctuations

Frame 48/74

F Dae
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Generalizing Tokunaga’s law

Generalizing Tokunaga’s law

Branching
Networks |1

Scheldegger: Mississippi:
-1
. (b) 2’”% @ | e
,-\> Fluctuations 2 v% @@ (b) Fluctuations
L_/i — o %53 A> 3 %é)
o > w28 = Dvo(%]
= Z15 Vv o T 25 ()
B 2 R > 2
il - = o 7 @
g:/g 2 8}‘_' 1 VVV DD QQ%@%O@ o&) ”_&: 2 VDQ%EP%O&)OO
[=)) v = &
= WE@CSO@) "o Ooooo & fe LI/S 1.5 ﬁB%ODOGD [cele}e
ODDD o 0.5 w Om o 3 &P o
i | R u} O O 0@ OO O 1
0 100 200 300 0 01 02 03 04 05 06 0 8o
Tu,v Tp,v R Ol 0 » %0 60 0% 1 2 3, 4 5
Tu,v Tu,v (RI )
» Observe exponential distributions for T, , o
. . » Same data collapse for Mississippi...
» Scaling collapse works using Rs
Frame 49/74 Frame 50/74
& Dae & vae
Generalizing Tokunaga’s law Networks 1 Generalizing Tokunaga’s law Networks 1
So Network architecture:
_ u—v—1 pu—v—1
P( TM’V) - (RS) Pt |:T1U‘7V/(RS) ] Fluctuations —_ Fluctuations
where > Inter-tributary — u-1
Pz) = Lerel engths
&t exponentially
distributed

P(s.) & P(Tyuv)

» Exponentials arise from randomness.
» Look at joint probability P(s,, T,,.).

Frame 51/74

F Dae

» Leads to random
spatial distribution
of stream
segments

Frame 52/74

F Dae




Branching

Generalizing Tokunaga’s law Networks

v

Follow streams segments down stream from their
beginning Fluctuations

Probability (or rate) of an order u stream segment
terminating is constant:

P = 1/(Rs)" &

Probability decays exponentially with stream order
Inter-tributary lengths exponentially distributed
= random spatial distribution of stream segments

v

v

v

v

Frame 53/74

F Dae

Branching

Generalizing Tokunaga’s law Notworks |

» Now deal with thing:

. (s, —1
P(syu; Tpv) :Pu< l;—

w,v

)plz—}hv (1 - p, — ﬁ#)S#*TH,y*‘I Fluctuations

> Set (Xay) = (S,ua Tu,l/) and q= 1 —Pv— ﬁ,u,
approximate liberally.

» Obtain
P(x,y) = Nx~ "2 [F(y/x)"

- (09

where

Frame 55/74

F Dae

Generalizing Tokunaga’s law

» Joint distribution for generalized version of
Tokunaga’s law:

. (S, —1

P(su, Tuw) = Pu T

wv

Tuo ~ _ _
)pyu, (1 — Py —Pu)s“ T =1

where
» p, = probability of absorbing an order v side stream
» p, = probability of an order ;. stream terminating

» Approximation: depends on distance units of s,

» In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.

Generalizing Tokunaga’s law

» Checking form of P(s,, T, ) works:

Scheidegger:
1
1.5
@
0.8] 1|
z . 0§ 05
= &,
> =
hig 0
I 2
— 04 o
-0.5
0.2]
=1
0 d
0 0.2 04 0.6 038 1 -1.
v=T /10

TR

Branching
Networks |1

Fluctuations

Frame 54/74

F Dae
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Fluctuations

Frame 56/74

F Dae
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Generalizing Tokunaga’s law

Branching
Networks |1

Generalizing Tokunaga’s law

» Checking form of P(s,, T,,,) works: » Checking form of P(s,, T, ,) works:

Scheidegger: Fluctuations SCheideggel’: Fluctuations
3
= 15%
s, WY
= v
2y
b %
a, &
= 0.57&
2 o
o8
0% ~-02 -01 0 01 02
[Ty 117 -p) (R0}
Frame 57/74 Frame 58/74
& 9Dac & 9ac
. Branchi Branchi
Generalizing Tokunaga’s law Networke I Models works |

» Checking form of P(s,, T,,,,) works:
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Fluctuations
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Random subnetworks on a Bethe lattice ['®]

» Dominant theoretical concept
for several decades.

» Bethe lattices are fun and
tractable.

» Led to idea of “Statistical
inevitability” of river network
statistics |/

» But Bethe lattices
unconnected with surfaces.

» |In fact, Bethe lattices ~
infinite dimensional spaces
(oops).

» So let’'s move on...

Networks Il

Models
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Branching

Scheidegger’s model Nemorke | A toy model—Scheidegger’s model Neworks

Directed random networks ['"- 12!

VI TSIV .
NN AR AN AT AN f“ PR Random walk basins:
X el Xy , :
R CEEAT NG AN SENALSY Models » Boundaries of basins are random walks Models
Ly D -:_3. '::":; it \;E :(:' «
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. o i Y
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i area a
>
P(\) =P(/)=1/2 "
» Functional form of all scaling laws exhibited but
exponents differ from real world !> 16 14l
Frame 61/74 Frame 62/74
F Do F Do
H Bi hi H Bi hi
Scheidegger’s model Networke I Scheidegger’s model Networke I
Increasing partion of N=64 9 9 P.rob for first return of a random walk in (1+1)
s s s s v < dimensions (from CSYS/MATH 300):
R4 >
* i i i i 3 Models P(n) ~ 1 n*3/2‘ Models

2y

and so P(¢) o« £73/2,
» Typical area for a walk of length nis o n®/2:

¢ a?/3,

» Findr=4/3, h=2/3,y=3/2,d =1.
» Noter=2—-hand~y=1/h.
» R, and R, have not been derived analytically.
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Optimal channel networks

Rodriguez-Iturbe, Rinaldo, et al. "%

» Landscapes h(X) evolve such that energy dissipation
€ is minimized, where

. / oF (flux) x (force) ~ 3" avh ~ 3o
i i

» Landscapes obtained numerically give exponents
near that of real networks.

» But: numerical method used matters.

» And: Maritan et al. find basic universality classes are
that of Scheidegger, self-similar, and a third kind of
random network €]

Nutshell

Branching networks Il Key Points:

» Horton’s laws and Tokunaga law all fit together.

» nb. for 2-d networks, these laws are ‘planform’ laws
and ignore slope.

» Abundant scaling relations can be derived.

» Can take R,, Ry, and d as three independent
parameters necessary to describe all 2-d branching
networks.

» For scaling laws, only h=1InR,;/In R, and d are
needed.

» Laws can be extended nicely to laws of distributions.

» Numerous models of branching network evolution
exist: nothing rock solid yet.

Branching
Networks Il

Models
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Networks Il

Nutshell
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Theoretical networks

Summary of universality classes:

network h d
Non-convergent flow 1 1
Directed random 2/3 1
Undirected random 5/8 5/4
Self-similar 1/2 1
OCN's (1) 1/2 1
OCN's (I 2/3 1
OCN's (Il 3/5 1
Real rivers 0.5-0.7 1.0-1.2

h = ( « a" (Hack’s law).
d=(x Lﬁ’ (stream self-affinity).
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