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Requirements:

1. ≈ 5 minute introduction to project (fourth week)
2. 15 to 20 minute final presentation
3. Report: ≥ 5 pages (single space), journal-style
4. Goal: seed papers or help papers along.
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Narrative hierarchy

Presenting at many scales:

I 1 to 3 word encapsulation, a soundbite,
I a sentence/title,
I a few sentences,
I a paragraph,
I a short paper,
I a long paper,
I . . .
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with r0g~5:8 km, br5 1.656 0.15 and k5 350km (Fig. 1d, see

Supplementary Information for statistical validation). Lévy flights
are characterized by a high degree of intrinsic heterogeneity, raising
the possibility that equation (2) could emerge from an ensemble of
identical agents, each following a Lévy trajectory. Therefore, we
determined P(rg) for an ensemble of agents following a random walk
(RW), Lévy flight (LF) or truncated Lévy flight (TLF) (Fig. 1d)8,12,13.
We found that an ensemble of Lévy agents display a significant degree
of heterogeneity in rg; however, this was not sufficient to explain the
truncated power-law distribution P(rg) exhibited by the mobile
phone users. Taken together, Fig. 1c and d suggest that the difference
in the range of typical mobility patterns of individuals (rg) has a
strong impact on the truncated Lévy behaviour seen in equation
(1), ruling out hypothesis A.

If individual trajectories are described by an LF or TLF, then
the radius of gyration should increase with time as rg(t), t3/(21 b)

(ref. 21), whereas, for an RW, rg(t), t1/2; that is, the longer we
observe a user, the higher the chance that she/he will travel to areas
not visited before. To check the validity of these predictions, we
measured the time dependence of the radius of gyration for users
whose gyration radius would be considered small (rg(T)# 3 km),
medium (20, rg(T)# 30 km) or large (rg(T). 100 km) at the end
of our observation period (T5 6months). The results indicate that

the time dependence of the average radius of gyration of mobile
phone users is better approximated by a logarithmic increase, not
only a manifestly slower dependence than the one predicted by a
power law but also one that may appear similar to a saturation
process (Fig. 2a and Supplementary Fig. 4).

In Fig. 2b, we chose users with similar asymptotic rg(T) after
T5 6months, and measured the jump size distribution P(Drjrg)
for each group. As the inset of Fig. 2b shows, users with small rg travel
mostly over small distances, whereas those with large rg tend to
display a combination of many small and a few larger jump sizes.
Once we rescaled the distributions with rg (Fig. 2b), we found that the
data collapsed into a single curve, suggesting that a single jump size
distribution characterizes all users, independent of their rg. This
indicates that P Dr rg
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, where a< 1.26 0.1 and

F(x) is an rg-independent function with asymptotic behaviour, that
is, F(x), x2a for x, 1 and F(x) rapidly decreases for x? 1.
Therefore, the travel patterns of individual users may be approxi-
mated by a Lévy flight up to a distance characterized by rg. Most
important, however, is the fact that the individual trajectories are
bounded beyond rg; thus, large displacements, which are the source
of the distinct and anomalous nature of Lévy flights, are statistically
absent. To understand the relationship between the different expo-
nents, we note that themeasured probability distributions are related

Figure 1 | Basic human mobility patterns. a, Week-long trajectory of 40
mobile phone users indicates that most individuals travel only over short
distances, but a few regularly move over hundreds of kilometres. b, The
detailed trajectory of a single user. The different phone towers are shown as
green dots, and the Voronoi lattice in grey marks the approximate reception
area of each tower. The data set studied by us records only the identity of the
closest tower to amobile user; thus, we can not identify the position of a user
within a Voronoi cell. The trajectory of the user shown in b is constructed
from 186 two-hourly reports, during which the user visited a total of 12
different locations (tower vicinities). Among these, the user is found on 96
and 67 occasions in the two most preferred locations; the frequency of visits

for each location is shown as a vertical bar. The circle represents the radius of
gyration centred in the trajectory’s centre of mass. c, Probability density
function P(Dr) of travel distances obtained for the two studied data sets D1

and D2. The solid line indicates a truncated power law for which the
parameters are provided in the text (see equation (1)). d, The distribution
P(rg) of the radius of gyration measured for the users, where rg(T) was
measured after T5 6 months of observation. The solid line represents a
similar truncated power-law fit (see equation (2)). The dotted, dashed and
dot-dashed curves show P(rg) obtained from the standard null models (RW,
LF and TLF, respectively), where for the TLF we used the same step size
distribution as the one measured for the mobile phone users.
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time. Figure 1b shows secondary reports of bank notes with initial
entry at Omaha that have dispersed for times T . 100 days (with an
average time kTl ¼ 289 days). Only 23.6% of the bank notes travelled
farther than 800 km, whereas 57.3% travelled an intermediate dis-
tance 50 , r , 800 km, and a relatively large fraction of 19.1%
remained within a radius of 50 km, even after an average time of
nearly one year. From the computed value Teq < 68 days, a much
higher fraction of bills is expected to reach the metropolitan areas of
the West coast and the New England states after this time. This is
sufficient evidence that the simple Lévy flight picture for dispersal is
incomplete. What causes this attenuation of dispersal?
Two alternative explanations might account for this effect. The

slowing down might be caused by strong spatial inhomogeneities of
the system. People might be less likely to leave large cities than for
example, suburban areas. Alternatively, long periods of rest might be
an intrinsic temporal property of dispersal. In asmuch as an algebraic
tail in spatial displacements yields superdiffusive behaviour, a tail in
the probability density f(t) for times t between successive spatial
displacements of an ordinary randomwalk can lead to subdiffusion15

(see Supplementary Information). Here, the ambivalence between
scale-free spatial displacements and scale-free periods of rest can be
responsible for the observed attenuation of superdiffusion.
In order to address this issue we investigated the relative pro-

portion Pi
0ðtÞ of bank notes which are reported in a small (20 km)

radius of the initial entry location i as a function of time (Fig. 1d).
The quantity Pi

0ðtÞ estimates the probability of a bank note being
reported at the initial location at time t. We computed Pi

0ðtÞ for
metropolitan areas, cities of intermediate size and small towns: for all
classes we found the asymptotic behaviour P0(t) , At2h, with the
same exponent h ¼ 0.6 ^ 0.03, which indicates that waiting time
and dispersal characteristics are universal. Notice that for a pure
Lévy flight with index b in two dimensions, P0(t) scales with time
as t22/b (dashed red line)15. For b < 0.6 (as suggested by Fig. 1c) this
implies h < 3.33. This is a fivefold steeper decrease than observed,
which clearly shows that dispersal cannot be described by a pure Lévy
flight. The measured decay is even slower than the decay expected
from ordinary two-dimensional diffusion (h ¼ 1, dashed black line).
Therefore, we conclude that the slow decay in P0(t) reflects the effect

Figure 1 | Dispersal of bank notes and humans on geographical scales.
a, Relative logarithmic densities of population (cP ¼ logrP/krPl), report
(cR ¼ logrR/krRl) and initial entry (c IE ¼ logr IE/kr IEl) as functions of
geographical coordinates. Colour-code shows densities relative to the
nationwide averages (3,109 counties) of krPl ¼ 95.15, krRl ¼ 0.34 and
kr IEl ¼ 0.15 individuals, reports and initial entries per km2, respectively.
b, Trajectories of bank notes originating from four different places. City
names indicate initial location, symbols secondary report locations. Lines
represent short-time trajectories with travelling time T , 14 days. Lines are
omitted for the long-time trajectories (initial entry in Omaha) with
T . 100 days. The inset depicts a close-up view of the New York area. Pie
charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry
location (dark), at short (0 , r , 50 km), intermediate (50 , r , 800 km)
and long (r . 800 km) distances are ordered by increasing brightness of hue.
The total number of initial entries are N ¼ 2,055 (Omaha), N ¼ 524
(Seattle), N ¼ 231 (New York), N ¼ 381 (Jacksonville). c, The short-time

dispersal kernel. The measured probability density function P(r) of
traversing a distance r in less than T ¼ 4 days is depicted in blue symbols.
It is computed from an ensemble of 20,540 short-time displacements. The
dashed black line indicates a power law P(r),r2(1 þ b) with an exponent of
b ¼ 0.59. The inset shows P(r) for three classes of initial entry locations
(black triangles for metropolitan areas, diamonds for cities of intermediate
size, circles for small towns). Their decay is consistent with the measured
exponent b ¼ 0.59 (dashed line). d, The relative proportion P0(t) of
secondary reports within a short radius (r0 ¼ 20 km) of the initial entry
location as a function of time. Blue squares show P0(t) averaged over 25,375
initial entry locations. Black triangles, diamonds, and circles show P0(t) for
the same classes as c. All curves decrease asymptotically as t2h with an
exponent h ¼ 0.60 ^ 0.03 indicated by the blue dashed line. Ordinary
diffusion in two dimensions predicts an exponent h ¼ 1.0 (black dashed
line). Lévy flight dispersal with an exponent b ¼ 0.6 as suggested by b
predicts an even steeper decrease, h ¼ 3.33 (red dashed line).
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I Study movement and
interactions of people.

I Brockmann et al. [3] “Where’s
George” study.

I Barabasi’s group: tracking
movement via cell phones [12].
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System robustness

Are there universal signatures that presage system
failure?:

“Early-warning signals for critical transitions”
Abstract: Complex dynamical systems, ranging from
ecosystems to financial markets and the climate, can
have tipping points at which a sudden shift to a
contrasting dynamical regime may occur. Although
predicting such critical points before they are reached is
extremely difficult, work in different scientific fields is now
suggesting the existence of generic early-warning signals
that may indicate for a wide class of systems if a critical
threshold is approaching.
Scheffer et al., Nature 2009 [24]

(We will talk about work by Doyle et al. on
robust-yet-fragile systems)
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I Study the human disease and disease gene
networks (Goh et al., 2007):
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.

Goh et al. PNAS ! May 22, 2007 ! vol. 104 ! no. 21 ! 8687
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project topics:

The problem of missing data in networks:

I Clauset et al. (2008)
“Hierarchical structure and the prediction of missing
links in networks” [5]

I Kossinets (2006)
“Effects of missing data in social networks” [18]
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I Explore “self-similarity of complex networks” [25, 26]

First work by Song et al., Nature, 2005.
I See accompanying comment by Strogatz [27]

..............................................................

Self-similarity of complex networks
Chaoming Song1, Shlomo Havlin2 & Hernán A. Makse1

1Levich Institute and Physics Department, City College of New York, New York,
New York 10031, USA
2Minerva Center and Department of Physics, Bar-Ilan University, Ramat Gan
52900, Israel
.............................................................................................................................................................................

Complex networks have been studied extensively owing to their
relevance to many real systems such as the world-wide web, the
Internet, energy landscapes and biological and social networks1–5.
A large number of real networks are referred to as ‘scale-free’
because they show a power-law distribution of the number of
links per node1,6,7. However, it is widely believed that complex
networks are not invariant or self-similar under a length-scale
transformation. This conclusion originates from the ‘small-
world’ property of these networks, which implies that the
number of nodes increases exponentially with the ‘diameter’ of
the network8–11, rather than the power-law relation expected for a
self-similar structure. Here we analyse a variety of real complex
networks and find that, on the contrary, they consist of self-
repeating patterns on all length scales. This result is achieved by
the application of a renormalization procedure that coarse-
grains the system into boxes containing nodes within a given
‘size’. We identify a power-law relation between the number of
boxes needed to cover the network and the size of the box,
defining a finite self-similar exponent. These fundamental prop-
erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
Two fundamental properties of real complex networks have

attracted much attention recently: the small-world and the scale-
free properties.Many naturally occurring networks are ‘small world’
because we can reach a given node from another one, following the
path with the smallest number of links between the nodes, in a very
small number of steps. This corresponds to the so-called ‘six degrees
of separation’ in social networks10. It is mathematically expressed by
the slow (logarithmic) increase of the average diameter of the
network, !l; with the total number of nodes N, !l< lnN; where l
is the shortest distance between two nodes and defines the distance
metric in complex networks6,8,9,11. Equivalently, we obtain:

N < e
!l=l0 ð1Þ

where l0 is a characteristic length.
A second fundamental property in the study of complex networks

arises with the discovery that the probability distribution of
the number of links per node, P(k) (also known as the degree
distribution), can be represented by a power-law (‘scale-free’) with a
degree exponent g that is usually in the range 2 ,g , 3 (ref. 6):

PðkÞ< k2g ð2Þ
These discoveries have been confirmed in many empirical studies of
diverse networks1–4,6,7.
With the aim of providing a deeper understanding of the

underlying mechanism that leads to these common features, we
need to probe the patterns within the network structure in more
detail. The question of connectivity between groups of intercon-
nected nodes on different length scales has received less attention.
But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
web (WWW), social, protein–protein interaction networks (PIN)
and cellular networks are invariant or self-similar under a length-
scale transformation.

This result comes as a surprise, because the exponential increase
in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
that we show to be valid for dissimilar complex networks.

To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration
of the method for different lB. The first column depicts the original network. We tile the

system with boxes of size lB (different colours correspond to different boxes). All nodes in
a box are connected by a minimum distance smaller than the given lB. For instance, in the

case of lB ¼ 2, we identify four boxes that contain the nodes depicted with colours red,

orange, white and blue, each containing 3, 2, 1 and 2 nodes, respectively. Then we

replace each box by a single node; two renormalized nodes are connected if there is at

least one link between the unrenormalized boxes. Thus we obtain the network shown in

the second column. The resulting number of boxes needed to tile the network, N B(lB), is
plotted in Fig. 2 versus lB to obtain d B as in equation (3). The renormalization procedure is

applied again and repeated until the network is reduced to a single node (third and fourth

columns for different lB). b, The stages in the renormalization scheme applied to the
entire WWW. We fix the box size to lB ¼ 3 and apply the renormalization for four stages.

This corresponds, for instance, to the sequence for the network demonstration depicted in

the second row in panel a. We colour the nodes in the web according to the boxes to which
they belong. The network is invariant under this renormalization, as explained in the

legend of Fig. 2d and the Supplementary Information.
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Complex networks have been studied extensively owing to their
relevance to many real systems such as the world-wide web, the
Internet, energy landscapes and biological and social networks1–5.
A large number of real networks are referred to as ‘scale-free’
because they show a power-law distribution of the number of
links per node1,6,7. However, it is widely believed that complex
networks are not invariant or self-similar under a length-scale
transformation. This conclusion originates from the ‘small-
world’ property of these networks, which implies that the
number of nodes increases exponentially with the ‘diameter’ of
the network8–11, rather than the power-law relation expected for a
self-similar structure. Here we analyse a variety of real complex
networks and find that, on the contrary, they consist of self-
repeating patterns on all length scales. This result is achieved by
the application of a renormalization procedure that coarse-
grains the system into boxes containing nodes within a given
‘size’. We identify a power-law relation between the number of
boxes needed to cover the network and the size of the box,
defining a finite self-similar exponent. These fundamental prop-
erties help to explain the scale-free nature of complex networks
and suggest a common self-organization dynamics.
Two fundamental properties of real complex networks have

attracted much attention recently: the small-world and the scale-
free properties.Many naturally occurring networks are ‘small world’
because we can reach a given node from another one, following the
path with the smallest number of links between the nodes, in a very
small number of steps. This corresponds to the so-called ‘six degrees
of separation’ in social networks10. It is mathematically expressed by
the slow (logarithmic) increase of the average diameter of the
network, !l; with the total number of nodes N, !l< lnN; where l
is the shortest distance between two nodes and defines the distance
metric in complex networks6,8,9,11. Equivalently, we obtain:

N < e
!l=l0 ð1Þ

where l0 is a characteristic length.
A second fundamental property in the study of complex networks

arises with the discovery that the probability distribution of
the number of links per node, P(k) (also known as the degree
distribution), can be represented by a power-law (‘scale-free’) with a
degree exponent g that is usually in the range 2 ,g , 3 (ref. 6):

PðkÞ< k2g ð2Þ
These discoveries have been confirmed in many empirical studies of
diverse networks1–4,6,7.
With the aim of providing a deeper understanding of the

underlying mechanism that leads to these common features, we
need to probe the patterns within the network structure in more
detail. The question of connectivity between groups of intercon-
nected nodes on different length scales has received less attention.
But many examples exhibit the importance of collective behaviour,
such as interactions between communities within social networks,
links between clusters of websites of similar subjects, and the highly
modular manner in which molecules interact to keep a cell alive.
Here we show that real complex networks, such as the world-wide
web (WWW), social, protein–protein interaction networks (PIN)
and cellular networks are invariant or self-similar under a length-
scale transformation.

This result comes as a surprise, because the exponential increase
in equation (1) has led to the general understanding that complex
networks are not self-similar, since self-similarity requires a power-
law relation between N and l.

How can we reconcile the exponential increase in equation (1)
with self-similarity, or (in other words) an underlying length-scale-
invariant topology? At the root of the self-similar properties that we
unravel in this study is a scale-invariant renormalization procedure
that we show to be valid for dissimilar complex networks.

To demonstrate this concept we first consider a self-similar

Figure 1 The renormalization procedure applied to complex networks. a, Demonstration
of the method for different lB. The first column depicts the original network. We tile the

system with boxes of size lB (different colours correspond to different boxes). All nodes in
a box are connected by a minimum distance smaller than the given lB. For instance, in the

case of lB ¼ 2, we identify four boxes that contain the nodes depicted with colours red,

orange, white and blue, each containing 3, 2, 1 and 2 nodes, respectively. Then we

replace each box by a single node; two renormalized nodes are connected if there is at

least one link between the unrenormalized boxes. Thus we obtain the network shown in

the second column. The resulting number of boxes needed to tile the network, N B(lB), is
plotted in Fig. 2 versus lB to obtain d B as in equation (3). The renormalization procedure is

applied again and repeated until the network is reduced to a single node (third and fourth

columns for different lB). b, The stages in the renormalization scheme applied to the
entire WWW. We fix the box size to lB ¼ 3 and apply the renormalization for four stages.

This corresponds, for instance, to the sequence for the network demonstration depicted in

the second row in panel a. We colour the nodes in the web according to the boxes to which
they belong. The network is invariant under this renormalization, as explained in the

legend of Fig. 2d and the Supplementary Information.
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Related papers:

I “Origins of fractality in the growth of complex
networks”
Song et al. (2006a) [26]

I “Skeleton and Fractal Scaling in Complex Networks”
Go et al. (2006a) [11]

I “Complex Networks Renormalization: Flows and
Fixed Points”
Radicchi et al. (2008a) [22]
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project topics:

I Develop and elaborate an online experiment to study
some aspect of social phenomena

I e.g., cheating, cooperation, influence,
decision-making, etc.
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Frame 12/45

project topics:

I Statistics: Study Peter Hoff’s (and others’) work on
latent variables.

I Idea: explain connection pattern in a network
through hidden individual or dyadic variables

I Method has been applied to the study of international
relations networks.
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project topics:

I Study collective creativity arising out of social
interactions

I Productivity, wealth, creativity, disease, etc. appear
to increase superlinearly with population

I Start with Bettencourt et al.’s “Growth, innovation,
scaling, and the pace of life in cities” [2]
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project topics:

I Physics/Society—Wars: Study work that started with
Lewis Richardson’s “Variation of the frequency of
fatal quarrels with magnitude” in 1949. [23, 29]

I Specifically explore Clauset et al. and Johnson et
al.’s work on terrorist attacks and civil wars. [6, 15]
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project topics:

I Study Hidalgo et
al.’s “The Product
Space Conditions
the Development
of Nations” [13]

I How do products
depend on each
other, and how
does this network
evolve?

I How do countries
depend on each
other for water,
energy, people
(immigration),
investments?

node size (world trade [thousands of US$])

1.3x10
5

3.0x10
5

6.6x10
5

1.5x10
6

3.3x10
6

7.5x10
6

1.7x10
7

3.7x10
7

8.4x10
7

1.9x10
8

node color (Leamer Classification)

Petro
leu

m

R
aw

M
aterials

Fo
rest

Pro
d

u
cts

Tro
p

ical
A

g
ricu

ltu
re

A
n

im
al

A
g

ricu
ltu

re

C
ereals

Lab
o

r
In

ten
sive

C
ap

ital
In

ten
sive

M
ach

in
ery

C
h

em
icals

link color (proximity)

φ >
0.65

φ >
0.55

φ >
0.4

φ <
0.4

oil
cereals

forest 
products

electronicsmetallurgy

tropical
agriculture

fishing

mining

vehicles/machinery

chemicals
animal

agriculture

textiles

garments

Semester projects

The Plan

Suggestions for
Projects

References

Frame 16/45

project topics:

I Explore proposed measures of system complexity.



Semester projects

The Plan

Suggestions for
Projects

References

Frame 17/45

project topics:

I Explore Dunbar’s number (�)
I See here (�) and here (�) for some food for thought

regarding large-scale online games and Dunbar’s
number. [http://www.lifewithalacrity.com (�)]

I Recent work: “Network scaling reveals consistent
fractal pattern in hierarchical mammalian societies”
Hill et al. (2008) [14].
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topics

I Study scientific collaboration networks.
I Mounds of data + good models.
I See seminal work by De Solla Price [21].

plus modern work by Redner, Newman, et al.
I We will study some of this in class...

Semester projects

The Plan

Suggestions for
Projects

References

Frame 19/45

topics

I Study Kearns et al.’s experimental studies of people
solving classical graph theory problems [17]

I “An Experimental Study of the Coloring Problem on
Human Subject Networks”

I (Possibly) Run some of these experiments for our
class.

Semester projects

The Plan

Suggestions for
Projects

References

Frame 20/45

topics

I Vague/Large:
Study amazon’s recommender networks.

See work by Sornette et al..
I Vague/Large:

Study Netflix’s open data (movies and people form a
bipartite graph).

http://en.wikipedia.org/wiki/Dunbar%27s_number
http://www.lifewithalacrity.com/2004/03/the_dunbar_numb.html
http://www.lifewithalacrity.com/2005/03/dunbar_altruist.html
http://www.lifewithalacrity.com


Semester projects

The Plan

Suggestions for
Projects

References

Frame 21/45

project topics:

I Study collective tagging (or folksonomy)
I e.g., del.icio.us, flickr
I See work by Bernardo Huberman et al. at HP labs.

Semester projects

The Plan

Suggestions for
Projects

References

Frame 22/45

project topics:

I Study games (as in game theory) on networks.
I For cooperation: Review Martin Nowak’s recent

piece in Science: “Five rules for the evolution of
cooperation.” [20]

I Much work to explore: voter models, contagion-type
models, etc.

Semester projects

The Plan

Suggestions for
Projects

References

Frame 23/45

project topics:

I Semantic networks: explore word-word connection
networks generated by linking semantically related
words.

I More general: Explore language evolution
I One paper to start with: “The small world of human

language” by Ferrer i Cancho and Solé [10]

I Study spreading of neologisms (also: baby names)
I Study models/theories/data re the origin and

evolution of language.

Semester projects

The Plan

Suggestions for
Projects

References

Frame 24/45

project topics:

I Investigate safety codes (building, fire, etc.).
I What kind of relational networks do safety codes

form? How have they evolved?

http://del.icio.us
http://www.flickr.com


Semester projects

The Plan

Suggestions for
Projects

References

Frame 25/45

project topics:

I Study Stuart Kauffman’s nk boolean networks which
model regulatory gene networks [16]

Semester projects

The Plan

Suggestions for
Projects

References

Frame 26/45

project topics:

I Critically explore Bejan’s Constructal Theory.
I See Bejan’s book “Shape and Structure, from

Engineering to Nature.” [1]

I Bejan asks why we see branching network flow
structures so often in Nature—trees, rivers, etc.

Semester projects

The Plan

Suggestions for
Projects

References

Frame 27/45

project topics:

I Read and critique “Historical Dynamics: Why States
Rise and Fall” by Peter Turchin. [28]

I Can history Clyodynamics (�), Psychohistory, ...
I Also see “Secular Cycles” (�).

Semester projects

The Plan

Suggestions for
Projects

References

Frame 28/45

project topics:

I Explore work by Doyle, Alderson, et al. as well as
Pastor-Satorras et al. on the structure of the Internet.

http://www.eeb.uconn.edu/people/turchin/Clio.htm
http://www.eeb.uconn.edu/people/turchin/SEC.htm


Semester projects

The Plan

Suggestions for
Projects

References

Frame 29/45

project topics:

I Review: Study Castronova’s and others’ work on
massive multiplayer online games. How do social
networks form in these games? [4]

I See work by Johnson et al. on gang formation in the
real world and in World of Warcraft (really!).

Semester projects

The Plan

Suggestions for
Projects

References

Frame 30/45

project topics:

I Study phyllotaxis, how plants grow new buds and
branches.

I Some delightful mathematics appears involving the
Fibonacci series.

I Excellent work to start with: “Phyllotaxis as a
Dynamical Self Organizing Process: Parts I, II, and
III” by Douady and Couder [7, 8, 9]

Semester projects

The Plan

Suggestions for
Projects

References

Frame 31/45

project topics:

I Vague/Large:
Study how the Wikipedia’s content is interconnected.

Semester projects

The Plan

Suggestions for
Projects

References

Frame 32/45

project topics:

I Study social networks as revealed by email patterns,
Facebook connections, tweets, etc.

I “Empirical analysis of evolving social networks”
Kossinets and Watts, Science, Vol 311, 88-90,
2006. [19]

I “Inferring friendship network structure by using
mobile phone data” Eagle, et al., PNAS, 2009.

I “Community Structure in Online Collegiate Social
Networks”
Traud et al., 2008.
http://arxiv.org/abs/0809.0690 (�)

http://arxiv.org/abs/0809.0690


Semester projects

The Plan

Suggestions for
Projects

References

Frame 33/45

project topics:

More Vague/Large:

I How do countries depend on each other for water,
energy, people (immigration), investments?

I How is the media connected? Who copies whom?
I Investigate memetics, the ‘science’ of memes.
I Sport...

Semester projects

The Plan

Suggestions for
Projects

References

Frame 34/45

topics

I Vague/Large: How does advertising work
collectively?

I Does one car manufacturers’ ads indirectly help
other car manufacturers?

I Ads for junk food versus fruits and vegetables.
I Ads for cars versus bikes versus walking.

Semester projects

The Plan

Suggestions for
Projects

References

Frame 35/45

project topics:

I Vague/Large:
Study spreading of anything where influence can be
measured (very hard).

I Vague/Large:
Any interesting micro-macro story to do with
evolution, biology, ethics, religion, history, food,
international relations, . . .

Semester projects

The Plan

Suggestions for
Projects

References

Frame 36/45

References I

A. Bejan.
Shape and Structure, from Engineering to Nature.
Cambridge Univ. Press, Cambridge, UK, 2000.

L. M. A. Bettencourt, J. Lobo, D. Helbing, Kühnhert,
and G. B. West.
Growth, innovation, scaling, and the pace of life in
cities.
Proc. Natl. Acad. Sci., 104(17):7301–7306, 2007.
pdf (�)

D. Brockmann, L. Hufnagel, and T. Geisel.
The scaling laws of human travel.
Nature, pages 462–465, 2006. pdf (�)

http://www.uvm.edu/~pdodds/research/papers/others/2007/bettencourt2007a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/brockmann2006a.pdf


Semester projects

The Plan

Suggestions for
Projects

References

Frame 37/45

References II

E. Castronova.
Synthetic Worlds: The Business and Culture of
Online Games.
University of Chicago Press, Chicago, IL, 2005.

A. Clauset, C. Moore, and M. E. J. Newman.
Hierarchical structure and the prediction of missing
links in networks.
Nature, 453:98–101, 2008. pdf (�)

A. Clauset, M. Young, and K. S. Gleditsch.
On the Frequency of Severe Terrorist Events.
Journal of Conflict Resolution, 51(1):58–87, 2007.
pdf (�)

Semester projects

The Plan

Suggestions for
Projects

References

Frame 38/45

References III

S. Douady and Y. Couder.
Phyllotaxis as a dynamical self organizing process
Part I: The spiral modes resulting from time-periodic
iterations.
J. Theor. Biol., 178:255–274, 1996. pdf (�)

S. Douady and Y. Couder.
Phyllotaxis as a dynamical self organizing process
Part II: The spontaneous formation of a periodicity
and the coexistence of spiral and whorled patterns.
J. Theor. Biol., 178:275–294, 1996. pdf (�)

S. Douady and Y. Couder.
Phyllotaxis as a dynamical self organizing process
Part III: The simulation of the transient regimes of
ontogeny.
J. Theor. Biol., 178:295–312, 1996. pdf (�)

Semester projects

The Plan

Suggestions for
Projects

References

Frame 39/45

References IV

R. Ferrer i Cancho and R. Solé.
The small world of human language.
Proc. R. Soc. Lond. B, 26:2261–2265, 2001. pdf (�)

K.-I. Goh, G. Salvi, B. Kahng, and D. Kim.
Skeleton and fractal scaling in complex networks.
Phys. Rev. Lett., 96:Article # 018701, 2006. pdf (�)

M. C. González, C. A. Hidalgo, and A.-L. Barabási.
Understanding individual human mobility patterns.
Nature, 453:779–782, 2008. pdf (�)

C. A. Hidalgo, B. Klinger, A.-L. Barabási, and
R. Hausman.
The product space conditions the development of
nations.
Science, 317:482–487, 2007. pdf (�)

Semester projects

The Plan

Suggestions for
Projects

References

Frame 40/45

References V

R. A. Hill, R. A. Bentley, and R. I. M. Dunbar.
Network scaling reveals consistent fractal pattern in
hierarchical mammalian societies.
Biology Letters, 2008. pdf (�)

N. F. Johnson, M. Spagat, J. A. Restrepo, O. Becerra,
J. C. Bohorquez, N. Suarez, E. M. Restrepo, and
R. Zarama.
Universal patterns underlying ongoing wars and
terrorism, 2006. pdf (�)

S. Kauffman.
The Origins of Order.
Oxford, 1993.

http://www.uvm.edu/~pdodds/research/papers/others/2008/clauset2008a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2007/clauset2007b.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1996/douady1996a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1996/douady1996b.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1996/douady1996c.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2001/ferrericancho2001a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/goh2006a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2008/gonzalez2008a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2007/hidalgo2007a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2008/hill2008a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/johnson2006a.pdf


Semester projects

The Plan

Suggestions for
Projects

References

Frame 41/45

References VI

M. Kearns, S. Suri, and N. Montfort.
An experimental study of the coloring problem on
human subject networks.
Science, 313:824–827, 2006. pdf (�)

G. Kossinets.
Effects of missing data in social networks.
Social Networks, 28:247–268, 2006.

G. Kossinets and D. J. Watts.
Empirical analysis of evolving social networks.
Science, 311:88–90, 2006. pdf (�)

M. A. Nowak.
Five rules for the evolution of cooperation.
Science, 314:1560–1563, 2006. pdf (�)

Semester projects

The Plan

Suggestions for
Projects

References

Frame 42/45

References VII

D. J. d. S. Price.
Networks of scientific papers.
Science, 149:510–515, 1965. pdf (�)

F. Radicchi, J. J. Ramasco, A. Barrat, and
S. Fortunato.
Complex networks renormalization: Flows and fixed
points.
Phys. Rev. Lett., 101:Article # 148701, 2008. pdf (�)

L. F. Richardson.
Variation of the frequency of fatal quarrels with
magnitude.
J. Amer. Stat. Assoc., 43:523–546, 1949. pdf (�)

Semester projects

The Plan

Suggestions for
Projects

References

Frame 43/45

References VIII
M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin,
S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes,
M. Rietkerk, and G. Sugihara.
Early-warning signals for critical transition.
Nature, 461:53–59, 2009. pdf (�)

C. Song, S. Havlin, and H. A. Makse.
Self-similarity of complex networks.
Nature, 433:392–395, 2005. pdf (�)

C. Song, S. Havlin, and H. A. Makse.
Origins of fractality in the growth of complex
networks.
Nature Physics, 2:275–281, 2006. pdf (�)

S. H. Strogatz.
Romanesque networks.
Nature, 433:365–366, 2005. pdf (�)
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References
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References IX

P. Turchin.
Historical Dynamics: Why States Rise and Fall.
Princeton University Press, Princeton, NJ, 2003.

D. Wilkinson.
Deadly Quarrels: Lewis F. Richardson and the
Statistical Study of War.
University of California Press, London, UK, 1980.

http://www.uvm.edu/~pdodds/research/papers/others/2006/kearns2006a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/kossinets2006a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/nowak2006a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1965/price1965a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2008/radicchi2008a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1949/richardson1949a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2009/scheffer2009a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2005/song2005a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/song2006a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2005/strogatz2005a.pdf
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