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Can Horton and Tokunaga be happy?

Horton and Tokunaga seem different:

I In terms of network achitecture, Horton’s laws
appear to contain less detailed information than
Tokunaga’s law.

I Oddly, Horton’s laws have four parameters and
Tokunaga has two parameters.

I Rn, Ra, R`, and Rs versus T1 and RT . One simple
redundancy: R` = Rs.
Insert question 2, assignment 2 (�)

I To make a connection, clearest approach is to start
with Tokunaga’s law...

I Known result: Tokunaga → Horton [18, 19, 20, 9, 2]

http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/docs/2010-01UVM-303assignment2.pdf
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Let us make them happy

We need one more ingredient:

Space-fillingness

I A network is space-filling if the average distance
between adjacent streams is roughly constant.

I Reasonable for river and cardiovascular networks
I For river networks:

Drainage density ρdd = inverse of typical distance
between channels in a landscape.

I In terms of basin characteristics:

ρdd '
∑

stream segment lengths
basin area

=

∑Ω
ω=1 nωs̄ω

aΩ
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More with the happy-making thing

Start with Tokunaga’s law: Tk = T1Rk−1
T

I Start looking for Horton’s stream number law:
nω/nω+1 = Rn.

I Estimate nω, the number of streams of order ω in
terms of other nω′ , ω′ > ω.

I Observe that each stream of order ω terminates by
either:

ω=3

ω=4

ω=3

ω=3

ω=4

ω=4

1. Running into another stream of order ω
and generating a stream of order ω + 1...

I 2nω+1 streams of order ω do this

2. Running into and being absorbed by a
stream of higher order ω′ > ω...

I n′ωTω′−ω streams of order ω do this
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More with the happy-making thing

Putting things together:

I

nω = 2nω+1︸ ︷︷ ︸
generation

+
Ω∑

ω′=ω+1

Tω′−ωnω′︸ ︷︷ ︸
absorption

I Use Tokunaga’s law and manipulate expression to
create Rn’s.

I Insert question 3, assignment 2 (�)
I Solution:

Rn =
(2 + RT + T1)±

√
(2 + RT + T1)2 − 8RT

2

(The larger value is the one we want.)

http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/docs/2010-01UVM-303assignment2.pdf
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Finding other Horton ratios

Connect Tokunaga to Rs

I Now use uniform drainage density ρdd.
I Assume side streams are roughly separated by

distance 1/ρdd.
I For an order ω stream segment, expected length is

s̄ω ' ρ−1
dd

(
1 +

ω−1∑
k=1

Tk

)

I Substitute in Tokunaga’s law Tk = T1Rk−1
T :

s̄ω ' ρ−1
dd

(
1 + T1

ω−1∑
k=1

R k−1
T

)
∝ R ω

T
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Horton and Tokunaga are happy

Altogether then:

I

⇒ s̄ω/s̄ω−1 = RT ⇒ Rs = RT

I Recall R` = Rs so

R` = RT

I And from before:

Rn =
(2 + RT + T1) +

√
(2 + RT + T1)2 − 8RT

2
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Horton and Tokunaga are happy

Some observations:
I Rn and R` depend on T1 and RT .
I Seems that Ra must as well...
I Suggests Horton’s laws must contain some

redundancy
I We’ll in fact see that Ra = Rn.
I Also: Both Tokunaga’s law and Horton’s laws can be

generalized to relationships between non-trivial
statistical distributions. [3, 4]
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Horton and Tokunaga are happy

The other way round

I Note: We can invert the expresssions for Rn and R`

to find Tokunaga’s parameters in terms of Horton’s
parameters.

I

RT = R`,

I

T1 = Rn − R` − 2 + 2R`/Rn.

I Suggests we should be able to argue that Horton’s
laws imply Tokunaga’s laws (if drainage density is
uniform)...
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Horton and Tokunaga are friends

From Horton to Tokunaga [2]

(�Rl)(a)
(b)
(c)

I Assume Horton’s laws
hold for number and
length

I Start with an order ω
stream

I Scale up by a factor of
R`, orders increment

I Maintain drainage
density by adding new
order 1 streams
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Horton and Tokunaga are friends

. . . and in detail:
I Must retain same drainage density.
I Add an extra (R` − 1) first order streams for each

original tributary.
I Since number of first order streams is now given by

Tk+1 we have:

Tk+1 = (R` − 1)

(
k∑

i=1

Ti + 1

)
.

I For large ω, Tokunaga’s law is the solution—let’s
check...
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Horton and Tokunaga are friends

Just checking:

I Substitute Tokunaga’s law Ti = T1R i−1
T = T1R i−1

`

into

Tk+1 = (R` − 1)

(
k∑

i=1

Ti + 1

)
I

Tk+1 = (R` − 1)

(
k∑

i=1

T1R i−1
` + 1

)

= (R` − 1)T1

(
R k

` − 1
R` − 1

+ 1
)

' (R` − 1)T1
R k

`

R` − 1
= T1Rk

` ... yep.
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Horton’s laws of area and number:
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I In right plots, stream number graph has been flipped
vertically.

I Highly suggestive that Rn ≡ Ra...
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Measuring Horton ratios is tricky:

I How robust are our estimates of ratios?
I Rule of thumb: discard data for two smallest and two

largest orders.
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Mississippi:

ω range Rn Ra R` Rs Ra/Rn
[2, 3] 5.27 5.26 2.48 2.30 1.00
[2, 5] 4.86 4.96 2.42 2.31 1.02
[2, 7] 4.77 4.88 2.40 2.31 1.02
[3, 4] 4.72 4.91 2.41 2.34 1.04
[3, 6] 4.70 4.83 2.40 2.35 1.03
[3, 8] 4.60 4.79 2.38 2.34 1.04
[4, 6] 4.69 4.81 2.40 2.36 1.02
[4, 8] 4.57 4.77 2.38 2.34 1.05
[5, 7] 4.68 4.83 2.36 2.29 1.03
[6, 7] 4.63 4.76 2.30 2.16 1.03
[7, 8] 4.16 4.67 2.41 2.56 1.12

mean µ 4.69 4.85 2.40 2.33 1.04
std dev σ 0.21 0.13 0.04 0.07 0.03

σ/µ 0.045 0.027 0.015 0.031 0.024
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Amazon:

ω range Rn Ra R` Rs Ra/Rn
[2, 3] 4.78 4.71 2.47 2.08 0.99
[2, 5] 4.55 4.58 2.32 2.12 1.01
[2, 7] 4.42 4.53 2.24 2.10 1.02
[3, 5] 4.45 4.52 2.26 2.14 1.01
[3, 7] 4.35 4.49 2.20 2.10 1.03
[4, 6] 4.38 4.54 2.22 2.18 1.03
[5, 6] 4.38 4.62 2.22 2.21 1.06
[6, 7] 4.08 4.27 2.05 1.83 1.05

mean µ 4.42 4.53 2.25 2.10 1.02
std dev σ 0.17 0.10 0.10 0.09 0.02

σ/µ 0.038 0.023 0.045 0.042 0.019



Branching
Networks II

Horton ⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 18/74

Reducing Horton’s laws:

Rough first effort to show Rn ≡ Ra:

I aΩ ∝ sum of all stream lengths in a order Ω basin
(assuming uniform drainage density)

I So:

aΩ '
Ω∑

ω=1

nωs̄ω/ρdd

∝
Ω∑

ω=1

R Ω−ω
n ·

nΩ︷︸︸︷
1︸ ︷︷ ︸

nω

s̄1 · R ω−1
s︸ ︷︷ ︸

s̄ω

=
R Ω

n
Rs

s̄1

Ω∑
ω=1

(
Rs

Rn

)ω
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Reducing Horton’s laws:

Continued ...
I

aΩ ∝
RΩ

n
Rs

s̄1

Ω∑
ω=1

(
Rs

Rn

)ω

=
RΩ

n
Rs

s̄1
Rs

Rn

1− (Rs/Rn)
Ω

1− (Rs/Rn)

∼ RΩ−1
n s̄1

1
1− (Rs/Rn)

as Ω↗

I So, aΩ is growing like R Ω
n and therefore:

Rn ≡ Ra
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Reducing Horton’s laws:

Not quite:

I ... But this only a rough argument as Horton’s laws
do not imply a strict hierarchy

I Need to account for sidebranching.
I Insert question 4, assignment 2 (�)

http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/docs/2010-01UVM-303assignment2.pdf
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Equipartitioning:

Intriguing division of area:

I Observe: Combined area of basins of order ω
independent of ω.

I Not obvious: basins of low orders not necessarily
contained in basis on higher orders.

I Story:
Rn ≡ Ra ⇒ nωāω = const

I Reason:
nω ∝ (Rn)

−ω

āω ∝ (Ra)
ω ∝ n−1

ω
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Equipartitioning:
Some examples:
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Scaling laws

The story so far:

I Natural branching networks are hierarchical,
self-similar structures

I Hierarchy is mixed
I Tokunaga’s law describes detailed architecture:

Tk = T1Rk−1
T .

I We have connected Tokunaga’s and Horton’s laws
I Only two Horton laws are independent (Rn = Ra)
I Only two parameters are independent:

(T1, RT )⇔ (Rn, Rs)
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Scaling laws

A little further...
I Ignore stream ordering for the moment
I Pick a random location on a branching network p.
I Each point p is associated with a basin and a longest

stream length
I Q: What is probability that the p’s drainage basin has

area a? P(a) ∝ a−τ for large a
I Q: What is probability that the longest stream from p

has length `? P(`) ∝ `−γ for large `

I Roughly observed: 1.3 . τ . 1.5 and 1.7 . γ . 2.0
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Scaling laws

Probability distributions with power-law decays

I We see them everywhere:
I Earthquake magnitudes (Gutenberg-Richter law)
I City sizes (Zipf’s law)
I Word frequency (Zipf’s law) [21]

I Wealth (maybe not—at least heavy tailed)
I Statistical mechanics (phase transitions) [5]

I A big part of the story of complex systems
I Arise from mechanisms: growth, randomness,

optimization, ...
I Our task is always to illuminate the mechanism...
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Scaling laws

Connecting exponents

I We have the detailed picture of branching networks
(Tokunaga and Horton)

I Plan: Derive P(a) ∝ a−τ and P(`) ∝ `−γ starting with
Tokunaga/Horton story [17, 1, 2]

I Let’s work on P(`)...
I Our first fudge: assume Horton’s laws hold

throughout a basin of order Ω.
I (We know they deviate from strict laws for low ω and

high ω but not too much.)
I Next: place stick between teeth. Bite stick. Proceed.
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Scaling laws

Finding γ:

I Often useful to work with cumulative distributions,
especially when dealing with power-law distributions.

I The complementary cumulative distribution turns out
to be most useful:

P>(`∗) = P(` > `∗) =

∫ `max

`=`∗

P(`)d`

I

P>(`∗) = 1− P(` < `∗)

I Also known as the exceedance probability.
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Scaling laws
Finding γ:

I The connection between P(x) and P>(x) when P(x)
has a power law tail is simple:

I Given P(`) ∼ `−γ large ` then for large enough `∗

P>(`∗) =

∫ `max

`=`∗

P(`) d`

∼
∫ `max

`=`∗

`−γd`

=
`−γ+1

−γ + 1

∣∣∣∣`max

`=`∗

∝ `−γ+1
∗ for `max � `∗
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Scaling laws

Finding γ:

I Aim: determine probability of randomly choosing a
point on a network with main stream length > `∗

I Assume some spatial sampling resolution ∆

I Landscape is broken up into grid of ∆×∆ sites
I Approximate P>(`∗) as

P>(`∗) =
N>(`∗;∆)

N>(0;∆)
.

where N>(`∗;∆) is the number of sites with main
stream length > `∗.

I Use Horton’s law of stream segments:
sω/sω−1 = Rs...



Branching
Networks II

Horton ⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 30/74

Scaling laws

Finding γ:

I Set `∗ = `ω for some 1 � ω � Ω.
I

P>(`ω) =
N>(`ω;∆)

N>(0;∆)
'
∑Ω

ω′=ω+1 nω′sω′/∆∑Ω
ω′=1 nω′sω′/∆

I ∆’s cancel
I Denominator is aΩρdd, a constant.
I So... using Horton’s laws...

P>(`ω) ∝
Ω∑

ω′=ω+1

nω′sω′ '
Ω∑

ω′=ω+1

(1·R Ω−ω′
n )(s̄1·R ω′−1

s )
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Scaling laws

Finding γ:

I We are here:

P>(`ω) ∝
Ω∑

ω′=ω+1

(1 · R Ω−ω′
n )(s̄1 · R ω′−1

s )

I Cleaning up irrelevant constants:

P>(`ω) ∝
Ω∑

ω′=ω+1

(
Rs

Rn

)ω′

I Change summation order by substituting
ω′′ = Ω− ω′.

I Sum is now from ω′′ = 0 to ω′′ = Ω− ω − 1
(equivalent to ω′ = Ω down to ω′ = ω + 1)
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Scaling laws

Finding γ:

I

P>(`ω) ∝
Ω−ω−1∑
ω′′=0

(
Rs

Rn

)Ω−ω′′

∝
Ω−ω−1∑
ω′′=0

(
Rn

Rs

)ω′′

I Since Rn > Rs and 1 � ω � Ω,

P>(`ω) ∝
(

Rn

Rs

)Ω−ω

∝
(

Rn

Rs

)−ω

again using
∑n−1

i=0 ai = (a n − 1)/(a− 1)
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Scaling laws

Finding γ:

I Nearly there:

P>(`ω) ∝
(

Rn

Rs

)−ω

= e−ω ln(Rn/Rs)

I Need to express right hand side in terms of `ω.
I Recall that `ω ' ¯̀1R ω−1

` .
I

`ω ∝ R ω
` = R ω

s = e ω ln Rs
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Scaling laws
Finding γ:

I Therefore:

P>(`ω) ∝ e−ω ln(Rn/Rs) =
(

e ω ln Rs
)− ln(Rn/Rs)/ ln(Rs)

I

∝ `ω
− ln(Rn/Rs)/ ln Rs

I

= `−(ln Rn−ln Rs)/ ln Rs
ω

I

= `− ln Rn/ ln Rs+1
ω

I

= `−γ+1
ω



Branching
Networks II

Horton ⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 35/74

Scaling laws

Finding γ:

I And so we have:

γ = ln Rn/ ln Rs

I Proceeding in a similar fashion, we can show

τ = 2− ln Rs/ ln Rn = 2− 1/γ

Insert question 5, assignment 2 (�)
I Such connections between exponents are called

scaling relations
I Let’s connect to one last relationship: Hack’s law

http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/docs/2010-01UVM-303assignment2.pdf
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Scaling laws

Hack’s law: [6]

I

` ∝ ah

I Typically observed that 0.5 . h . 0.7.
I Use Horton laws to connect h to Horton ratios:

`ω ∝ R ω
s and aω ∝ R ω

n

I Observe:

`ω ∝ e ω ln Rs ∝
(

e ω ln Rn
)ln Rs/ ln Rn

∝ (R ω
n )ln Rs/ ln Rn ∝ a ln Rs/ ln Rn

ω ⇒ h = ln Rs/ ln Rn
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Connecting exponents
Only 3 parameters are independent:
e.g., take d , Rn, and Rs

relation: scaling relation/parameter: [2]

` ∼ Ld d
Tk = T1(RT )k−1 T1 = Rn − Rs − 2 + 2Rs/Rn

RT = Rs
nω/nω+1 = Rn Rn
āω+1/āω = Ra Ra = Rn
¯̀
ω+1/¯̀

ω = R` R` = Rs
` ∼ ah h = log Rs/ log Rn
a ∼ LD D = d/h

L⊥ ∼ LH H = d/h − 1
P(a) ∼ a−τ τ = 2− h
P(`) ∼ `−γ γ = 1/h

Λ ∼ aβ β = 1 + h
λ ∼ Lϕ ϕ = d



Branching
Networks II

Horton ⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 38/74

Equipartitioning reexamined:
Recall this story:
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Equipartitioning

I What about
P(a) ∼ a−τ ?

I Since τ > 1, suggests no equipartitioning:

aP(a) ∼ a−τ+1 6= const

I P(a) overcounts basins within basins...
I while stream ordering separates basins...
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Fluctuations

Moving beyond the mean:

I Both Horton’s laws and Tokunaga’s law relate
average properties, e.g.,

s̄ω/s̄ω−1 = Rs

I Natural generalization to consideration relationships
between probability distributions

I Yields rich and full description of branching network
structure

I See into the heart of randomness...
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A toy model—Scheidegger’s model

Directed random networks [11, 12]

I

I

P(↘) = P(↙) = 1/2

I Flow is directed downwards
I Useful and interesting test case—more later...
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Generalizing Horton’s laws

I ¯̀
ω ∝ (R`)

ω ⇒ N(`|ω) = (RnR`)
−ωF`(`/Rω

` )

I āω ∝ (Ra)
ω ⇒ N(a|ω) = (R2

n)−ωFa(a/Rω
n )
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I Scaling collapse works well for intermediate orders
I All moments grow exponentially with order
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Generalizing Horton’s laws

I How well does overall basin fit internal pattern?
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I Actual length = 4920 km
(at 1 km res)

I Predicted Mean length
= 11100 km

I Predicted Std dev =
5600 km

I Actual length/Mean
length = 44 %

I Okay.
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Generalizing Horton’s laws

Comparison of predicted versus measured main stream
lengths for large scale river networks (in 103 km):

basin: `Ω
¯̀
Ω σ` `/¯̀

Ω σ`/¯̀
Ω

Mississippi 4.92 11.10 5.60 0.44 0.51
Amazon 5.75 9.18 6.85 0.63 0.75
Nile 6.49 2.66 2.20 2.44 0.83
Congo 5.07 10.13 5.75 0.50 0.57
Kansas 1.07 2.37 1.74 0.45 0.73

a āΩ σa a/āΩ σa/āΩ

Mississippi 2.74 7.55 5.58 0.36 0.74
Amazon 5.40 9.07 8.04 0.60 0.89
Nile 3.08 0.96 0.79 3.19 0.82
Congo 3.70 10.09 8.28 0.37 0.82
Kansas 0.14 0.49 0.42 0.28 0.86
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Combining stream segments distributions:

I Stream segments
sum to give main
stream lengths

I

`ω =

µ=ω∑
µ=1

sµ

I P(`ω) is a
convolution of
distributions for
the sω
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Generalizing Horton’s laws

I Sum of variables `ω =
∑µ=ω

µ=1 sµ leads to convolution
of distributions:

N(`|ω) = N(s|1) ∗ N(s|2) ∗ · · · ∗ N(s|ω)
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N(s|ω) =
1

Rω
n Rω

`

F (s/Rω
` )

F (x) = e−x/ξ

Mississippi: ξ ' 900 m.
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Generalizing Horton’s laws

I Next level up: Main stream length distributions must
combine to give overall distribution for stream length
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I P(`) ∼ `−γ

I Another round of
convolutions [3]

I Interesting...
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Generalizing Horton’s laws

Number and area
distributions for the
Scheidegger model
P(n1,6) versus P(a 6).
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Generalizing Tokunaga’s law

Scheidegger:
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I Observe exponential distributions for Tµ,ν

I Scaling collapse works using Rs
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Generalizing Tokunaga’s law

Mississippi:
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I Same data collapse for Mississippi...
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Generalizing Tokunaga’s law

So
P(Tµ,ν) = (Rs)

µ−ν−1Pt

[
Tµ,ν/(Rs)

µ−ν−1
]

where
Pt(z) =

1
ξt

e−z/ξt .

P(sµ)⇔ P(Tµ,ν)

I Exponentials arise from randomness.
I Look at joint probability P(sµ, Tµ,ν).
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Generalizing Tokunaga’s law

Network architecture:

I Inter-tributary
lengths
exponentially
distributed

I Leads to random
spatial distribution
of stream
segments

��� 1�� 2
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Generalizing Tokunaga’s law

I Follow streams segments down stream from their
beginning

I Probability (or rate) of an order µ stream segment
terminating is constant:

p̃µ ' 1/(Rs)
µ−1ξs

I Probability decays exponentially with stream order
I Inter-tributary lengths exponentially distributed
I ⇒ random spatial distribution of stream segments
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Generalizing Tokunaga’s law

I Joint distribution for generalized version of
Tokunaga’s law:

P(sµ, Tµ,ν) = p̃µ

(
sµ − 1
Tµ,ν

)
pTµ,ν

ν (1− pν − p̃µ)sµ−Tµ,ν−1

where
I pν = probability of absorbing an order ν side stream
I p̃µ = probability of an order µ stream terminating

I Approximation: depends on distance units of sµ

I In each unit of distance along stream, there is one
chance of a side stream entering or the stream
terminating.
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Generalizing Tokunaga’s law

I Now deal with thing:

P(sµ, Tµ,ν) = p̃µ

(
sµ − 1
Tµ,ν

)
pTµ,ν

ν (1− pν − p̃µ)sµ−Tµ,ν−1

I Set (x , y) = (sµ, Tµ,ν) and q = 1− pν − p̃µ,
approximate liberally.

I Obtain
P(x , y) = Nx−1/2 [F (y/x)]x

where

F (v) =

(
1− v

q

)−(1−v)(v
p

)−v

.
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Scheidegger:
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Scheidegger:
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Scheidegger:
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Generalizing Tokunaga’s law

I Checking form of P(sµ, Tµ,ν) works:

Mississippi:
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Models

Random subnetworks on a Bethe lattice [13]

I Dominant theoretical concept
for several decades.

I Bethe lattices are fun and
tractable.

I Led to idea of “Statistical
inevitability” of river network
statistics [7]

I But Bethe lattices
unconnected with surfaces.

I In fact, Bethe lattices '
infinite dimensional spaces
(oops).

I So let’s move on...



Branching
Networks II

Horton ⇔
Tokunaga

Reducing Horton

Scaling relations

Fluctuations

Models

Nutshell

References

Frame 61/74

Scheidegger’s model

Directed random networks [11, 12]

I

I

P(↘) = P(↙) = 1/2

I Functional form of all scaling laws exhibited but
exponents differ from real world [15, 16, 14]
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A toy model—Scheidegger’s model

Random walk basins:
I Boundaries of basins are random walks

n

x

  area a
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Scheidegger’s model

n

2

6 6

8 8 8 8

9 9Increasing partition of N=64

x
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Scheidegger’s model

Prob for first return of a random walk in (1+1)
dimensions (from CSYS/MATH 300):

I

P(n) ∼ 1
2
√

π
n−3/2.

and so P(`) ∝ `−3/2.
I Typical area for a walk of length n is ∝ n3/2:

` ∝ a 2/3.

I Find τ = 4/3, h = 2/3, γ = 3/2, d = 1.
I Note τ = 2− h and γ = 1/h.
I Rn and R` have not been derived analytically.
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Optimal channel networks

Rodríguez-Iturbe, Rinaldo, et al. [10]

I Landscapes h(~x) evolve such that energy dissipation
ε̇ is minimized, where

ε̇ ∝
∫

d~r (flux)× (force) ∼
∑

i

ai∇hi ∼
∑

i

aγ
i

I Landscapes obtained numerically give exponents
near that of real networks.

I But: numerical method used matters.
I And: Maritan et al. find basic universality classes are

that of Scheidegger, self-similar, and a third kind of
random network [8]
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Theoretical networks

Summary of universality classes:

network h d
Non-convergent flow 1 1

Directed random 2/3 1
Undirected random 5/8 5/4

Self-similar 1/2 1
OCN’s (I) 1/2 1
OCN’s (II) 2/3 1
OCN’s (III) 3/5 1
Real rivers 0.5–0.7 1.0–1.2

h ⇒ ` ∝ ah (Hack’s law).
d ⇒ ` ∝ Ld

‖ (stream self-affinity).
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Nutshell

Branching networks II Key Points:

I Horton’s laws and Tokunaga law all fit together.
I nb. for 2-d networks, these laws are ‘planform’ laws

and ignore slope.
I Abundant scaling relations can be derived.
I Can take Rn, R`, and d as three independent

parameters necessary to describe all 2-d branching
networks.

I For scaling laws, only h = ln R`/ ln Rn and d are
needed.

I Laws can be extended nicely to laws of distributions.
I Numerous models of branching network evolution

exist: nothing rock solid yet.
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