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Alternative distributions

There are other heavy-tailed distributions:

1. Lognormal
2. Stretched exponential (Weibull)
3. ... (Gamma)
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Lognormals and

lognormals irends

The lognormal distribution:

P(x) = L exp <—(In);a_2“)2>

XV2no

» Inx is distributed according to a normal distribution
with mean p and variance o.

» Appears in economics and biology where growth
increments are distributed normally.
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Empirical Confusability

Standard form reveals the mean p and variance o2 of the
underlying normal distribution:

_ )2
P = ()
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lognormals

Standard form reveals the mean p and variance o2 of the
underlying normal distribution:

For lognormals:

1.2 .
Miognormal = eﬂ+20 ) medlanlognormal - e,u’

2 > 2 2
Olognormal — (ea - 1)9 pto ; r-nOdeIognormal =e' 7.

All moments of lognormals are finite.
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Derivation from a normal distribution s

Take Y as distributed normally:
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Derivation from a normal distribution s

Take Y as distributed normally:

Empirical Confusability

>

\/2170dy exp <_(y - u)2>
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Derivation from a normal distribution s

Take Y as distributed normally:

Empirical Confusability

>

P(y)dy =

(v - u)2>

dy exp <— 552

1
\V2ro

SetY=InX:
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Derivation from a normal distribution s

Take Y as distributed normally:

Empirical Confusability

>

P(y)dy =

(v - u)2>

dy exp <— 552

1
\V2ro

Set Y =InX:
» Transform according to P(x)dx = P(y)dy:
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Derivation from a normal distribution s

Take Y as distributed normally:

Empirical Confusability

>

\/2170dy exp <_(y - u)2>

SetY=InX:

» Transform according to P(x)dx = P(y)dy:
>

dy
e A —
" /X =dy =dx/x
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Derivation from a normal distribution s

Take Y as distributed normally:

Empirical Confusability

>

P(y)dy =

(v - u)2>

dy exp <— 552

1
Voro
SetY=InX:

» Transform according to P(x)dx = P(y)dy:
>

%:1/x:>dy =dx /x
| 4
= P(x)dx = 1 ex <_(Inx—u)2> dx
- x\270 P 202
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Confusion between lognormals and pure e
power laws

Near agreement
over four orders
of magnitude!

0 2 4 6 8 10
|0910X

» For lognormal (blue), © =0 and o = 10.
» For power law (red), v =1 and ¢ = 0.03.
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Confusion

What'’s happening:

>

In P(x) = In{x\/%

exp <—

(Inx —py?

202

)}
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Confusion

What'’s happening:

>

InP(x) =1In { 552

1
XV2ero

_ 2
:_lnx_|n\/27r_u
202

exp <_('nx—u)2

)}
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Confusion Lognfc:irerﬁzlss and

What'’s happening:

Empirical Confusability

- RV
InP(x) =1In {X\/1270— exp <_W>}
= —Inx—In\/ﬂ_(ln;;“)z

1 2 v /1’2
= —53(Inx)?+ (?—1)|nx—|n\/§_272.
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Confusion Lognfc:irerﬁzlss and

What'’s happening:

(e 5]
] —Inx—In\/ﬂ_(lr”;_(;“)2

1

- - 202 (Inx) +<%_

12
1)Inx—|n\/§—ﬁ.
g

» = If 6?2 > 1and y,
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Confusion Lognfc:irerﬁzlss and

What'’s happening:

Empirical Confusability

> 2
00 =in{ e (-5 )
—Inx—In\/E—(lr”;_g_zﬂ)2
_ 21 (Inx)? +(:2—1)|nx—|n\/§—2’“;22.

» = Ifo? > 1 and p,
>

’ In P(x) ~ —Inx + const. ‘
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Empirical Confusability

» Expect -1 scaling to hold until (In x)? term becomes
significant compared to (In x).
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Confusion Lognfc:irerﬁzlss and

Empirical Confusability

» Expect -1 scaling to hold until (In x)? term becomes
significant compared to (In x).

» This happens when (roughly)
>

1 2 p
—55(Ix)? ~ 0.0 (; - 1) In x
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Confusion Lognfc:irerﬁzlss and

Empirical Confusability

» Expect -1 scaling to hold until (In x)? term becomes
significant compared to (In x).

» This happens when (roughly)
>

—2(17(Inx) ~ 0.05 (7 - 1)|nx

= 10949 X < 0.05 x 2(6 — ) logyg €
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Confusion Lognfc:irerﬁzlss and

Empirical Confusability

» Expect -1 scaling to hold until (In x)? term becomes
significant compared to (In x).

» This happens when (roughly)

| 4
1
55 (Ix)?  0.05 (7 - 1) In x
| 4
= 10949 X < 0.05 x 2(6 — ) logyg €
| 4

~ 0.05(c2 — 1)
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Confusion Lognfc:irerﬁzlss and

Empirical Confusability

» Expect -1 scaling to hold until (In x)? term becomes
significant compared to (In x).

» This happens when (roughly)

—L(mx) ~ 0.05 (7 - 1)|nx

202
| 4
= 10949 X < 0.05 x 2(6 — ) logyg €
>
~ 0.05(c2 — 1)
» = If you find a -1 exponent,

you may have a lognormal distribution...
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Generating lognormals: SO

Random Multiplicative

Random multiplicative growth:

>
Xny1 = Xp

where r > 0 is a random growth variable
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Random Multiplicative

Random multiplicative growth:

>
Xny1 = Xp

where r > 0 is a random growth variable
» (Shrinkage is allowed)
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Generating lognormals: SO

Random Multiplicative

Random multiplicative growth:

>
Xny1 = Xp

where r > 0 is a random growth variable
» (Shrinkage is allowed)
» In log space, growth is by addition:

INnx,11 =Inr+Inx,
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Generating lognormals: SO

Random Multiplicative

Random multiplicative growth:

>
Xny1 = Xp

where r > 0 is a random growth variable
» (Shrinkage is allowed)
» In log space, growth is by addition:

INnx,11 =Inr+Inx,

» = In X, is normally distributed
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Generating lognormals: SO

Random Multiplicative

Random multiplicative growth:

>
Xny1 = Xp

where r > 0 is a random growth variable

v

(Shrinkage is allowed)

v

In log space, growth is by addition:

INnx,11 =Inr+Inx,

v

= In x, is normally distributed

v

= Xp is lognormally distributed
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Lognormals or power laws?

» Gibrat!?l (1931) uses this argument to explain
lognormal distribution of firm sizes
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Lognormals or power laws?

» Gibrat!?l (1931) uses this argument to explain
lognormal distribution of firm sizes

» Robert Axtell (2001) shows a power law fits the data
very well ['!
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Lognormals or power laws? iionds
» Gibrat!?l (1931) uses this argument to explain
lognormal distribution of firm sizes S
» Robert Axtell (2001) shows a power law fits the data v
very well ['! N2
101
104
g’_ 107
10-10
107 1 10 102 103 104 105 1.0S

Firm size (employees)
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An explanation

» Axtel (mis)cites Malcai et al’s (1999) argument©! for
why power laws appear with exponent v ~ 1
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why power laws appear with exponent v ~ 1

» The set up: N entities with size x;(t)
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An explanation iionds

Random Multiplicative

» Axtel (mis)cites Malcai et al.s (1999) argument [/ for [
why power laws appear with exponent v ~ 1

» The set up: N entities with size x;(t)
» Generally:
X,'(t-|— 1) = I’X,‘(f)

where r is drawn from some happy distribution
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An explanation iionds

Random Multiplicative

» Axtel (mis)cites Malcai et al.s (1999) argument [/ for [
why power laws appear with exponent v ~ 1

» The set up: N entities with size x;(t)
» Generally:
xi(t+1) = rx(t)
where r is drawn from some happy distribution
» Same as for lognormal but one extra piece:
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An explanation Lognormals and

» Axtel (mis)cites Malcai et al.s (1999) argument [/ for  [EEHIEES
why power laws appear with exponent v ~ 1

» The set up: N entities with size x;(t)
» Generally:
Xi(t+1) = rx(t)
where r is drawn from some happy distribution
» Same as for lognormal but one extra piece:

» Each x; cannot drop too low with respect to the other
sizes:
Xi(t+ 1) = max(mxi(t), ¢ (x;))
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An explanation

Some math later...
Insert question 1, assignment 5 (H)
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An explanation

Some math later...

Insert question 1, assignment 5 (H)

>

Find P(x) ~ x~7
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An explanation Lognormals and

Some math later...

Insert question 1, assignment 5 (H)
| 4
Find P(x)~x""
| 4

(v=2)T (c/Ny—1—1

where N:(,y_ﬂ (c/Ny—1 = (c/N)
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http://www.uvm.edu/~pdodds/teaching/courses/2008-08UVM-300/docs/{2008-08UVM-300}assignment05.pdf

An explanation Lognormals and

Some math later...

Insert question 1, assignment 5 (H)
>
Find P(x) ~x™"
g 1
(v—2) [ (¢/N)—1 —1 ]
where N =
(v =1) L(c/N)=" = (¢/N)
>

_ _ (=2 -1
Now, if ¢/N < 1, N*(fy—1) [—(C/N)]
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An explanation Lognormals and

Some math later...

Insert question 1, assignment 5 (H)
>
Find P(x) ~x7
g 1
(v—2) { (¢/N)—1 -1 ]
where N =
(v—1) L(¢/N)—1 —(c/N)
’ (v—2) 1
Now, if c/N < 1, N= [ ]
/ (v—=1) [=(c/N)
" 1
Which gives v ~ 1+ e
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An explanation Lognormals and

Some math later...

Insert question 1, assignment 5 (H)
>
Find P(x) ~x7
g 1
(v—2) { (¢/N)—1 -1 ]
where N =
(v—1) L(¢/N)—1 —(c/N)
’ (v—2)
| =5 e
Now, if c/N < 1, N=
/ (v—=1) [=(c/N)
" 1
Which gives v ~ 1+ e

» Groovy... csmall = v~ 2
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The second tweak

Ages of firms/people/...
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» Allow the number of updates for each size x; to vary
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» Allow the number of updates for each size x; to vary
» Example: P(t)dt = ae—2!dt where t = age.
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» Allow the number of updates for each size x; to vary
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» Back to no bottom limit: each x; follows a lognormal
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The second tweak Lognormals and

Ages of firms/people/... may not be the same

» Allow the number of updates for each size x; to vary
» Example: P(t)dt = ae—2!dt where t = age.

» Back to no bottom limit: each x; follows a lognormal
» Sizes are distributed as "]

© 1 (Inxu)2>
P(x)= [ ae @ ———¢e (— dt
) /tzo xv2rt ® 2t

(Assume for this example that o ~ t and p = Inm)
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The second tweak Lognormals and

Ages of firms/people/... may not be the same
» Allow the number of updates for each size x; to vary
» Example: P(t)dt = ae~2dt where t = age.
» Back to no bottom limit: each x; follows a lognormal
» Sizes are distributed as "]

© 1 (Inxu)2>
P(x)= [ ae @ ———¢e (— dt
) /tzo xv2rt ® 2t

(Assume for this example that o ~ t and p = Inm)
» Now averaging different lognormal distributions.
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Averaging lognormals SO

_ [T e ] _(Inx/m)?
P(x)_/toae x\/ZTrteXp< o )dt

» Insert question 2, assignment 5 (&)
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Averaging lognormals

P(x) = /Oo ae ¥
() t=0 Xy 2nt

» Insert question 2, assignment 5 (&)

Lognormals and

friends

exp <—(In Xz/tm)2> dt

» Some enjoyable suffering leads to:

P(X) o X—1e—w/2>\(lnx/m)2
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http://en.wikipedia.org/wiki/Pareto_distribution

The second tweak

P(X) o )(716,7\/2>\(Inx/m)2

» Depends on sign of In x/m, i.e., whether x/m > 1 or
x/m<1.
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http://en.wikipedia.org/wiki/Pareto_distribution

The second tweak Lognormals and

P(x) oc x~1 e~ V2NInx/m)?

» Depends on sign of In x/m, i.e., whether x/m > 1 or

x/m<1.
>
P(X)O<{ XTHE ifx/m <
x1=V2X it x/m > 1
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P(X) o )(716,7\/2>\(Inx/m)2

» Depends on sign of In x/m, i.e., whether x/m > 1 or

x/m<1.
>
P(X) { x~1HV2A it x/m < 1
x1=V22 it x/m > 1

» ‘Break’ in scaling (not uncommon)
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The second tweak ionds

P(X) o )(716,7\/2>\(Inx/m)2

» Depends on sign of In x/m, i.e., whether x/m > 1 or

x/m<1.
>
—14+v2X
P(x) X - !fx/m< 1
x1=V2A it x/m > 1
» ‘Break’ in scaling (not uncommon)

v

Double-Pareto distribution (H)
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The second tweak ionds

>
P(X) o )(716,7\/2>\(Inx/m)2
» Depends on sign of In x/m, i.e., whether x/m > 1 or
x/m<1.

>

P(X) x~1HV2A it x/m < 1

x1=V22 it x/m > 1

» ‘Break’ in scaling (not uncommon)

v

Double-Pareto distribution (H)
First noticed by Montroll and Shlesinger & °!

v
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The second tweak Lognormals and

P(X) o )(716,7\/2>\(Inx/m)2
» Depends on sign of In x/m, i.e., whether x/m > 1 or
x/m<1.
P(X) x~1HV2A it x/m < 1
x1=V22 it x/m > 1

‘Break’ in scaling (not uncommon)
Double-Pareto distribution (H)

First noticed by Montroll and Shlesinger & °!

vV v vy

Later: Huberman and Adamic [ °!: Number of pages
per website
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» Random Multiplicative Growth leads to lognormal
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» Enforcing a minimum size leads to a power law tail
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Quick summary of these exciting e
developments

» Lognormals and power laws can be awfully similar

» Random Multiplicative Growth leads to lognormal
distributions

» Enforcing a minimum size leads to a power law tail

» With no minimum size but a distribution of lifetimes,
the double Pareto distribution appears
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Quick summary of these exciting ends
developments

» Lognormals and power laws can be awfully similar

» Random Multiplicative Growth leads to lognormal
distributions

» Enforcing a minimum size leads to a power law tail

» With no minimum size but a distribution of lifetimes,
the double Pareto distribution appears

» Take home message: Be careful out there...
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