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Social Contagion

http://xkcd.com/610/ (�)
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Social Contagion

http://xkcd.com/610/
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Social Contagion

Examples abound
I fashion
I striking
I smoking (�) [6]

I residential
segregation [15]

I ipods
I obesity (�) [5]

I Harry Potter
I voting
I gossip

I Rubik’s cube
I religious beliefs
I leaving lectures

SIR and SIRS contagion possible

I Classes of behavior versus specific behavior: dieting
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Framingham heart study:

Evolving network stories:

I The spread of quitting smoking (�) [6]

I The spread of spreading (�) [5]
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Social Contagion

Two focuses for us
I Widespread media influence
I Word-of-mouth influence

http://content.nejm.org/cgi/content/short/358/21/2249
http://content.nejm.org/cgi/content/full/357/4/370
http://content.nejm.org/content/vol358/issue21/images/data/2249/DC1/NEJM_Christakis_2249a1.shtml
http://content.nejm.org/content/vol357/issue4/images/data/370/DC2/NEJM_Christakis_370v1.swf
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Social Contagion

We need to understand influence
I Who influences whom? Very hard to measure...
I What kinds of influence response functions are

there?
I Are some individuals super influencers?

Highly popularized by Gladwell [8] as ‘connectors’
I The infectious idea of opinion leaders (Katz and

Lazarsfeld) [12]
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The hypodermic model of influence
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The two step model of influence [12] Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

Frame 13/89

The general model of influence
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Social Contagion

Why do things spread?

I Because of system level properties?
I Or properties of special individuals?
I Is the match that lights the fire important?
I Yes. But only because we are narrative-making

machines...
I We like to think things happened for reasons...
I System/group properties harder to understand
I Always good to examine what is said before and

after the fact...
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The Mona Lisa

I “Becoming Mona Lisa: The Making of a Global
Icon”—David Sassoon

I Not the world’s greatest painting from the start...
I Escalation through theft, vandalism, parody, ...
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The completely unpredicted fall of Eastern
Europe

Timur Kuran: [13, 14] “Now Out of Never: The Element of
Surprise in the East European Revolution of 1989”
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The dismal predictive powers of editors...
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Social Contagion

Messing with social connections

I Ads based on message content
(e.g., Google and email)

I Buzz media
I Facebook’s advertising: Beacon (�)
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Getting others to do things for you

A very good book: ‘Influence’ by Robert Cialdini [7]

Six modes of influence

1. Reciprocation: The Old Give and Take... and Take
2. Commitment and Consistency: Hobgoblins of the

Mind
3. Social Proof: Truths Are Us
4. Liking: The Friendly Thief
5. Authority: Directed Deference
6. Scarcity: The Rule of the Few
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Examples

I Reciprocation: Free samples, Hare Krishnas
I Commitment and Consistency: Hazing
I Social Proof: Catherine Genovese, Jonestown
I Liking: Separation into groups is enough to cause

problems.
I Authority: Milgram’s obedience to authority

experiment.
I Scarcity: Prohibition.
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Getting others to do things for you

I Cialdini’s modes are heuristics that help up us get
through life.

I Useful but can be leveraged...

http://en.wikipedia.org/wiki/Beacon_(Facebook)
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Social Contagion

Other acts of influence
I Conspicuous Consumption (Veblen, 1912)
I Conspicuous Destruction (Potlatch)
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Social Contagion

Some important models

I Tipping models—Schelling (1971) [15, 16, 17]

I Simulation on checker boards
I Idea of thresholds
I Fun with Netlogo and Schelling’s model [20]...

I Threshold models—Granovetter (1978) [9]

I Herding models—Bikhchandani, Hirschleifer, Welch
(1992) [1, 2]

I Social learning theory, Informational cascades,...
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Social contagion models

Thresholds
I Basic idea: individuals adopt a behavior when a

certain fraction of others have adopted
I ‘Others’ may be everyone in a population, an

individual’s close friends, any reference group.
I Response can be probabilistic or deterministic.
I Individual thresholds can vary
I Assumption: order of others’ adoption does not

matter... (unrealistic).
I Assumption: level of influence per person is uniform

(unrealistic).
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Social Contagion

Some possible origins of thresholds:

I Desire to coordinate, to conform.
I Lack of information: impute the worth of a good or

behavior based on degree of adoption (social proof)
I Economics: Network effects or network externalities
I Externalities = Effects on others not directly involved

in a transaction
I Examples: telephones, fax machine, Facebook,

operating systems
I An individual’s utility increases with the adoption

level among peers and the population in general



Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

Frame 27/89

Social Contagion

Granovetter’s Threshold model—definitions
I φ∗ = threshold of an individual.
I f (φ∗) = distribution of thresholds in a population.
I F (φ∗) = cumulative distribution =

∫ φ∗
φ′
∗=0 f (φ′∗)dφ′∗

I φt = fraction of people ‘rioting’ at time step t .
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Threshold models
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I Example threshold influence response functions:
deterministic and stochastic

I φ = fraction of contacts ‘on’ (e.g., rioting)
I Two states: S and I.
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Threshold models

I At time t + 1, fraction rioting = fraction with φ∗ ≤ φt .
I

φt+1 =

∫ φt

0
f (φ∗)dφ∗ = F (φ∗)|φt

0 = F (φt)

I ⇒ Iterative maps of the unit interval [0, 1].
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Threshold models

Action based on perceived behavior of others.
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I Two states: S and I.
I φ = fraction of contacts ‘on’ (e.g., rioting)
I Discrete time update (strong assumption!)
I This is a Critical mass model
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Threshold models
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I Another example of critical mass model...
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Threshold models
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Threshold models

Implications for collective action theory:

1. Collective uniformity 6⇒ individual uniformity
2. Small individual changes ⇒ large global changes
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Threshold models

Chaotic behavior possible [11, 10]
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I Period doubling arises as map amplitude r is
increased.

I Synchronous update assumption is crucial
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Threshold model on a network

Many years after Granovetter and Soong’s work:

“A simple model of global cascades on random networks”
D. J. Watts. Proc. Natl. Acad. Sci., 2002 [19]

I Mean field model → network model
I Individuals now have a limited view of the world
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Threshold model on a network

I Interactions between individuals now represented by
a network

I Network is sparse
I Individual i has ki contacts
I Influence on each link is reciprocal and of unit weight
I Each individual i has a fixed threshold φi

I Individuals repeatedly poll contacts on network
I Synchronous, discrete time updating
I Individual i becomes active when

fraction of active contacts ai ≥ φiki

I Individuals remain active when switched (no
recovery = SI model)
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Threshold model on a network
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I All nodes have threshold φ = 0.2.
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Snowballing

The Cascade Condition:

If one individual is initially activated, what is the
probability that an activation will spread over a network?

What features of a network determine whether a cascade
will occur or not?
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Snowballing

First study random networks:

I Start with N nodes with a degree distribution pk

I Nodes are randomly connected (carefully so)
I Aim: Figure out when activation will propagate
I Determine a cascade condition
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Snowballing

Follow active links
I An active link is a link connected to an activated

node.
I If an infected link leads to at least 1 more infected

link, then activation spreads.
I We need to understand which nodes can be

activated when only one of their neigbors becomes
active.
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The most gullible

Vulnerables:
I We call individuals who can be activated by just one

contact being active vulnerables
I The vulnerability condition for node i :

1/ki ≥ φi

I Which means # contacts ki ≤ b1/φic
I For global cascades on random networks, must have

a global cluster of vulnerables [19]

I Cluster of vulnerables = critical mass
I Network story: 1 node → critical mass → everyone.
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Cascade condition

Back to following a link:

I Link from leads to a node with probability ∝ kPk .
I Follows from links being random + having k chances

to connect to a node with degree k .
I Normalization:

∞∑
k=0

kPk = 〈k〉 = z

I So
P(linked node has degree k) =

kPk

〈k〉



Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

Frame 44/89

Cascade condition

Next: Vulnerability of linked node

I Linked node is vulnerable with probability

βk =

∫ 1/k

φ′
∗=0

f (φ′∗)dφ′∗

I If linked node is vulnerable, it produces k − 1 new
outgoing active links

I If linked node is not vulnerable, it produces no active
links.
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Cascade condition

Putting things together:

I Expected number of active edges produced by an
active edge =

I
∞∑

k=1

(k − 1)βk
kPk

z︸ ︷︷ ︸
success

+ 0(1− βk )
kPk

z︸ ︷︷ ︸
failure

I

=
∞∑

k=1

(k − 1)kβkPk/z
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Cascade condition

So... for random networks with fixed degree distributions,
cacades take off when:

∞∑
k=1

k(k − 1)βkPk/z ≥ 1.

I βk = probability a degree k node is vulnerable.
I Pk = probability a node has degree k .
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Cascade condition

Two special cases:

I (1) Simple disease-like spreading succeeds: βk = β

I

β
∞∑

k=1

k(k − 1)Pk/z ≥ 1.

I (2) Giant component exists: β = 1
I

∞∑
k=1

k(k − 1)Pk/z ≥ 1.
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Cascades on random networks
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I Cascades occur
only if size of max
vulnerable cluster
> 0.

I System may be
‘robust-yet-fragile’.

I ‘Ignorance’
facilitates
spreading.
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Cascade window for random networks
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I ‘Cascade window’ widens as threshold φ decreases.
I Lower thresholds enable spreading.

Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

Frame 50/89

Cascade window for random networks Social Contagion
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Cascade window—summary

For our simple model of a uniform threshold:

1. Low 〈k〉: No cascades in poorly connected networks.
No global clusters of any kind.

2. High 〈k〉: Giant component exists but not enough
vulnerables.

3. Intermediate 〈k〉: Global cluster of vulnerables exists.
Cascades are possible in “Cascade window.”
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All-to-all versus random networks
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Early adopters—degree distributions
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The multiplier effect:
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I Fairly uniform levels of individual influence.
I Multiplier effect is mostly below 1.
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The multiplier effect:

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

n
avg

S av
g

A

1 2 3 4 5 6
0

3

6

9

12

n
avg

B

C
as

ca
de

 s
iz

e

Influence
Average
Individuals

Top 10% individuals Cascade size ratio

Degree ratio

Gain

I Skewed influence distribution example.
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Special subnetworks can act as triggers

i0

A

B

I φ = 1/3 for all nodes
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The power of groups...

despair.com

“A few harmless flakes
working together can
unleash an avalanche
of destruction.”

Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

Frame 59/89

Extensions

I Assumption of sparse interactions is good
I Degree distribution is (generally) key to a network’s

function
I Still, random networks don’t represent all networks
I Major element missing: group structure
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Group structure—Ramified random networks

p = intergroup connection probability
q = intragroup connection probability.

despair.com
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Bipartite networks

c d ea b

2 3 41

a

b

c

d

e

contexts

individuals

unipartite
network

Social Contagion

Social Contagion
Models
Background

Granovetter’s model

Network version

Groups

Chaos

References

Frame 62/89

Context distance
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Generalized affiliation model

100

eca b d

geography occupation age

0

(Blau & Schwartz, Simmel, Breiger)
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Generalized affiliation model networks with
triadic closure

I Connect nodes with probability ∝ exp−αd

where
α = homophily parameter
and
d = distance between nodes (height of lowest
common ancestor)

I τ1 = intergroup probability of friend-of-friend
connection

I τ2 = intragroup probability of friend-of-friend
connection
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Cascade windows for group-based networks
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Multiplier effect for group-based networks:

4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

n
avg

S av
g

A

4 8 12 16 20
0

1

2

3

n
avg

B

0 4 8 12 16
0

0.2

0.4

0.6

0.8

1

n
avg

S av
g

C

0 4 8 12 16
0

1

2

3

n
avg

D

Degree ratio

Gain

Cascade
size ratio

Cascade
size ratio < 1!

I Multiplier almost always below 1.
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Assortativity in group-based networks
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I The most connected nodes aren’t always the most
‘influential.’

I Degree assortativity is the reason.
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Social contagion

Summary

I ‘Influential vulnerables’ are key to spread.
I Early adopters are mostly vulnerables.
I Vulnerable nodes important but not necessary.
I Groups may greatly facilitate spread.
I Seems that cascade condition is a global one.
I Most extreme/unexpected cascades occur in highly

connected networks
I ‘Influentials’ are posterior constructs.
I Many potential influentials exist.
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Social contagion

Implications

I Focus on the influential vulnerables.
I Create entities that can be transmitted successfully

through many individuals rather than broadcast from
one ‘influential.’

I Only simple ideas can spread by word-of-mouth.
(Idea of opinion leaders spreads well...)

I Want enough individuals who will adopt and display.
I Displaying can be passive = free (yo-yo’s, fashion),

or active = harder to achieve (political messages).
I Entities can be novel or designed to combine with

others, e.g. block another one.
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Chaotic contagion:

I What if individual response functions are not
monotonic?

I Consider a simple deterministic version:

I Node i has an ‘activation threshold’ φi,1

. . . and a ‘de-activation threshold’ φi,2

I Nodes like to imitate but only up to a
limit—they don’t want to be like
everyone else.
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Two population examples:
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I Randomly select (φi,1, φi,2) from gray regions shown
in plots B and C.

I Insets show composite response function averaged
over population.

I We’ll consider plot C’s example: the tent map.
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Chaotic contagion

Definition of the tent map:

F (x) =

{
rx for 0 ≤ x ≤ 1

2 ,

r(1− x) for 1
2 ≤ x ≤ 1.

I The usual business: look at how F iteratively maps
the unit interval [0, 1].
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The tent map

Effect of increasing r from 1 to 2.
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Orbit diagram:
Chaotic behavior increases
as map slope r is increased.
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Chaotic behavior

Take r = 2 case:
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I What happens if nodes have limited information?
I As before, allow interactions to take place on a

sparse random network.
I Vary average degree z = 〈k〉, a measure of

information
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Invariant densities—stochastic response
functions
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Invariant densities—stochastic response
functions
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Invariant densities—deterministic response
functions for one specific network with
〈k〉 = 18
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Invariant densities—stochastic response
functions
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Invariant densities—deterministic response
functions
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Connectivity leads to chaos:

Stochastic response functions:
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Chaotic behavior in coupled systems

Coupled maps are well explored
(Kaneko/Kuramoto):

xi,n+1 = f (xi,n) +
∑
j∈Ni

δi,j f (xj,n)

I Ni = neighborhood of node i

1. Node states are continuous
2. Increase δ and neighborhood size |N |

⇒ synchronization

But for contagion model:

1. Node states are binary
2. Asynchrony remains as connectivity increases
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Bifurcation diagram: Asynchronous updating
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