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Overview of 1A . Overview of
netOWork | 'net,wark | Complex Networks Th esaurus del ICIOUSNesSsS: Complex Networks
noun
1 an arrangement of intersecting horizontal and vertical lines. N o
. . Basic definitions Basic definitions
« a complex system of roads, railroads, or other transportation routes :
a network of railroads.
2 a group or system of interconnected people or things : a trade network.
« a group of people who exchange information, contacts, and
experience for professional or social purposes : a support network. netWOI‘k
« a group of broadcasting stations that connect for the simultaneous noun

broadcast of a program : the introduction of a second TV network | [as adj. |
network television.

« a number of interconnected computers, machines, or operations -
specialized computers that manage multiple outside connections to a network | a
local cellular phone network.

« a system of connected electrical conductors.

1 a network of arteries WEB, lattice, net, matrix, mesh,
crisscross, grid, reticulum, reticulation; Anatomy plexus.
2 a network of lanes MAZE, labyrinth, warren, tangle.

3 a network of friends SYSTEM, complex, nexus, web,

verb [ trans. | webwork.

connect as or operate with a network : the stock exchanges have proven to be
resourceful in networking these deals.
« link (machines, esp. computers) to operate interactively : [as adj. ] (
networked) networked workstations.
e [intrans. ] [often as n. ] ( networking) interact with other people to
exchange information and develop contacts, esp. to further one's
career : the skills of networking, bargaining, and negotiation. Frame 3/122

Frame 4/122
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Basic definitions Basic definitions

First known use: Geneva Bible, 1560
‘And thou shalt make unto it a grate like networke of
brass (Exodus xxvii 4)

From Keith Briggs’s excellent
etymological investigation: ()

From the OED via Briggs:

1658—: reticulate structures in animals
1839-: rivers and canals

>
» Opus reticulatum: .
» 1869—: railways
>
| 2

» A Latin origin?

1883—: distribution network of electrical cables
1914—: wireless broadcasting networks

[http://serialconsign.com/2007/11/we-put-net-network]

Frame 6/122

Frame 5/122
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An CeStry Con?p\)llz;\/il\?;vtv\(::)rks Key Observation Complex Networks

Basic definitions > Many CompleX SyStemS Basic definitions
can be viewed as complex networks
of physical or abstract interactions.

Opens door to mathematical and numerical analysis.

Dominant approach of last decade of a
theoretical-physics/stat-mechish flavor.

Mindboggling amount of work published on complex
networks since 1998...

. largely due to your typical theoretical physicist:

Net and Work are venerable old words:

» ‘Net’ first used to mean spider web (King Zlfréd, 888).
» ‘Work’ appear to have long meant purposeful action.

Proto-Germanic| |Avestan| |Greek
* varszya-| [epyoy)

old High German
werth

Middle High German
werc

v

v

v

‘Old English

Old Norse
verk

lcz\ andic| |Swedish| Damsh
v:vk verk vaevk

The network of “work' words

Widdle English
worke

Old Norse

=

The network of Germanic ‘net'

Middle H gh Gem\‘m

M\dd\e Enghsh

v

Modem Enghsh
work

Modem H\gh German
Werl

Modern ths erman Moden E glish

_ _ _ » Piranha physicus
» ‘Network’ = something built based on the idea of

natural, flexible lattice or web.
» c.f., ironwork, stonework, fretwork.

» Hunt in packs.

S » Feast on new and interesting ideas
Frame 7/122 (see chaos, cellular automata, ...) [EEEEERE:
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http://keithbriggs.info/network.html

Popularity (according to ISI) Complex Networks Popularity according to books: Complex Networks

Basic definitions

Basic definitions

“Collective dynamics of ‘small-world’ networks” (28]
» Watts and Strogatz
Nature, 1998
> ~ 3752 citations (as of June 5, 2009)
» Over 1100 citations in 2008 alone.

The Tipping Point: How Little Things can
make a Big Difference—Malcolm Gladwell ']

“Emergence of scaling in random networks” !

Nexus: Small Worlds and the Groundbreaking
Science of Networks—Mark Buchanan

» Barabasi and Albert
Science, 1999

» ~ 3860 citations (as of June 5, 2009)
» Over 1100 citations in 2008 alone.

Frame 9/122 Frame 10/122

F DA F DA

Popularity according to books: Complex Networks Numerous others: Complex Networks

» Complex Social Networks—F. Vega-Redondo [#°]

Basic definitions Basic definitions

» Fractal River Basins: Chance and Self-Organization—I.
Rodriguez-lturbe and A. Rinaldo (!

» Random Graph Dynamics—R. Durette

Linked Linked: How Everything Is Connected to
Everything Else and What It

Means—Albert-Laszlo Barabasi » Scale-Free Networks—Guido Caldarelli

» Evolution and Structure of the Internet: A Statistical
Physics Approach—Romu Pastor-Satorras and
Alessandro Vespignani

) ) » Complex Graphs and Networks—Fan Chung

Six Degrees: The Science of a Connected

Age—Duncan Watts [2°! » Social Network Analysis—Stanley Wasserman and

Kathleen Faust

DU NCAN Y WATTS

» Handbook of Graphs and Networks—Eds: Stefan
Bornholdt and H. G. Schuster [°!

» Evolution of Networks—S. N. Dorogovtsev and J. F. F.
Mendes ']

Frame 11/122 Frame 12/122
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More observations

But surely networks aren’t new...

Graph theory is well established...

Study of social networks started in the 1930’s...
So why all this ‘new’ research on networks?
Answer: Oodles of Easily Accessible Data.

We can now inform (alas) our theories
with a much more measurable reality.*

» A worthy goal: establish mechanistic explanations.

vV v.v. v v Y

*If this is upsetting, maybe string theory is for you...

Super Basic definitions

Nodes = A collection of entities which have
properties that are somehow related to each other

» e.g., people, forks in rivers, proteins, webpages,
organisms,...

Links = Connections between nodes

» Links may be directed or undirected.
» Links may be binary or weighted.

Other spiffing words: vertices and edges.

Overview of
Complex Networks

Basic definitions

Frame 13/122
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Overview of

Complex Networks

Basic definitions

Frame 15/122

F Dae

More observations

» Web-scale data sets can be overly exciting.

Witness:

» The End of Theory: The Data Deluge Makes the
Scientific Theory Obsolete (Anderson, Wired) (&)

» “The Unreasonable Effectiveness of Data,”
Halevy et al. %],

But:

» For scientists, description is only part of the battle.

» We still need to understand.

Super Basic definitions

Node degree = Number of links per node

» Notation: Node /’s degree = k;.

» ki=0,1,2,....

» Notation: the average degree of a network = (k)
(and sometimes 2)

» Connection between number of edges m and

average degree:

(k) =20

» Defn: N, = the set of i’s k; neighbors

Overview of
Complex Networks

Basic definitions

Frame 14/122
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Basic definitions

Frame 16/122
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http://www.wired.com/science/discoveries/magazine/16-07/pb_theory

Super Basic definitions o T Examples Complex Networks

Basic definitions

Examples of
Complex Networks

Adjacency matrix:

» We represent a directed network by a matrix A with
link weight a;; for nodes i and j in entry (i, j).

So what passes for a complex network?

» Complex networks are large (in node number)

> e.g.,
g 0111 0 » Complex networks are sparse (low edge to node
0010 1 ratio)
A=11 00 0 O » Complex networks are usually dynamic and evolving
0100 1 » Complex networks can be social, economic, natural,
01010 informational, abstract, ...
» (n.b., for numerical work, we always use sparse
matrices.)
Frame 17/122 Frame 18/122
F A g Hac
Examples o T Examples o T

Physical networks Interaction networks

Examples of

Complex Networks » The BlOgOSphere

Examples of
Complex Networks

» River networks
» Neural networks
» Trees and leaves
» Blood networks

» The Internet
» Road networks
» Power grids

» Biochemical
networks

» Gene-protein
networks

» Food webs: who
eats whom

» The World Wide
Web (?)
» Airline networks

» Call networks
(AT&T) datamining.typepad.com (i)

Frame 19/122 » The Media Frame 20/122

» Distribution (branching) versus redistribution
(cyclical)

F Dae
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http://datamining.typepad.com

Examples

The Structure of Romantic and Sexual Relations at "JefTerson High School

Interaction networks:

social networks g, P
b SN L )
i FrR e K s e
» Snogging e Xg N ¥ %\ 7
. . S, e, <3 b 8
» Friendships .*”,?*_,;,-g;‘h
‘ R —
. ‘uh" Sh 1
» Acquaintances 7 e Y A
» Boards and %
directors
» Organizations

» facebook (H)

twitter (Hﬂ), (Bearman et al., 2004)

» ‘Remotely sensed’ by: email activity, instant
messaging, phone logs (*cough®).

Examples
Relational networks

» Consumer purchases
(Wal-Mart: ~ 1 petabyte = 10'° bytes)
» Thesauri: Networks of words generated by meanings
» Knowledge/Databases/Ideas
» Metadata—Tagging: del.icio.us (H) flickr (H)

common tags cloud | list

community daily dictionary education encyCIOpedia

english free imported info information internet knowledge
learning  news reference research resource
resources search tools useful web web2.0 WiIKi
wikipedia

Overview of
Complex Networks

Examples of
Complex Networks

Frame 21/122
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Overview of
Complex Networks

Examples of
Complex Networks

Frame 23/122
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Examples
The Structure of Romantic and Sexual Relations at " JefTerson High School”
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Fach circle represents a student and lines connecting students represent romantic relations cccuring within the 6 months

preceding the interview, Numbers under the figure count the number of times that pattern was observed (i.¢. we found 63
pairs unconnected to anyone else)

Clickworthy Science:

Bollen et al.

(5]

Overview of
Complex Networks

Examples of
Complex Networks

Frame 22/122
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Examples of
Complex Networks
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http://www.facebook.com
http://www.twitter.com
http://del.icio.us
http://www.flickr.com

A notable feature of large-scale networks:

» Graphical renderings are often just a big mess.

< Typical hairball
» number of nodes N =500
» number of edges m = 1000

» average degree (k) =4

» And even when renderings somehow look good:
“That is a very graphic analogy which aids
understanding wonderfully while being, strictly
speaking, wrong in every possible way”
said Ponder [Stibbons] —Making Money, T. Pratchett.

» We need to extract digestible, meaningful aspects.

Properties

1. Degree distribution Py

» Py is the probability that a randomly selected node
has degree k

» Big deal: Form of Py key to network’s behavior
» ex 1: Erdés-Rényi random networks have a Poisson
distribution:
Pr = e (k) /Kl
> ex 2: “Scale-free” networks: Py oc k=7 = ‘hubs’
» We’ll come back to this business soon...

Overview of
Complex Networks

Properties

Some key features of real complex networks:

Complox Networks » Degree » Concurrency
distribution » Hierarchical
» Assortativity scaling
» Homophily » Network distances
» Clustering » Centrality
» Motifs » Efficiency
» Modularity » Robustness

» Coevolution of network structure
and processes on networks.

Frame 25/122

F Dae

Overview of
Complex Networks

Properties

2. Assortativity/3. Homophily:

Properties of
Complex Networks

» Social networks: Homophily (fH) = birds of a feather

» e.g., degree is standard property for sorting:
measure degree-degree correlations.

» Assortative network:'®l similar degree nodes
connecting to each other.

» Often social: company directors, coauthors, actors.

» Disassortative network: high degree nodes
connecting to low degree nodes.

» Often techological or biological: Internet, protein
interactions, neural networks, food webs.

Frame 27/122
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Overview of
Complex Networks

Properties of
Complex Networks

Frame 26/122
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Overview of
Complex Networks

Properties of
Complex Networks

Frame 28/122
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http://en.wikipedia.org/wiki/Homophily

Properties

4. Clustering:

» Your friends tend to know each other.
» Two measures:

Zj1j2€J\/" 4>
_ i W [28]
Cy K(ki—1)/2 | due to Watts & Strogatz

3 X #triangles
Co=—7T"—"-—7"—
#triples
» C; is the average fraction of pairs of neighbors who
are connected.
» Interpret C, as probability two of a node’s friends
know each other.

due to Newman['°!

Properties

6. modularity:

8
2

IS

i
A
"‘v
7

Clauset et al., 2006 [¢): NCAA football

Con?r;/IZ;Vil\?;vt\s:)rks PI’OpertieS

Properties of 5 Motlfs

Complex Networks

» e.g., Feed Forward Loop:

» Small, recurring functional subnetworks

a feedforward loop

Shen-Orr, Uri Alon, et al.?'!

Frame 29/122

F Dae

Cor?rlllz;vﬁgt\sgrks PI’OpertieS

Properties of

Complex Networks 7. Concurrency:

during contact!'®!

Beware cumulated network data!

Frame 31/122

F Dae

» Transmission of a contagious element only occurs

» Rather obvious but easily missed in a simple model
» Dynamic property—static networks are not enough
» Knowledge of previous contacts crucial

4

Overview of
Complex Networks

Properties of
Complex Networks

Frame 30/122
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Overview of
Complex Networks

Properties of
Complex Networks

Frame 32/122
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Properties

8. Horton-Strahler stream ordering:

» Metrics for branching networks:
» Method for ordering streams hierarchically
» Reveals fractal nature of natural branching networks
» Hierarchy is not pure but mixed (Tokunaga). 2% 10!
» Major examples: rivers and blood networks.

(a) (b) (¢)

» Beautifully described but poorly explained.

Properties

9. Network distances:
(c) Network diameter d,.:

» Maximum shortest path length in network.

(d) Closeness dy = [, d;~"/(5)] "

» Average ‘distance’ between any two nodes.
» Closeness handles disconnected networks (dj = o)
» d, = oo only when all nodes are isolated.

Overview of
Complex Networks

Properties of
Complex Networks

Frame 33/122
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Overview of
Complex Networks

Properties of
Complex Networks

Frame 35/122

F Dae

Properties

9. Network distances:

(a) shortest path length dj:

>

Fewest number of steps between nodes i and j.

» (Also called the chemical distance between i/ and j.)

(b) average path length (dj):

» Average shortest path length in whole network.
» Good algorithms exist for calculation.
» Weighted links can be accommodated.

Properties

10. Centrality:

|

Many such measures of a node’s ‘importance.

» ex 1: Degree centrality: k;.

ex 2: Node /i’s betweenness
= fraction of shortest paths that pass through /.

ex 3: Edge (’s betweenness
= fraction of shortest paths that travel along /.

ex 4: Recursive centrality: Hubs and Authorities (Jon
Kleinberg ')

Overview of
Complex Networks

Properties of
Complex Networks

Frame 34/122
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Overview of
Complex Networks

Properties of
Complex Networks

Frame 36/122
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Overview Key Points: Overview Key Points (cont.):

» The field of complex networks came into existence in g Orzv'ﬁ l:ﬁ;;)rnnectlons with the vast extant field of
the late 1990s. - grap Y- o

» Explosion of papers and interest since 1998/99. > But fQCUS on dynamics Is more ofa

o physics/stat-mech/comp-sci flavor.

» Hardened up much thinking about complex systems. » Two main areas of focus:

> Specific focus on networks that are llarge—scale, _ 1. Description: Characterizing very large networks
sparse, natural or man-made, evolving and dynamic, 2. Explanation: Micro story = Macro features
and (crucially) measurable.

_ _ » Some essential structural aspects are understood:
» Three main (blurred) categories: degree distribution, clustering, assortativity, group
1. Physical (e.g., river networks),

5 | onal | il networks) structure, overall structure,...
. Interactiona e.d., social networks), . . .
3. Abstract (e.g., thesauri). » Still much work to be done, especially with respect to

dynamics...

Nutshell

Models

Frame 37/122

F Dae

Overview of
Complex Networks

Models

Frame 38/122

F Dae

Overview of
Complex Networks

Some important models: Generalized random networks:

» Arbitrary degree distribution Py.

» Create (unconnected) nodes with degrees sampled
from Py.

» Wire nodes together randomly.

» Create ensemble to test deviations from
randomness.

generalized random networks Basic models of
complex networks

scale-free networks

small-world networks

statistical generative models (p*)

generalized affiliation networks

o s~

Frame 39/122 Frame 41/122

F Dae F Dae




Overview of

Building random networks: Stubs Complex Networks Building random networks: First rewiring S B

Phase 1:

» |dea: start with a soup of unconnected nodes with
stubs (half-edges):

1Y

II II \T/Y+ ! III » Randomly select stubs

(not nodes!) and

Phase 2:

» Now find any (A) self-loops and (B) repeat edges and
randomly rewire them.

A) (B) ><>/<
» Being careful: we can’t change the degree of any

node, so we can’t simply move links around.

connect them. » Simplest solution: randomly rewire two edges at a

% H} } } } » Must have an even time.
oot number of stubs.
% ! ! I}H } } H » Initially allow self- and
repeat connections. Frame 42/122 Frame 43/122
&F LA 5 Yoo
General random rewiring algorithm o Sampling random networks o T
i a2
» Randomly choose two edges.
(Or choose problem edge and Phase 2
a random edge)
» Check to make sure edges » Use rewiring algorithm to remove all self and repeat
are disjoint. loops.
Phase 3:

» Randomize network wiring by applying rewiring
algorithm liberally.

» Rule of thumb: # Rewirings ~ 10 x # edges!'’.

» Rewire one end of each edge.

» Node degrees do not change.

» Works if e; is a self-loop or
repeated edge.

» Same as finding on/off/on/off
4-cycles. and rotating them. Frame 44122

Frame 45/122
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Scale-free networks o s

» Networks with power-law degree distributions have
become known as scale-free networks.

» Scale-free refers specifically to the degree
distribution having a power-law decay in its tail:

Py ~ k™7 for ‘large’ k

» One of the seminal works in complex networks:
Laszlo Barabasi and Reka Albert, Science, 1999:
“Emergence of scaling in random networks” [°!

» Somewhat misleading nomenclature...

Frame 47/122

F Dae

Random networks: largest components o

v=25 y=25 y=25 =25
(ky=1.8 (k) =2.05333 (k) = 1.66667 (k) =1.92
v=25 =25 =25 =25
(ky =16 (k) =1.50667 (k) =1.62667 (ky =18

Frame 49/122

F Dae

Scale-free networks

» Scale-free networks are not fractal in any sense.

» Usually talking about networks whose links are
abstract, relational, informational, ... (non-physical)

» Primary example: hyperlink network of the Web

» Much arguing about whether or networks are
‘scale-free’ or not. . .

Scale-free networks

The big deal:

» We move beyond describing networks to finding
mechanisms for why certain networks are the way
they are.

A big deal for scale-free networks:

» How does the exponent v depend on the
mechanism?

» Do the mechanism details matter?

Overview of
Complex Networks

Frame 48/122
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Overview of
Complex Networks

Frame 50/122
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BA m Od e | Con?r;/IZ;Vil\?;vt\s:)rks

Barabasi-Albert model = BA model.
Key ingredients:
Growth and Preferential Attachment (PA).
Step 1: start with mg disconnected nodes.
Step 2:
1. Growth—a new node appears at each time step
t=0,1,2,....
2. Each new node makes m links to nodes already
present.

3. Preferential attachment—~Probability of connecting to
ith node is  k;.

In essence, we have a rich-gets-richer scheme.

v

v

v Yy

v

Frame 51/122

F Dae

Overview of
Complex Networks

Approximate analysis

» When (N + 1)th node is added, the expected
increase in the degree of node i is

Kin
——
S k(1)

» Assumes probability of being connected to is small.

» Dispense with Expectation by assuming (hoping) that
over longer time frames, degree growth will be
smooth and stable.

> Approximate ki ni1 — Kin With $tk;

E(King1 — kin) = m

d k()
4y =t
dt S k(1)

Frame 53/122

where t = N(t) — mp.
F Dae

BA model

» Definition: Ak is the attachment kernel for a node
with degree k.

» For the original model:
A=k

» Definition: Paach(K, t) is the attachment probability.
» For the original model:

ki(t) ki(t)

N - kmax
SRR e k()

Pattach(nOde i, t) ==

where N(t) = my + t is # nodes at time ¢
and N(t) is # degree k nodes at time t.

Approximate analysis

» Deal with denominator: each added node brings m

new edges.
N(t)

2 k(t) =2tm
j=1

» The node degree equation now simplifies:

d ki(t) ki(t)
it = MEwD o M ome
SO k(1)

1
= Etki(t)

» Rearrange and solve:

dki(t) _ dt 1/2
ki(t) — 2t (h) =ait

» Nextfindg;...

Overview of
Complex Networks

Frame 52/122
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Approximate analysis o s
Pp y

» Know ith node appears at time

. i—mg fori> mg
hsart 70 fori < mg

» So for i > mg (exclude initial nodes), we must have

1/2

t,' ,start

» All node degrees grow as t'/2 but later nodes have
larger {; sare Which flattens out growth curve.

» Early nodes do best (First-mover advantage).

Frame 55/122

F Dae

Degree distribution N

» So what’s the degree distribution at time t?
» Use fact that birth time for added nodes is distributed

uniformly:
dti start
Pr(ti,sta.rt)dti,start = 71,
» Also use
1/2 met
ki(t) =m = b start = .
I( ) <ti,start> hetart ki(t)2
Transform variables—Jacobian:
dti,stan _ mzt
dk; ki(t)3"

Frame 57/122

F Dae

Approximate analysis

20,

15
0, a3
> Zti,start =

1,2,5, and 10.

Degree distribution

>
Pl‘(k,')dk,' = Pr(ti,start)dti,start
>
= Pr(ti,start)dki dili,ls:ﬁ
>
1, Pt
St k(3
> 2
m
= Zde,’
>
X k,-73dk,'.

Overview of
Complex Networks

Frame 56/122
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Overview of
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Overview of
Complex Networks

Degree distribution Examples

» We thus have a very specific prediction of
Pr(k) ~ k=7 with v = 3.
» Typical for real networks: 2 < v < 3. WWW  ~ ~ 2.1 for in-degree
» Range true more generally for events with size Movi WWW- = 2'45 for out-degree
distributions that have power-law tails. Words (g;nneoi;::?) ?y - 22
» 2 <~ < 3: finite mean and ‘infinite’ variance (wild)
» In practice, v < 3 means variance is governed by The Internets is a different business...

upper cutoff.
» ~ > 3: finite mean and variance (mild)

Frame 59/122 Frame 60/122

F DA F DA
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Overview of
Complex Networks

Real data Things to do and questions

» Vary attachment kernel.

- o Apim [3].
From Barabasi and Albert’s original paper » Vary mechanisms:

107 & 10 i
. B 1. Add edge deletion
10 o N 0" 2. Add node deletion
<1 " 3. Add edge rewiring
Ty * . 1 T » Deal with directed versus undirected networks. T
10* 10° |0t » Important Q.: Are there distinct universality classes
o W N e R for these networks?
e e e e e e ° » Q.: How does changing the model affect v?
Fig. 1. The distribution f i f ivities f jous |, ks. (A) A llaborati .
L A A RN sty S st s » Q.: Do we need preferential attachment and growth?
325,729, (k) = 5.46 (6). (C) Power grid data, N = 4941, (k) = 2.67. The dashed lines have .
slopes (A) Vocior = 2.3, (B) Voo = 2130 (C) Vpopuer = 4 » Q.: Do model details matter?
» The answer is (surprisingly) yes. More later re Zipf.

Frame 61/122
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Overview of
Complex Networks

Preferential attachment

» Let’s look at preferential attachment (PA) a little more
closely.

» PA implies arriving nodes have complete knowledge
of the existing network’s degree distribution.

» For example: If Pycn(k) o< k, we need to determine
the constant of proportionality.

» We need to know what everyone’s degree is...
» PAis .. an outrageous assumption of node capability.
» But a very simple mechanism saves the day. ..

Frame 63/122

F Dae

Overview of
Complex Networks

Robustness

» System robustness and system robustness.

» Albert et al., Nature, 2000:
“Error and attack tolerance of complex networks” %!

Frame 65/122

F Dae

Preferential attachment through randomness

» Instead of attaching preferentially, allow new nodes
to attach randomly.

» Now add an exira step: new nodes then connect to
some of their friends’ friends.

» Can also do this at random.

» Assuming the existing network is random, we know
probability of a random friend having degree k is

Qk 0.8 kPk

» So rich-gets-richer scheme can now be seen to work
in a natural way.

Robustness

» Standard random networks (Erdds-Rényi)
versus
Scale-free networks

e av
T an o8 ™

Exponential Scale-free

Albert et al., 2000

Overview of
Complex Networks

Frame 64/122
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Robustness o e
12 2
E SE Failure o
b I S R » Plots of network
o 0 0 T imaoseseson ] diameter as a function
ot ] of fraction of nodes
DDDDDDDDDDDDDDDDD removed
000 ooz oot » ErdGs-Rényi versus :
b ‘ ERS . scale-free networks
N > blue symbols =
10 O@oo@“:iack 1 °0% ptack random removal
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Some problems for people thinking about o

people?:

How are social networks structured?

» How do we define connections?
» How do we measure connections?
» (remote sensing, self-reporting)

Small-world networks

What about the dynamics of social networks?

» How do social networks evolve?
» How do social movements begin?

» How does collective problem solving work?
>

How is information transmitted through social
networks?
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Robustness .

» Scale-free networks are thus robust to random
failures yet fragile to targeted ones.

» All very reasonable: Hubs are a big deal.

» But: next issue is whether hubs are vulnerable or not.

» Representing all webpages as the same size node is
obviously a stretch (e.g., google vs. a random
person’s webpage)

» Most connected nodes are either:

1. Physically larger nodes that may be harder to ‘target’
2. or subnetworks of smaller, normal-sized nodes.

» Need to explore cost of various targeting schemes.

Scale-free networks
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Social Search o

A small slice of the pie:

» Q. Can people pass messages between distant
individuals using only their existing social
connections?

» A. Apparently yes...

Small-world networks
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Milgram’s social search experiment (1960s)  Easit"

» Target person =

THE Man Wiae
S Boston stockbroker.
el 2 SO SRS sl S 2 ) e
S = » 296 senders from Boston and
WO RILID -
Omaha.
» 20% of senders reached
target.

Small-world networks

» chain length ~ 6.5.

Popular terms:

-qas‘-c‘nncgq

» The Small World
Phenomenon;

‘.“-.-*"“’"ﬂo

Tromas Brass, PH.D.
—_—

http://www.stanleymilgram.com

» “Six Degrees of Separation.”
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The problem N

Two features characterize a social ‘Small World’:
1. Short paths exist
and
2. People are good at finding them.

Small-world networks
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The problem

Lengths of successful chains:

18
15
From Travers and
12 Milgram (1969) in
~ Sociometry: [#4]
z° “An Experimental
6 Study of the Small
World Problem.”
3
0
123456 7 8 9101112

L

Social Search

Milgram’s small world experiment with e-mail [/

Events and News Vijay (Delni india) woked at an enginasfing firm with

......
Re

COLUMBIAUNIVERSITY, . e
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http://www.stanleymilgram.com

Social search—the Columbia experiment

» 60,000+ participants in 166 countries
» 18 targets in 13 countries including

» a professor at an lvy League university,
» an archival inspector in Estonia,
» atechnology consultant in India,
» a policeman in Australia,
and
» a veterinarian in the Norwegian army.

» 24,000+ chains

Social search—the Columbia experiment

» Motivation/Incentives/Perception matter.

» If target seems reachable

= participation more likely.
» Small changes in attrition rates

= large changes in completion rates
> e.g., \, 15% in attrition rate

= " 800% in completion rate
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Complex Networks

Small-world networks

Frame 76/122

F Dae

Overview of
Complex Networks

Small-world networks

Frame 78/122

F Dae

Social search—the Columbia experiment

v

Milgram’s participation rate was roughly 75%

v

v

370~5%x10°

v

= 384 completed chains (1.6% of all chains).

Social search—the Columbia experiment

Successful chains disproportionately used

» weak ties (Granovetter)

» professional ties (34% vs. 13%)
» ties originating at work/college
» target’s work (65% vs. 40%)

...and disproportionately avoided

» hubs (8% vs. 1%) (+ no evidence of funnels)
» family/friendship ties (60% vs. 83%)

Geography — Work

Email version: Approximately 37% patrticipation rate.
Probability of a chain of length 10 getting through:
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Social search—the Columbia experiment

Senders of successful messages showed
little absolute dependency on

» age, gender

» country of residence

» income

» religion

» relationship to recipient

Range of completion rates for subpopulations:
30% to 40%

Social search—the Columbia experiment

Mildly bad for continuing chain:

choosing recipients because “they have lots of friends” or
because they will “likely continue the chain.”

Why:

» Specificity important

» Successful links used relevant information.
(e.g. connecting to someone who shares same
profession as target.)

Overview of
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Social search—the Columbia experiment

Nevertheless, some weak discrepencies do exist...

An above average connector:

Norwegian, secular male, aged 30-39, earning over
$100K, with graduate level education working in mass
media or science, who uses relatively weak ties to people
they met in college or at work.

Small-world networks

A below average connector:

Italian, Islamic or Christian female earning less than $2K,
with elementary school education and retired, who uses
strong ties to family members.
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Social search—the Columbia experiment

Basic results:

» (L) = 4.05 for all completed chains

» L, = Estimated ‘true’ median chain length (zero
attrition)

» Intra-country chains: L, =5
» Inter-country chains: L, =7
» Allchains: L, =7

» Milgram: L, ~ 9

Small-world networks
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The social world appears to be small...

» Connected random networks have short average
path lengths:

(dag) ~ log(N)
N = population size,
dag = distance between nodes A and B.
» But: social networks aren’t random...

Non-randomness gives clustering:

NSNS
ZNZNZNZNEN
ANZNZNZNND
ZNZNZN2NEN
N NN NN
ZNZNZNZNEN
N NN NN
ZNZNZ2NZNEN
NN NN
ZANSNZNZNEN

dag = 10 — too many long paths.

A

Simple socialness in a network:

Need “clustering” (your
friends are likely to
know each other):

ZBNANANDSZN
2NN D
NG IBNEN
NN IX N IN
NN NN
NP SBNZANN%
ZNANZNZNEN

S

A

Now have dag = 3 (d) decreases overall
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Small-world networks

Introduced by Watts and Strogatz (Nature, 1998) [°¢!
“Collective dynamics of ‘small-world’ networks.”

Small-world networks were found everywhere:

» neural network of C. elegans,

» semantic networks of languages,
» actor collaboration graph, Smallworid newors
» food webs,

» social networks of comic book characters,...

Very weak requirements:
» local regularity + random short cuts
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The structural small-world property:

TEome g g gt T
Fo o |

m]
sl ° C(p)/ C(0) © ]

.
- D -
0.6 - -
L . i
04 . = N
0.2 B L(p) / L(O) * . ] Small-world networks
b o

°
¢ o o o
0 Ll Ll Ll Y
0.0001 0.001 0.01 0.1 1

» L(p) = average shortest path length as a function of p

» C(p) = average clustring as a function of p
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Regular Small-world Random

Small-world networks

Increasing randomness
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Previous work—finding short paths o T

But are these short cuts findable?
Nope.

Nodes cannot find each other quickly S ——_
with any local search method.

Need a more sophisticated model...
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Previous work—finding short paths

» What can a local search method reasonably use?
» How to find things without a map?

» Need some measure of distance between friends
and the target.

Some possible knowledge:

» Target’s identity

» Friends’ popularity

» Friends’ identities

» Where message has been

Previous work—finding short paths

Kleinberg’s Network:

1. Start with regular d-dimensional cubic lattice.

2. Add local links so nodes know all nodes within a
distance q.

3. Add m short cuts per node.
4. Connect / to j with probability

pijj X,'j_a.

» o = 0: random connections.
» « large: reinforce local connections.
» o = d: same number of connections at all scales.

Overview of
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Previous work—finding short paths

Jon Kleinberg (Nature, 2000) !'#!
“Navigation in a small world.”

Allowed to vary:

1. local search algorithm
and
2. network structure.

Previous work—finding short paths

Theoretical optimal search:

» “Greedy” algorithm.
» Same number of connections at all scales: a = d.

Search time grows slowly with system size (like log? N).

But: social networks aren’t lattices plus links.
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Previous work—finding short paths

» If networks have hubs can also search well: Adamic
etal. (2001)!"]
P(k;) kf”
where k = degree of node i (number of friends).

» Basic idea: get to hubs first
(airline networks).

» But: hubs in social networks are limited.

Small-world networks
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Models

One approach: incorporate identity.

Identity is formed from attributes such as:
» Geographic location
» Type of employment
» Religious beliefs
» Recreational activities.

Groups are formed by people with at least one similar
attribute.

Attributes < Contexts « Interactions < Networks.
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The problem

If there are no hubs and no underlying lattice, how can
search be efficient?

Which friend of a is closest
to the target b?

What does ‘closest’ mean?

- What is ‘social distance’?

Social distance—RBipartite affiliation networks

[CO ntexts]

[individuals |

unipartite
network

Bipartite affiliation networks: boards and directors,
movies and actors.
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Social distance—Context distance o s Models .

occupation

Distance between two individuals x; is the height of

lowest common ancestor.

education health care

kindergarten
teacher

high school
teacher

doctor

Generalized affiliation
networks

Generalized affiliation
networks

X,'j:3,X,'k:1,X,'V:4.

a b c d e
Frame 101/122 Frame 102/122
F Dae F Dae
M d I Overview of M d I Overview of
O e S Complex Networks O e S Complex Networks

Generalized affiliation networks
geography occupation age

R

» Individuals are more likely to know each other the
closer they are within a hierarchy.

» Construct z connections for each node using

pjj = cexp{—ax;}.

Generalized affiliation
networks

Generalized affiliation
networks

» o = 0: random connections.
» « large: local connections.

a b c d e

» Blau & Schwartz!*, Simmel!??], Breiger!’!, Watts et
al.l?’l
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The mOdel Complex Networks
h=1 h=2
[ ] [ ]

h=3

GDED A ED D ED D ED
ij
Social distance:

— min x/
yj = min.xj.

vi=[11 1]T,\7j:[841]T

1 _ 2 _ 3 _
x,-/-_4, x,-j_3, x,./._1.
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The model

» Individuals know the identity vectors of
1. themselves,
2. their friends,
and
3. the target.
» Individuals can estimate the social distance between
their friends and the target.

» Use a greedy algorithm + allow searches to fail
randomly.
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The model

Triangle inequality doesn’t hold:

h=1 h=2
G EDEH D ED Y EH G G EH Y Y EH &Y Y DY
i LK o] k

Yk =4>Yyi+yx=1+1=2

The model-results—searchable networks

a = 0 versus o = 2 for N ~ 10°;
-0.5

,1M
o
o' -15
o
-2

"1 3 5 7 9 11 13 15
H

q=r
q<r
r=20.05

g = probability an arbitrary message chain reaches a
target.

» A few dimensions help.

» Searchability decreases as population increases.

» Precise form of hierarchy largely doesn’t matter.
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The model-results o s Social search—Data .

Milgram’s Nebraska-Boston data:

Model parameters:

1 — Adamic and Adar (2003)
_ 108
10 » N =10°, » For HP Labs, found probability of connection as
~ 8 Kl » z =300, g =100, function of organization distance well fit by
€ 6 » b=10, exponential distribution.
¢ »a=1H=2; » Probability of connection as function of real distance
2 x 1/r.
]
12345678 9101112131415
L > <Lm0del> =~ 67
> Ldata ~ 65
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Social Search—Real world uses o Social Search—Real world uses o T

Tags create identities for objects

Website tagging: http://www.del.icio.us
(e.g., Wikipedia)

Photo tagging: http://www.flickr.com

Dynamic creation of metadata plus links between
information objects.

Folksonomy: collaborative creation of metadata

Recommender systems:

» Amazon uses people’s actions to build effective
connections between books.

» Conflict between ‘expert judgments’ and
tagging of the hoi polloi.

vV V. v v Vv

v
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[@ L. Adamic, R. Lukose, A. Puniyani, and B. Huberman.

Search in power-law networks.
Phys. Rev. E, 64:046135, 2001. pdf (&)

v

Bare networks are typically unsearchable.

Paths are findable if nodes understand how network
is formed.

» Importance of identity (interaction contexts).
» Improved social network models.
>
>

v
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Error and attack tolerance of complex networks.
Nature, 406:378-382, July 2000. pdf (&)

[ A.-L. Barabasi and R. Albert. References
Emergence of scaling in random networks.
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[1 P M. Blau and J. E. Schwartz.
Crosscutting Social Circles.
Academic Press, Orlando, FL, 1984.

Construction of peer-to-peer networks.
Construction of searchable information databases.

Frame 113/122 Frame 114/122

F DA F DA

Overview of

Refe renCeS | I Con?p\)llz;\/il\?;vt\sgrks Refe renCeS | I I Complex Networks

[§ J. Bollen, H. Van de Sompel, A. Hagberg,

L. Bettencourt, R. Chute, M. A. Rodriguez, and [4 P.S.Dodds, R. Muhamad, and D. J. Watts.

B. Lyudmila. An experimental study of search in global social
Clickstream data yields high-resolution maps of networks.
science. Science, 301:827-829, 2003. pdf ()

PLoS ONE, 4:¢4803, 2009. pdf (H)

[§ S. Bornholdt and H. G. Schuster, editors.
Handbook of Graphs and Networks.
Wiley-VCH, Berlin, 2003.

[§ R.L.Breiger.
The duality of persons and groups.
Social Forces, 53(2):181-190, 1974. pdf (&)

[1 P S.Dodds and D. H. Rothman.
Unified view of scaling laws for river networks.
Physical Review E, 59(5):4865-4877, 1999. pdf (&)

Refarences [d S.N. Dorogovtsev and J. F. F. Mendes. R
Evolution of Networks.
Oxford University Press, Oxford, UK, 2003.

[ M. Gladwell.
The Tipping Point.
Little, Brown and Company, New York, 2000.

W A. Clauset, C. Moore, and M. E. J. Newman.
Structural inference of hierarchies in networks, 2006.

pdf (E)

Frame 115/122

F Dae

Frame 116/122

F Dae



http://www.uvm.edu/~pdodds/research/papers/others/2001/adamic2001a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2000/albert2000a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1999/barabasi1999a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2009/bollen2009a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1974/breiger1974a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2006/clauset2006a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2003/dodds2003b.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1999/dodds1999a.pdf

References IV

[d A.Halevy, P. Norvig, and F. Pereira.
The unreasonable effectiveness of data.
IEEE Intelligent Systems, 24:8—12, 2009. pdf (&)

[ J. Kleinberg.
Navigation in a small world.
Nature, 406:845, 2000. pdf (H)

[§ J. M. Kleinberg.
Authoritative sources in a hyperlinked environment.
Proc. 9th ACM-SIAM Symposium on Discrete
Algorithms, 1998. pdf (/)

[ M. Kretzschmar and M. Morris.
Measures of concurrency in networks and the spread
of infectious disease.
Math. Biosci., 133:165-95, 1996. pdf (&)

References VI

[§ S.S.Shen-Orr, R. Milo, S. Mangan, and U. Alon.
Network motifs in the transcriptional regulation
network of Escherichia coli.

Nature Genetics, pages 64—68, 2002. pdf (/H)

[ G.Simmel.
The number of members as determining the
sociological form of the group. .
American Journal of Sociology, 8:1—46, 1902.

[§ E. Tokunaga.
The composition of drainage network in Toyohira
River Basin and the valuation of Horton’s first law.
Geophysical Bulletin of Hokkaido University, 15:1—19,
1966.

Overview of
Complex Networks

References

Frame 117/122

F Dae

Overview of
Complex Networks

References

Frame 119/122

F Dae

[@ R. Milo, N. Kashtan, S. ltzkovitz, M. E. J. Newman,

[ J. Travers and S. Milgram.

Refe renCeS V Overview of

Complex Networks

and U. Alon.
On the uniform generation of random graphs with
prescribed degree sequences, 2003. pdf ()

M. Newman.
Assortative mixing in networks.
Phys. Rev. Lett., 89:208701, 2002. pdf (H©)

M. E. J. Newman.
The structure and function of complex networks.
SIAM Review, 45(2):167—256, 2003. pdf (i)

References

I. Rodriguez-lturbe and A. Rinaldo.
Fractal River Basins: Chance and Self-Organization.
Cambridge University Press, Cambrigde, UK, 1997.

Frame 118/122

F Dae

References VII o

An experimental study of the small world problem.
Sociometry, 32:425-443, 1969. pdf (&)

F. Vega-Redondo.
Complex Social Networks.
Cambridge University Press, 2007.

D. J. Watts.
Six Degrees. References
Norton, New York, 2003.

D. J. Watts, P. S. Dodds, and M. E. J. Newman.
Identity and search in social networks.
Science, 296:1302—-1305, 2002. pdf (B)

Frame 120/122

F Dae



http://www.uvm.edu/~pdodds/research/papers/others/2009/halevy2009a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2000/kleinberg2000a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1998/kleinberg1998a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1996/kretzschmar1996a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2003/milo2003a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2002/newman2002a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2003/newman2003a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2002/shen-orr2002a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/1969/travers1969a.pdf
http://www.uvm.edu/~pdodds/research/papers/others/2002/watts2002b.pdf

References VI

[§ D.J. Watts and S. J. Strogatz.
Collective dynamics of ‘small-world’ networks.
Nature, 393:440-442, 1998. pdf (E)

Overview of
Complex Networks

References

Frame 121/122

F Dae



http://www.uvm.edu/~pdodds/research/papers/others/1998/watts1998a.pdf

	Basic definitions
	Examples of Complex Networks
	Properties of Complex Networks
	Nutshell
	Basic models of complex networks
	Generalized random networks
	Scale-free networks
	Small-world networks
	Generalized affiliation networks

	References

