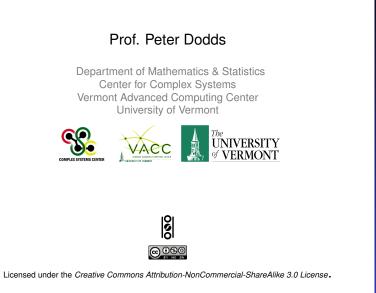
Branching Networks I Complex Networks, CSYS/MATH 303, Spring, 2010



Introduction

Branching networks are useful things:

- Fundamental to material supply and collection
- Supply: From one source to many sinks in 2- or 3-d.
- Collection: From many sources to one sink in 2- or 3-d.
- Typically observe hierarchical, recursive self-similar structure

Examples:

- River networks (our focus)
- Cardiovascular networks
- Plants
- Evolutionary trees
- Organizations (only in theory...)

Outline

Branching

Networks I

ntroduction

Definitions

Frame 1/38

5 PPC

Branching

Networks I

Introduction

Definitions

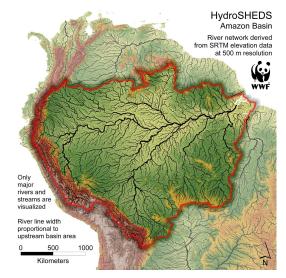
References

Frame 3/38

B 990

Introduction
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References

Branching networks are everywhere...



http://hydrosheds.cr.usgs.gov/ (田)

ntroduction

Branching

Networks

Frame 2/38 **日** りへで

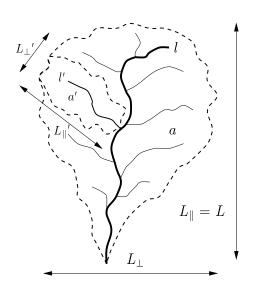
Branching

Networks I Introduction Definitions

Branching networks are everywhere...

http://en.wikipedia.org/wiki/Image:Applebox.JPG (⊞)

Basic basin quantities: *a*, *I*, L_{\parallel} , L_{\perp} :



a = drainage
basin area
ℓ = length of
longest (main)
stream (which
may be fractal)
$L = L_{\parallel} =$
longitudinal length
of basin
$I = I_{\perp} = $ width of

 $L = L_{\perp} =$ width of basin

Geomorphological networks

Definitions

Branching

Networks I

Introduction

Definitions

Frame 5/38

Branching

Networks I

ntroduction

Definitions

Frame 7/38

P

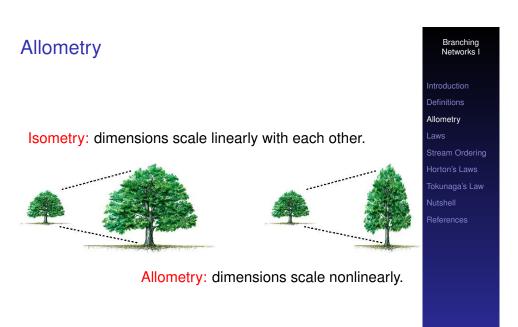
- Drainage basin for a point p is the complete region of land from which overland flow drains through p.
- Definition most sensible for a point in a stream.
- Recursive structure: Basins contain basins and so on.
- In principle, a drainage basin is defined at every point on a landscape.
- On flat hillslopes, drainage basins are effectively linear.
- We treat subsurface and surface flow as following the gradient of the surface.
- Okay for large-scale networks...

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

Branching

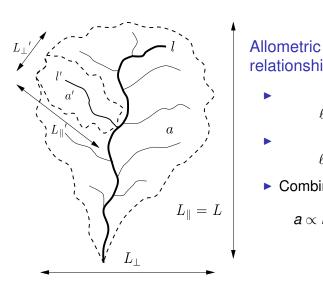
Networks

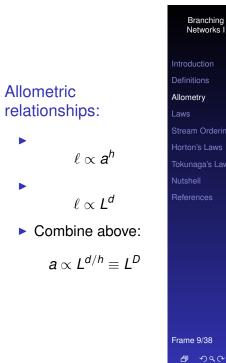
Frame 6/38 日 のへへ



Frame 8/38

Basin allometry





'Laws'

► Hack's law (1957)^[2]:

$\ell \propto a^h$

- reportedly 0.5 < h < 0.7
- Scaling of main stream length with basin size:

 $\ell \propto \textit{L}^{\textit{d}}_{\parallel}$

- reportedly 1.0 < d < 1.1
- ► Basin allometry:

 $L_{\parallel} \propto a^{h/d} \equiv a^{1/D}$

 $D < 2 \rightarrow$ basins elongate.

Frame 10/38 न १२०९ वि

Branching

Networks I

ntroduction

Allometry

There are a few more 'laws':^[1]

Relation:	Name or description:	Introduction
		Definitions
$T_k = T_1 (R_T)^k$	Tokunaga's law	Allometry
$\ell \sim \dot{L}^d$	self-affinity of single channels	Laws
$n_{\omega}/n_{\omega+1}=R_n$	Horton's law of stream numbers	Stream Orderi Horton's Laws
$ar{\ell}_{\omega+1}/ar{\ell}_{\omega}=R_\ell$	Horton's law of main stream lengths	Tokunaga's La
$\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a$	Horton's law of basin areas	Nutshell
$ar{s}_{\omega+1}/ar{s}_{\omega}=R_{s}$	Horton's law of stream segment lengths	References
$L_\perp \sim L^H$	scaling of basin widths	
$P(a) \sim a^{- au}$	probability of basin areas	
${m P}(\ell) \sim \ell^{-\gamma}$	probability of stream lengths	
$\ell \sim a^h$	Hack's law	
$a\sim L^D$	scaling of basin areas	
$\Lambda \sim a^eta$	Langbein's law	
$\lambda \sim L^{arphi}$	variation of Langbein's law	
		Frame 11/38

Reported parameter values:^[1]

Parameter:	Real networks:
R _n	3.0–5.0
R _a	3.0-6.0
$R_\ell = R_T$	1.5–3.0
<i>T</i> ₁	1.0–1.5
d	1.1 ± 0.01
D	$\textbf{1.8} \pm \textbf{0.1}$
h	0.50-0.70
au	1.43 ± 0.05
γ	1.8 ± 0.1
H	0.75–0.80
β	0.50-0.70
φ	1.05 ± 0.05

ntroduction Definitions Laws

Branching Networks I

Frame 12/38

Branching Networks I

Kind of a mess...

Order of business:

- 1. Find out how these relationships are connected.
- 2. Determine most fundamental description.
- 3. Explain origins of these parameter values

For (3): Many attempts: not yet sorted out...

Stream Ordering:

Some definitions:

- A channel head is a point in landscape where flow becomes focused enough to form a stream.
- A source stream is defined as the stream that reaches from a channel head to a junction with another stream.
- Roughly analogous to capillary vessels.
- Use symbol $\omega = 1, 2, 3, \dots$ for stream order.

Stream Ordering:

Branching

Networks I

ntroduction

Definitions

Frame 13/38

B 990

Branching

Networks I

ntroduction

Definitions

Allometry

Stream Ordering

Frame 15/38

P

Laws

Method for describing network architecture:

- Introduced by Horton (1945)^[3]
- Modified by Strahler (1957)^[6]
- Term: Horton-Strahler Stream Ordering^[4]
- Can be seen as iterative trimming of a network.

- 1. Label all source streams as order $\omega = 1$ and remove.
- 2. Label all new source streams as order $\omega = 2$ and remove.
- 3. Repeat until one stream is left (order = Ω)
- 4. Basin is said to be of the order of the last stream removed.
- 5. Example above is a basin of order $\Omega = 3$.

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Branching

Networks

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell Beferences

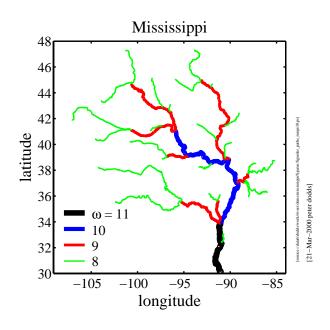
Branching

Networks

Frame 16/38

ମ୍ବ ୬୯୯

Stream Ordering—A large example:



Stream Ordering:

One problem:

- Resolution of data messes with ordering
- Micro-description changes (e.g., order of a basin may increase)
- ... but relationships based on ordering appear to be robust to resolution changes.

Stream Ordering:

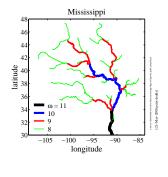
Another way to define ordering:

- As before, label all source streams as order $\omega = 1$.
- Follow all labelled streams downstream
- Whenever two streams of the same order (ω) meet, the resulting stream has order incremented by 1 (ω + 1).
- Simple rule:

Stream Ordering:

$$\omega_3 = \max(\omega_1, \omega_2) + \delta_{\omega_1, \omega_2}$$

where δ is the Kronecker delta.



Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

- Utility:
 - Stream ordering helpfully discretizes a network.
 - Goal: understand network architecture

Branching

Networks I

ntroduction

Stream Ordering

Frame 17/38

Branching

Networks I

ntroduction

Definitions

Allometry

Stream Ordering

Definitions

Branching

Networks

ntroduction

Stream Ordering

Frame 18/38

日 りへや

Definitions

Stream Ordering:

Resultant definitions:

- A basin of order Ω has n_ω streams (or sub-basins) of order ω.
 - $n_{\omega} > n_{\omega+1}$
- An order ω basin has area a_{ω} .
- An order ω basin has a main stream length ℓ_{ω} .
- An order ω basin has a stream segment length s_{ω}
 - 1. an order ω stream segment is only that part of the stream which is actually of order ω
 - 2. an order ω stream segment runs from the basin outlet up to the junction of two order $\omega 1$ streams

Branching Networks I
Introduction
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References

Frame 21/38

B 990

Horton's laws Self-similarity of river networks

 First quantified by Horton (1945)^[3], expanded by Schumm (1956)^[5]

Three laws:

Horton's law of stream numbers:

 $|n_{\omega}/n_{\omega+1}=R_n>1$

Horton's law of stream lengths:

 $\boxed{\bar{\ell}_{\omega+1}/\bar{\ell}_{\omega}=\textit{\textbf{R}}_{\ell}>1}$

Horton's law of basin areas:

 $\bar{a}_{\omega+1}/\bar{a}_{\omega}=R_a>1$

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Branching

Networks

Frame 22/38 日 のへへ

Branching Networks I
Introduction
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References

Horton's laws Horton's Ratios:

So... Horton's laws are defined by three ratios:

 R_n, R_ℓ , and R_a .

Horton's laws describe exponential decay or growth:

$$n_{\omega} = n_{\omega-1}/R_n$$

= $n_{\omega-2}/R_n^2$
:
= $n_1/R_n^{\omega-1}$
= $n_1 e^{-(\omega-1) \ln R_n}$

Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Horton's laws Similar story for area and length:

- $ar{a}_\omega = ar{a}_1 e^{(\omega-1) \ln R_a}$
 - $ar{\ell}_\omega = ar{\ell}_1 \, e^{(\omega-1) \ln R_\ell}$
- As stream order increases, number drops and area and length increase.

Frame 24/38

Horton's laws

A few more things:

- Horton's laws are laws of averages.
- Averaging for number is across basins.
- Averaging for stream lengths and areas is within basins.
- Horton's ratios go a long way to defining a branching network...
- But we need one other piece of information...

Horton's laws

A bonus law:

Horton's law of stream segment lengths:

 $ar{s}_{\omega+1}/ar{s}_{\omega}=R_{s}>1$

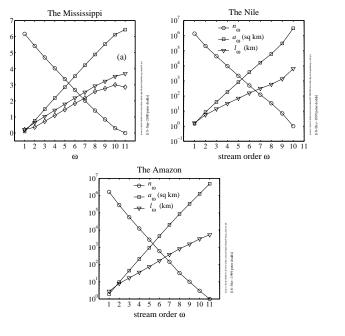
Can show that R_s = R_ℓ. Insert question 2, assignment 2 (⊞) Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law

Branching

Networks

Frame 26/38 日 つくへ

Horton's laws in the real world:



Frame 27/38

D 200

Horton's laws-at-large

Blood networks:

- Horton's laws hold for sections of cardiovascular networks
- Measuring such networks is tricky and messy...
- Vessel diameters obey an analogous Horton's law.

Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

Frame 28/38

Horton's laws

Observations:

- Horton's ratios vary:
 - $\begin{array}{ccc} R_n & 3.0-5.0 \\ R_a & 3.0-6.0 \\ R_\ell & 1.5-3.0 \end{array}$
- No accepted explanation for these values.
- Horton's laws tell us how quantities vary from level to level ...
- ... but they don't explain how networks are structured.

Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell References

Tokunaga's law

Delving deeper into network architecture:

- Tokunaga (1968) identified a clearer picture of network structure ^[7, 8, 9]
- ► As per Horton-Strahler, use stream ordering.
- Focus: describe how streams of different orders connect to each other.
- Tokunaga's law is also a law of averages.

Frame 30/38 日 つへへ

Branching

Networks

ntroduction

Tokunaga's Law

Definitions

Branching Networks I Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

Network Architecture

Definition:

- *T*_{μ,ν} = the average number of side streams of order
 ν that enter as tributaries to streams of order μ
- ▶ *µ*, *ν* = 1, 2, 3, ...
- $\blacktriangleright \ \mu \geq \nu + \mathbf{1}$
- ► Recall each stream segment of order µ is 'generated' by two streams of order µ - 1
- These generating streams are not considered side streams.

Frame 31/38

B 990

Frame 29/38

B 990

Network Architecture Tokunaga's law

Property 1: Scale independence—depends only on difference between orders:

 $T_{\mu,
u} = T_{\muu}$

 Property 2: Number of side streams grows exponentially with difference in orders:

 $T_{\mu,\nu} = T_1 (R_T)^{\mu-\nu-1}$

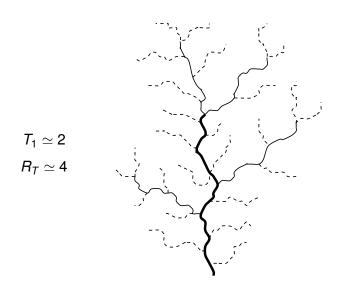
We usually write Tokunaga's law as:

$$\boxed{T_k = T_1 (R_T)^{k-1}} \text{ where } R_T \simeq 2$$

Frame 32/38

🗗 ৩৭৫

Tokunaga's law—an example:



Nutshell:

Branching networks I:

- Show remarkable self-similarity over many scales.
- There are many interrelated scaling laws.
- Horton-Strahler Stream ordering gives one useful way of getting at the architecture of branching networks.
- Horton's laws reveal self-similarity.
- Horton's laws can be misinterpreted as suggesting a pure hierarchy.
- Tokunaga's laws neatly describe network architecture.
- Branching networks exhibit a mixed hierarchical structure.
- Horton and Tokunaga can be connected analytically (next up).

Introduction
Definitions
Allometry
Laws
Stream Ordering
Horton's Laws
Tokunaga's Law
Nutshell
References

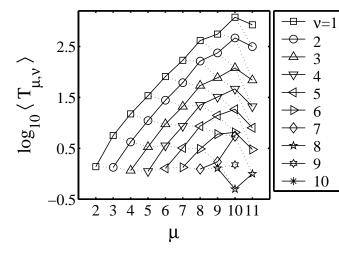
Frame 35/38

ð

Branching

The Mississippi

A Tokunaga graph:



Branching Networks I ntroduction

Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

Frame 34/38 日 のくで

> Branching Networks

References I

[1] P. S. Dodds and D. H. Rothman. Unified view of scaling laws for river networks. Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)

[2] J. T. Hack.

Studies of longitudinal stream profiles in Virginia and Maryland.

United States Geological Survey Professional Paper, 294-B:45–97, 1957.

[3] R. E. Horton.

Erosional development of streams and their drainage basins; hydrophysical approach to quatitative morphology.

Bulletin of the Geological Society of America, 56(3):275–370, 1945.

Introduction Definitions Allometry Laws Stream Ordering Horton's Laws Tokunaga's Law Nutshell

References

References II

[4] I. Rodríguez-Iturbe and A. Rinaldo.
 Fractal River Basins: Chance and Self-Organization.
 Cambridge University Press, Cambrigde, UK, 1997.

[5] S. A. Schumm.

Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey.

Bulletin of the Geological Society of America, 67:597–646, May 1956.

[6] A. N. Strahler.

Hypsometric (area altitude) analysis of erosional topography.

Bulletin of the Geological Society of America, 63:1117–1142, 1952.

Introduction Definitions Allometry Laws Stream Orderin: Horton's Laws Tokunaga's Law Nutshell References

Frame 37/38

日 りへで

Branching

Networks I

References III

[7] E. Tokunaga.

The composition of drainage network in Toyohira River Basin and the valuation of Horton's first law. *Geophysical Bulletin of Hokkaido University*, 15:1–19, 1966.

[8] E. Tokunaga.

Consideration on the composition of drainage networks and their evolution.

Geographical Reports of Tokyo Metropolitan University, 13:G1–27, 1978.

[9] E. Tokunaga.

Ordering of divide segments and law of divide segment numbers.

Transactions of the Japanese Geomorphological Union, 5(2):71–77, 1984.

Introduction Definitions Allometry Laws Stream Orderin Horton's Laws Tokunaga's Law Nutshell

References

Branching

Networks I

Frame 38/38 日 のへへ