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Another approach

Benoit Mandelbrot
I Mandelbrot = father of fractals
I Mandelbrot = almond bread
I Derived Zipf’s law through optimization [11]

I Idea: Language is efficient
I Communicate as much information as possible for as

little cost
I Need measures of information (H) and cost (C)...
I Minimize C/H by varying word frequency
I Recurring theme: what role does optimization play in

complex systems?
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Not everyone is happy...

Mandelbrot vs. Simon:
I Mandelbrot (1953): “An Informational Theory of the

Statistical Structure of Languages” [11]

I Simon (1955): “On a class of skew distribution
functions” [14]

I Mandelbrot (1959): “A note on a class of skew
distribution function: analysis and critique of a paper
by H.A. Simon”

I Simon (1960): “Some further notes on a class of
skew distribution functions”
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Not everyone is happy... (cont.)

Mandelbrot vs. Simon:
I Mandelbrot (1961): “Final note on a class of skew

distribution functions: analysis and critique of a
model due to H.A. Simon”

I Simon (1961): “Reply to ‘final note’ by Benoit
Mandelbrot”

I Mandelbrot (1961): “Post scriptum to ‘final note”’
I Simon (1961): “Reply to Dr. Mandelbrot’s post

scriptum”
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Not everyone is happy... (cont.)

Mandelbrot:
“We shall restate in detail our 1959 objections to Simon’s
1955 model for the Pareto-Yule-Zipf distribution. Our
objections are valid quite irrespectively of the sign of p-1,
so that most of Simon’s (1960) reply was irrelevant.”

Simon:
“Dr. Mandelbrot has proposed a new set of objections to
my 1955 models of the Yule distribution. Like his earlier
objections, these are invalid.”

Plankton:
“You can’t do this to me, I WENT TO
COLLEGE!” “You weak minded fool!”
“That’s it Mister! You just lost your brain
privileges,” etc.
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Zipfarama via Optimization

Mandelbrot’s Assumptions

I Language contains n words: w1, w2, . . . , wn.
I i th word appears with probability pi

I Words appear randomly according to this distribution
(obviously not true...)

I Words = composition of letters is important
I Alphabet contains m letters
I Words are ordered by length (shortest first)
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Zipfarama via Optimization

Word Cost
I Length of word (plus a space)
I Word length was irrelevant for Simon’s method

Objection

I Real words don’t use all letter sequences

Objections to Objection

I Maybe real words roughly follow this pattern (?)
I Words can be encoded this way
I Na na na-na naaaaa...



More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 12/60

Zipfarama via Optimization

Binary alphabet plus a space symbol
i 1 2 3 4 5 6 7 8

word 1 10 11 100 101 110 111 1000
length 1 2 2 3 3 3 3 4

1 + ln2 i 1 2 2.58 3 3.32 3.58 3.81 4

I Word length of 2k th word: = k + 1 = 1 + log2 2k

I Word length of i th word ' 1 + log2 i
I For an alphabet with m letters,

word length of i th word ' 1 + logm i .
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Zipfarama via Optimization

Total Cost C
I Cost of the i th word: Ci ' 1 + logm i
I Cost of the i th word plus space: Ci ' 1 + logm(i + 1)

I Subtract fixed cost: C′
i = Ci − 1 ' logm(i + 1)

I Simplify base of logarithm:

C′
i ' logm(i + 1) =

loge(i + 1)

loge m
∝ ln(i + 1)

I Total Cost:

C ∼
n∑

i=1

piC′
i ∝

n∑
i=1

pi ln(i + 1)
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Zipfarama via Optimization

Information Measure
I Use Shannon’s Entropy (or Uncertainty):

H = −
n∑

i=1

pi log2 pi

I (allegedly) von Neumann suggested ‘entropy’...
I Proportional to average number of bits needed to

encode each ‘word’ based on frequency of
occurrence

I − log2 pi = log2 1/pi = minimum number of bits
needed to distinguish event i from all others

I If pi = 1/2, need only 1 bit (log21/pi = 1)
I If pi = 1/64, need 6 bits (log21/pi = 6)
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Zipfarama via Optimization

Information Measure
I Use a slightly simpler form:

H = −
n∑

i=1

pi loge pi/ loge 2 = −g
n∑

i=1

pi ln pi

where g = 1/ ln 2
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Zipfarama via Optimization

I Minimize
F (p1, p2, . . . , pn) = C/H

subject to constraint

n∑
i=1

pi = 1

I Tension:
(1) Shorter words are cheaper
(2) Longer words are more informative (rarer)

I (Good) question: how much does choice of C/H as
function to minimize affect things?
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Zipfarama via Optimization

Time for Lagrange Multipliers:

I Minimize
Ψ(p1, p2, . . . , pn) =

F (p1, p2, . . . , pn) + λG(p1, p2, . . . , pn)

where

F (p1, p2, . . . , pn) =
C
H

=

∑n
i=1 pi ln(i + 1)

−g
∑n

i=1 pi ln pi

and the constraint function is

G(p1, p2, . . . , pn) =
n∑

i=1

pi − 1 = 0

Insert question 4, assignment 2 (�)
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Zipfarama via Optimization

Some mild suffering leads to:

I

pj = e−1−λH2/gC(j + 1)−H/gC ∝ (j + 1)−H/gC

I A power law appears [applause]: α = H/gC

I Next: sneakily deduce λ in terms of g, C, and H.
I Find

pj = (j + 1)−H/gC
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Zipfarama via Optimization

Finding the exponent

I Now use the normalization constraint:

1 =
n∑

j=1

pj =
n∑

j=1

(j + 1)−H/gC =
n∑

j=1

(j + 1)−α

I As n →∞, we end up with ζ(H/gC) = 2
where ζ is the Riemann Zeta Function

I Gives α ' 1.73 (> 1, too high)
I If cost function changes (j + 1 → j + a) then

exponent is tunable
I Increase a, decrease α

http://www.uvm.edu/~pdodds/teaching/courses/2008-08UVM-300/docs/{2008-08UVM-300}assignment02.pdf
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Zipfarama via Optimization

All told:
I Reasonable approach: Optimization is at work in

evolutionary processes
I But optimization can involve many incommensurate

elements: monetary cost, robustness, happiness,...
I Mandelbrot’s argument is not super convincing
I Exponent depends too much on a loose definition of

cost
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More

Reconciling Mandelbrot and Simon

I Mixture of local optimization and randomness
I Numerous efforts...

1. Carlson and Doyle, 1999:
Highly Optimized Tolerance
(HOT)—Evolved/Engineered Robustness [5]

2. Ferrer i Cancho and Solé, 2002:
Zipf’s Principle of Least Effort [8]

3. D’Souza et al., 2007:
Scale-free networks [7]
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More

Other mechanisms:
Much argument about whether or not monkeys typing
could produce Zipf’s law... (Miller, 1957) [12]
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Others are also not happy

Krugman and Simon

I “The Self-Organizing Economy” (Paul Krugman,
1995) [10]

I Krugman touts Zipf’s law for cities, Simon’s model
I “Déjà vu, Mr. Krugman” (Berry, 1999)
I Substantial work done by Urban Geographers
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Who needs a hug?

From Berry [4]

I Déjà vu, Mr. Krugman. Been there, done that. The
Simon-Ijiri model was introduced to geographers in
1958 as an explanation of city size distributions, the
first of many such contributions dealing with the
steady states of random growth processes, ...

I But then, I suppose, even if Krugman had known
about these studies, they would have been
discounted because they were not written by
professional economists or published in one of the
top five journals in economics!
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Who needs a hug?

From Berry [4]

I ... [Krugman] needs to exercise some humility, for his
world view is circumscribed by folkways that militate
against recognition and acknowledgment of
scholarship beyond his disciplinary frontier.

I Urban geographers, thank heavens, are not so
afflicted.
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Robustness

I Many complex systems are prone to cascading
catastrophic failure: exciting!!!

I Blackouts
I Disease outbreaks
I Wildfires
I Earthquakes

I But complex systems also show persistent
robustness (not as exciting but important...)

I Robustness and Failure may be a power-law story...
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Robustness

I System robustness may result from
1. Evolutionary processes
2. Engineering/Design

I Idea: Explore systems optimized to perform under
uncertain conditions.

I The handle: ‘Highly Optimized Tolerance’
(HOT) [5, 6, 15]

I The catchphrase: Robust yet Fragile
I The people: Jean Carlson and John Doyle
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Robustness

Features of HOT systems: [6]

I High performance and robustness
I Designed/evolved to handle known stochastic

environmental variability
I Fragile in the face of unpredicted environmental

signals
I Highly specialized, low entropy configurations
I Power-law distributions appear (of course...)

More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 33/60

Robustness

HOT combines things we’ve seen:

I Variable transformation
I Constrained optimization

I Need power law transformation between variables:
(Y = X−α)

I Recall PLIPLO is bad...
I MIWO is good: Mild In, Wild Out
I X has a characteristic size but Y does not
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Robustness

Forest fire example: [6]

I Square N × N grid
I Sites contain a tree with probability ρ = density
I Sites are empty with probability 1− ρ

I Fires start at location according to some distribution
Pij

I Fires spread from tree to tree (nearest neighbor only)
I Connected clusters of trees burn completely
I Empty sites block fire
I Best case scenario:

Build firebreaks to maximize average # trees left
intact
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Robustness

Forest fire example: [6]

I Build a forest by adding one tree at a time
I Test D ways of adding one tree
I D = design parameter
I Average over Pij = spark probability
I D = 1: random addition
I D = N 2: test all possibilities

Measure average area of forest left untouched

I f (c) = distribution of fire sizes c (= cost)
I Yield = Y = ρ− 〈f 〉
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Robustness

Specifics:

I

Pij = Pi;ax ,bx Pj;ay ,by

where
Pi;a,b ∝ e−[(i+a)/b]2

I In the original work, by > bx

I Distribution has more width in y direction.
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HOT Forests

[6]

N = 64

(a) D = 1
(b) D = 2
(c) D = N
(d) D = N2

Pij has a
Gaussian decay

Optimized forests do well on average (robustness)
but rare extreme events occur (fragility)
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HOT Forests
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design are distinguished by different algorithms for choos-

ing the next site for addition based on yield, reminiscent

of systems in biology and engineering where incremental

changes occur through natural selection or design modifi-

cations favoring higher yields. As we increase the density

we obtain a yield curve Y !r". At a given density the maxi-

mum possible yield is trivially bounded by r (no loss). In

the thermodynamic limit, whenever Y !r" falls below the

maximum yield the mean event size #f$ is of the same or-

der as the size of the system.

We first consider random percolation with no design.

Sequences of configurations are generated by randomly

occupying sites. At a given density all possible configura-

tions are equally likely, and sites are independently occu-

pied with probability p ! r, and vacant with probability

1 2 p. By translation invariance, in the thermodynamic

limit, results for the random case are independent of the

distribution of sparks P!i, j". For finite systems edge ef-

fects modify the distribution.

The yield curve is depicted by the lowest curve in

Fig. 2a. At low densities the results coincide with the

maximum yield. Near r ! pc % 0.6 there is a crossover,

and Y !r" begins to decrease monotonically with r,

approaching zero at high density. The crossover becomes

sharp as N ! ` and is an immediate consequence of

the percolation transition, marking the emergence of

an infinite cluster at p ! pc. In the thermodynamic

limit only events involving the infinite cluster result in a

macroscopic loss and Y !r" ! r 2 P2
`!p". Here P`!p"

is the percolation order parameter, i.e., the probability

a given site is in the infinite cluster. A typical random

configuration at peak yield is illustrated in Fig. 1a. The

fractal appearance of the clusters is a key signature of

criticality. The distribution of fires F!c" is asymptotically

a power law, illustrated for N ! 64 in Fig. 3a.

The goal of design is to push the yield towards the up-

per bound for densities which exceed the critical point.

This requires selecting nongeneric (measure zero) con-

figurations, which we refer to as tolerant states. We define
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FIG. 2. Yield vs density Y !r": (a) for design parameters D !
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)

with N ! 64, and (b) for D ! 2 and N ! 2, 22, . . . , 27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L ! log&#f$'!1 2 #f$"(, on a scale which more
clearly differentiates between the curves.

HOT states to be those which specifically optimize yield in

the presence of a constraint (see Figs. 1b–1d). As the level

of design increases, the connected clusters become increas-

ingly regular in shape and separated by well-defined bar-

riers consisting of closed contours of unoccupied sites. A

HOT state corresponds to a forest which is densely planted

to maximize the timber yield, with fire breaks arranged to

minimize the spread of damage.

To determine HOT states we specify constraints on the

optimization, defined here in terms of a modification of

the random percolation model which incorporates design.

At each increment in density, we generate a set of test

configurations. A test configuration at density r !
!n 1 1"'N2 is generated from the previous configuration

at density r ! n'N2 (where n is the number of occupied

sites) by adding a grain to a previously unoccupied site.

In the limiting case, all possible test configurations are

explored. Then, in a manner reminiscent of evolution by

natural selection, the next configuration in the sequence

is taken to be the test configuration which produces the

highest yield upon averaging over P!i, j". If there is

degeneracy, one of the highest yield configurations is

selected at random. We define the design parameter to be

the number D of test configurations which are initially

examined. Thus D lies between D ! 1 (random percola-

tion) and D ! N2 (all possible configurations associated

with the addition of one occupied site are tested).

While the choice of P!i, j" is irrelevant at large N for

random configurations, for designed states knowledge of

P!i, j" can be exploited to produce better designs. For our

numerical examples we use

P!i, j" ! P!i"P!j" ,

P!x" ~ 22)&mx1!x'N"('sx *2
, (1)

where mi ! 1, si ! 0.4, mj ! 0.5, and sj ! 0.2. In

Fig. 1 the maximum value of P!i, j" coincides with the

upper left hand corner i ! j ! 1, while the minimum

value is in the lower right corner i ! j ! N . We choose

the tail of a Gaussian to dramatize that power laws emerge

through design even when the external distribution is far

from a power law. We choose an asymmetric distribution

to lift all degeneracies in the maximally designed case
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FIG. 3. Cumulative distributions of events F!c": (a) at peak
yield for D ! 1, 2, N , and N2 with N ! 64, and (b) for D !
N2, and N ! 64 at equal density increments of 0.1, ranging at
r ! 0.1 (bottom curve) to r ! 0.9 (top curve).
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HOT Forests
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design are distinguished by different algorithms for choos-

ing the next site for addition based on yield, reminiscent

of systems in biology and engineering where incremental

changes occur through natural selection or design modifi-

cations favoring higher yields. As we increase the density

we obtain a yield curve Y !r". At a given density the maxi-

mum possible yield is trivially bounded by r (no loss). In

the thermodynamic limit, whenever Y !r" falls below the

maximum yield the mean event size #f$ is of the same or-

der as the size of the system.

We first consider random percolation with no design.

Sequences of configurations are generated by randomly

occupying sites. At a given density all possible configura-

tions are equally likely, and sites are independently occu-

pied with probability p ! r, and vacant with probability

1 2 p. By translation invariance, in the thermodynamic

limit, results for the random case are independent of the

distribution of sparks P!i, j". For finite systems edge ef-

fects modify the distribution.

The yield curve is depicted by the lowest curve in

Fig. 2a. At low densities the results coincide with the

maximum yield. Near r ! pc % 0.6 there is a crossover,

and Y !r" begins to decrease monotonically with r,

approaching zero at high density. The crossover becomes

sharp as N ! ` and is an immediate consequence of

the percolation transition, marking the emergence of

an infinite cluster at p ! pc. In the thermodynamic

limit only events involving the infinite cluster result in a

macroscopic loss and Y !r" ! r 2 P2
`!p". Here P`!p"

is the percolation order parameter, i.e., the probability

a given site is in the infinite cluster. A typical random

configuration at peak yield is illustrated in Fig. 1a. The

fractal appearance of the clusters is a key signature of

criticality. The distribution of fires F!c" is asymptotically

a power law, illustrated for N ! 64 in Fig. 3a.

The goal of design is to push the yield towards the up-

per bound for densities which exceed the critical point.

This requires selecting nongeneric (measure zero) con-

figurations, which we refer to as tolerant states. We define
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FIG. 2. Yield vs density Y !r": (a) for design parameters D !
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)

with N ! 64, and (b) for D ! 2 and N ! 2, 22, . . . , 27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (a) illustrates corresponding
loss functions L ! log&#f$'!1 2 #f$"(, on a scale which more
clearly differentiates between the curves.

HOT states to be those which specifically optimize yield in

the presence of a constraint (see Figs. 1b–1d). As the level

of design increases, the connected clusters become increas-

ingly regular in shape and separated by well-defined bar-

riers consisting of closed contours of unoccupied sites. A

HOT state corresponds to a forest which is densely planted

to maximize the timber yield, with fire breaks arranged to

minimize the spread of damage.

To determine HOT states we specify constraints on the

optimization, defined here in terms of a modification of

the random percolation model which incorporates design.

At each increment in density, we generate a set of test

configurations. A test configuration at density r !
!n 1 1"'N2 is generated from the previous configuration

at density r ! n'N2 (where n is the number of occupied

sites) by adding a grain to a previously unoccupied site.

In the limiting case, all possible test configurations are

explored. Then, in a manner reminiscent of evolution by

natural selection, the next configuration in the sequence

is taken to be the test configuration which produces the

highest yield upon averaging over P!i, j". If there is

degeneracy, one of the highest yield configurations is

selected at random. We define the design parameter to be

the number D of test configurations which are initially

examined. Thus D lies between D ! 1 (random percola-

tion) and D ! N2 (all possible configurations associated

with the addition of one occupied site are tested).

While the choice of P!i, j" is irrelevant at large N for

random configurations, for designed states knowledge of

P!i, j" can be exploited to produce better designs. For our

numerical examples we use

P!i, j" ! P!i"P!j" ,

P!x" ~ 22)&mx1!x'N"('sx *2
, (1)

where mi ! 1, si ! 0.4, mj ! 0.5, and sj ! 0.2. In

Fig. 1 the maximum value of P!i, j" coincides with the

upper left hand corner i ! j ! 1, while the minimum

value is in the lower right corner i ! j ! N . We choose

the tail of a Gaussian to dramatize that power laws emerge

through design even when the external distribution is far

from a power law. We choose an asymmetric distribution

to lift all degeneracies in the maximally designed case
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FIG. 3. Cumulative distributions of events F!c": (a) at peak
yield for D ! 1, 2, N , and N2 with N ! 64, and (b) for D !
N2, and N ! 64 at equal density increments of 0.1, ranging at
r ! 0.1 (bottom curve) to r ! 0.9 (top curve).
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Random Forests

D = 1: Random forests = Percolation [16]

I Randomly add trees
I Below critical density ρc , no fires take off
I Above critical density ρc , percolating cluster of trees

burns
I Only at ρc , the critical density, is there a power-law

distribution of tree cluster sizes
I Forest is random and featureless
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HOT forests

HOT forests
I Highly structured
I Power law distribution of tree cluster sizes for ρ > ρc

I No specialness of ρc

I Forest states are tolerant
I Uncertainty is okay if well characterized
I If Pij is characterized poorly, failure becomes highly

likely
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HOT theory

The abstract story:

I Given yi = x−α
i , i = 1, . . . , Nsites

I Design system to minimize 〈y〉
subject to a constraint on the xi

I Minimize cost:

C =

Nsites∑
i=1

Pr(yi)yi

Subject to
∑Nsites

i=1 xi = constant
I Drag out the Lagrange Multipliers, battle away and

find:
pi ∝ y−γ

i
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HOT: Optimal fire walls in d dimensions
Two costs:

1. Expected size of fire

Cfire ∝
Nsites∑
i=1

(piai)ai =

Nsites∑
i=1

pia 2
i

I ai = area of i th site’s region
I pi = avg. prob. of fire at site in i th site’s region
I Nsites = total number of sites

2. Cost of building and maintaining firewalls

Cfirewalls ∝
Nsites∑
i=1

a1/2
i

I We are assuming isometry.
I In d dimensions, 1/2 is replaced by (d − 1)/d
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HOT theory

Third constraint:
I Total area is constrained:

Nsites∑
i=1

1
ai

= Nregions

where Nregions = number of cells.
I Can ignore in calculation...
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HOT theory

I Minimize Cfire given Cfirewalls = constant.
I

0 =
∂

∂aj
(Cfire − λCfirewalls)

∝ ∂

∂aj

(
N∑

i=1

pia 2
i − λ′a(d−1)/d

i

)

I

pi ∝ a−γ
i = a−(1+1/d)

i

I

For d = 2, γ = 3/2
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HOT theory

Summary of designed tolerance

I Build more firewalls in areas where sparks are likely
I Small connected regions in high-danger areas
I Large connected regions in low-danger areas
I Routinely see many small outbreaks (robust)
I Rarely see large outbreaks (fragile)
I Sensitive to changes in the environment (Pij )
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Avalanches on Sand and Rice
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SOC theory

SOC = Self-Organized Criticality

I Idea: natural dissipative systems exist at ‘critical
states’

I Analogy: Ising model with temperature somehow
self-tuning

I Power-law distributions of sizes and frequencies
arise ‘for free’

I Introduced in 1987 by Bak, Tang, and
Weisenfeld [3, 2, 9]:
“Self-organized criticality - an explanation of 1/f
noise”

I Problem: Critical state is a very specific point
I Self-tuning not always possible
I Much criticism and arguing...
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Robustness

HOT versus SOC
I Both produce power laws
I Optimization versus self-tuning
I HOT systems viable over a wide range of high

densities
I SOC systems have one special density
I HOT systems produce specialized structures
I SOC systems produce generic structures
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COLD forests

Avoidance of large-scale failures

I Constrained Optimization with Limited Deviations [13]

I Weight cost of larges losses more strongly
I Increases average cluster size of burned trees...
I ... but reduces chances of catastrophe
I Power law distribution of fire sizes is truncated
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Cutoffs

Aside:
I Power law distributions often have an exponential

cutoff
P(x) ∼ x−γe−x/xc

where xc is the approximate cutoff scale.
I May be stretched exponentials:

P(x) ∼ x−γe−ax−γ+1
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Robustness

And we’ve already seen this...

I network robustness.
I Albert et al., Nature, 2000:

“Error and attack tolerance of complex networks” [1]

I Similar robust-yet-fragile story...
I See Networks Overview, Frame 57 (�)

More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 56/60

References I

R. Albert, H. Jeong, and A.-L. Barabási.
Error and attack tolerance of complex networks.
Nature, 406:378–382, July 2000. pdf (�)

P. Bak.
How Nature Works: the Science of Self-Organized
Criticality.
Springer-Verlag, New York, 1996.

P. Bak, C. Tang, and K. Wiesenfeld.
Self-organized criticality - an explanation of 1/f noise.
Phys. Rev. Lett., 59(4):381–384, 1987.

B. J. L. Berry.
Déjà vu, Mr. Krugman.
Urban Geography, 20:1–2, 1999. pdf (�)

More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 57/60

References II

J. Carlson and J. Doyle.
Highly optimized tolerance: A mechanism for power
laws in design systems.
Phys. Rev. E, 60(2):1412–1427, 1999. pdf (�)

J. Carlson and J. Doyle.
Highly optimized tolerance: Robustness and design
in complex systems.
Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (�)

R. M. D’Souza, C. Borgs, J. T. Chayes, N. Berger,
and R. D. Kleinberg.
Emergence of tempered preferential attachment from
optimization.
Proc. Natl. Acad. Sci., 104:6112–6117, 2007. pdf (�)

More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 58/60

References III

R. Ferrer i Cancho and R. V. Solé.
Zipf’s law and random texts.
Advances in Complex Systems, 5(1):1–6, 2002.

H. J. Jensen.
Self-Organized Criticality: Emergent Complex
Behavior in Physical and Biological Systems.
Cambridge Lecture Notes in Physics. Cambridge
University Press, Cambridge, UK, 1998.

P. Krugman.
The self-organizing economy.
Blackwell Publishers, Cambridge, Massachusetts,
1995.

http://www.uvm.edu/~pdodds/teaching/courses/2008-08UVM-300/docs/2008-08UVM-300-networks-overview-slides-flat.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2000/albert2000a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1999/berry1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1999/carlson1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2000/carlson2000a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2007/dsouza2007a.pdf


More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 59/60

References IV

B. B. Mandelbrot.
An informational theory of the statistical structure of
languages.
In W. Jackson, editor, Communication Theory, pages
486–502. Butterworth, Woburn, MA, 1953.

G. A. Miller.
Some effects of intermittent silence.
American Journal of Psychology, 70:311–314, 1957.
pdf (�)

M. E. J. Newman, M. Girvan, and J. D. Farmer.
Optimal design, robustness, and risk aversion.
Phys. Rev. Lett., 89:028301, 2002.

H. A. Simon.
On a class of skew distribution functions.
Biometrika, 42:425–440, 1955. pdf (�)

More Power-Law
Mechanisms

Optimization
Minimal Cost

Mandelbrot vs. Simon

Assumptions

Model

Analysis

Extra

Robustness
HOT theory

Self-Organized Criticality

COLD theory

Network robustness

References

Frame 60/60

References V

D. Sornette.
Critical Phenomena in Natural Sciences.
Springer-Verlag, Berlin, 2nd edition, 2003.

D. Stauffer and A. Aharony.
Introduction to Percolation Theory.
Taylor & Francis, Washington, D.C., Second edition,
1992.

http://www.uvm.edu/~pdodds/research/papers/others/1957/miller1957a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1955/simon1955a.pdf

	Optimization
	Minimal Cost
	Mandelbrot vs. Simon
	Assumptions
	Model
	Analysis
	Extra

	Robustness
	HOT theory
	Self-Organized Criticality
	COLD theory
	Network robustness

	References

