Complex Networks, CSYS/MATH 303—Assignment 8 University of Vermont, Spring 2010

Dispersed: Thursday, April 15, 2010.
Due: By start of lecture, 10:00 am, Thursday, April 29, 2010.
Some useful reminders:
Instructor: Peter Dodds
Office: 203 Lord House, 16 Colchester Avenue (TR)
E-mail: peter.dodds@uvm.edu
Office hours: 1:00 pm to $2: 30 \mathrm{pm}$, Wednesday @ Farrell, and by appointment
Course website: http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/
All parts are worth 3 points unless marked otherwise. Please show all your working clearly and list the names of others with whom you collaborated.

Graduate students are requested to use ${ }^{A} T E X$ (or related variant).

1. (9 pts) Consider a family of undirected random networks with degree distribution

$$
P_{k}=c \delta_{k 1}+(1-c) \delta_{k 3}
$$

where $\delta_{i j}$ is the Kronecker delta function where c is a constant to be determined below. Also allow nodes to be correlated according to the following node-node mixing probability:

$$
E=\left[e_{i j}\right]=\left[\begin{array}{ll}
e_{00} & e_{02} \\
e_{20} & e_{22}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
(1+r) & (1-r) \\
(1-r) & (1+r)
\end{array}\right]
$$

where $e_{i j}$ is the probability that a randomly chosen edge connects a node of degree $i+1$ an a node of degree $j+1$, and only the non-zero values of E are shown.
(a) Determine c so that purely disassortative networks are achievable if r is tuned to -1.
(b) Analytically determine the size of the giant component as a function of r.
(c) Determine the size of the largest component containing only degree 3 nodes as a function of r.
Hint: allow degree 3 nodes to be always vulnerable ($\beta_{3 i}=1$ for $i=0,1,2$, and 3) and degree 1 nodes to be never vulnerable ($\beta_{1 i}=0$ for $i=0$ and 1).
2. Spreading on assortative networks: Starting from

$$
\begin{gathered}
\theta_{j, t+1}=G_{j}\left(\vec{\theta}_{t}\right)=\phi_{0}+\left(1-\phi_{0}\right) \times \\
\sum_{k=1}^{\infty} \frac{e_{j-1, k-1}}{R_{j-1}} \sum_{i=0}^{k-1}\binom{k-1}{i} \theta_{k, t}^{i}\left(1-\theta_{k, t}\right)^{k-1-i} \beta_{k i} .
\end{gathered}
$$

show the matrix for which we must have the largest eigenvalue greater than 1 for spreading to occur is

$$
\frac{\partial G_{j}(\overrightarrow{0})}{\partial \theta_{k, t}}=\frac{e_{j-1, k-1}}{R_{j-1}}(k-1)\left(\beta_{k 1}-\beta_{k 0}\right) .
$$

3. Show that for uncorrelated networks, i.e, when $e_{j k}=R_{j} R_{k}$, the above condition collapses to the standard condition

$$
\sum_{k=1}^{\infty}(k-1) \frac{k P_{k}}{\langle k\rangle}\left(\beta_{k 1}-\beta_{k 0}\right)>1 .
$$

