Complex Networks, CSYS/MATH 303—Assignment 2 University of Vermont, Spring 2010

Dispersed: Thursday, February 4, 2010.

Due: By start of lecture, 10:00 am, Thursday, February 9, 2010.

Some useful reminders: Instructor: Peter Dodds

Office: 203 Lord House, 16 Colchester Avenue (TR)

E-mail: peter.dodds@uvm.edu

Office hours: 1:00 pm to 2:30 pm, Tuesday @ Lord House, and by appointment

Course website: http://www.uvm.edu/~pdodds/teaching/courses/2010-01UVM-303/

All parts are worth 3 points unless marked otherwise. Please show all your working clearly and list the names of others with whom you collaborated.

Graduate students are requested to use LATEX (or related variant).

- 1. Tokunaga's law is statistical but we can consider a rigid version. Take $T_1=2$ and $R_T=2$ and draw an example network of order $\Omega=4$ with these parameters.
- 2. Tokunaga's law implies Horton's laws:

In lectures, we established the following:

$$n_{\omega} = \underbrace{2 \, n_{\omega+1}}_{\text{generation}} + \sum_{\omega'=\omega+1}^{\Omega} \underbrace{T_{\omega'-\omega} \, n_{\omega'}}_{\text{absorption}}$$

From here, derive Horton's law for stream numbers: $n_{\omega}/n_{\omega+1}=R_n$, where $R_n>1$ and is independent of ω , and find R_n in terms of Tokunaga's two parameters T_1 and R_T .

- 3. Show $R_s=R_\ell$. In other words show that Horton's law of stream segments matches that of main stream lengths.
- 4. Show $R_n=R_a$ by using Tokunaga's law to find the average area of an order ω basin, \bar{a}_{ω} , in terms of the average area of basins of order 1 to $\omega-1$. (In lectures, we use Horton's laws to roughly demonstrate this result.)

1

5. For river networks, basin areas are distributed according to $P(a) \propto a^{-\tau}$. Determine the exponent τ in terms of the Horton ratios R_n and R_s .