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Modeling Dynamical Systems

Protein A
ipmmmc
Gene A Gene B
Target T ,
System Protein B
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t
= A2 _
Sample dA/dt = A2+ B-C
Model dB/dt = -0.1B
dC/dt = C3 + A/(A+1)
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Encoding Models

Possible sin(a)
branch cos(a)
nodes: plus(a,b)
minus(a,b)
mult(a,b)
div(a,b)
pow(a,b)
Hill(a,b,c)
Possible X,Y,...
terminal nodes 0.1,-3.0,...

dx/dt = (0.8 + x) * sin(x)
dy/dt=x/y

x(0)
y(0)




Optimizing Models

4 dx/dt=1.4(0.8+x)
dy/dt = 0.2 / (x+y)

dx/dt = (0.8 + x) * sin(x)
dy/dt=x/y




Optimizing Models: Hill Climber

t t Children
[ dA/dt = A2+ B-C f f f parents | dA/dt = A2-0.1A
dB/dt = -0.1B o - - eee —| dB/dt = -0.15B
dC/dt = C3 + A/(A+1) s s dC/dt = A/(A+1)
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Inferring Coupled Differential Equations
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dG/dt = 0.001 + A%/(A2+12) - 0.01G
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dA/dt= G(L/(L+1)—-A(A+1))
0
diL/dt= -GL/(L+1)
0
= b-Galactosidase
= Allolactose
= Lactose



Inferring Coupled Differential Equations
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dA/dt= G(L/(L+1)—-A(A+1)) dA/dt= G(L/(L+1)—-A(A+1))
0 G(L/(L+1) = A(A+1))
diL/dt= -GL/(L+1) diL/dt= -GL/(L+1)
0 0
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Partitioning

x(0)
I I
y(0)

Model error = (MSE, + MSE,) / 2 t

dx/dt = 2x + 3y
dy/dt=-3x -y



Partitioning

x(0)
I I
y(0)

Model error = (MSE, + MSE,) / 2 t

dx/dt = 2x + 3y
dy/dt=-3x -y

x(0)
y(0)

Model error, = MSE, t



Partitioning
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dB/dt = -0.1B o - - eee —| dB/dt = -0.15B
dC/dt = C3 + A/(A+1) s s dC/dt = A/(A+1)
dA/dt = 0.1 f f f \ dA/dt = A2-0.1A
dB/dt = 0.2 — S S eee — dB/dt = -0.15B
< dC/dt = 0.3 dC/dt = A/(A+1)
o
o
° t t
dA/dt = A-B-C i i f dA/dt = A2-0.1A
dB/dt = 0.14B N > — o0® — dB/dt = -0.15B
dC/dt = A%-B?-C? dC/dt = A/(A+1)

\

15 models



Partitioning
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Snipping

[0.3,0.35]
[0.3,0.35]

Ronald Fisher:
population biology,
modern statistics:

The Genetical Theory
of Natural Selection (1930):

“Probability of a mutation
being favorable is inversely
proportional to its magnitude.”




EEA for General Automated Modeling

Candidate models I Candidate tests
% =2v* +logx %= ﬂﬁﬁ%
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b The inference process c The inference process
generates several different generates several possible
candidate symbolic models Inference Process new candidate tests that
that match sensor data disambiguate competing
collected while performing models (make them disagree
previous tests. It does not in their predictions).

know which model is
correct. | /&\ Initial
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a Theinference process physically performs an
experiment by setting initial conditions, perturbing the
hidden system and recording time series of its behavior.
Initially, this experiment is random; subsequently, it is
the best test generated in step c.

Bongard, J and Lipson, H (2007). Automated reverse engineering of nonlinear
dynamical systems. Proceedings of the National Academy of Sciences, to appear.



Application: lac operon in E. coli
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The /ac operon from E. coli
(G = concentration of beta-galactosidase; A = allolactose; L = lactose)

Target
system

dG/dt
dA/dt
dL/dt

= A2/(A2+1) - 0.01G + 0.001
= G( L/(L+1) - A/(A+1))
= _GL/(L+1)

Best model

dG/dt
dA/dt
dL/dt

= 0.96A2/(0.96A2+1)
= G( L/(L+1) - A/(A+1))
= _GL/(L+1)




Application: Ecological data

Historical data reporting approximated populations of snhowshoe hare (H) and
Canadian lynx (L)
Target
System 60t
0 \ —__HARE
120} D
Best dH/dt =3.42x106-67.82H - 10.97L
model | dL/dt = 3.10x10° + 32.66H - 63.16L




Application: Mechanical pendulum

00 ‘ -1.57rad \ -2.67rad
— >

dé/dt = 1.004w + 0.0001 dé/dt = 1.0039w - 0.0003
dw/dt = -19.43sin(1.1046+0) dw/dt = -22.61sin(1.1016-2.673)

dé/dt = 1.008w + 0.0028
dw/dt =-19.43sin(1.00096-1.575)

de/dt = w
dw/dt = -9.8Lsin(0)

|dealized model for a single pendulum with no friction



(a) do/dt=0.45*-7.63
dw/dt = sin(6-w) — cos(B8/ (W / 1))

(b) de/dt = -3.23 )
dw/dt = cos(sin(w)) >/ cos(8) / -2.09 / w

(c) do/dt=1.14w

dw/dt = cos(sin(w)) o " 278 -w)

[ w

(d) de/dt = w —((((0.33+8) / w) / w)+6.78t)
dw/dt = sin(w + (8-0.26) / (t+2.04) + 8.94 )

(g) do/dt = w
dw/dt = -5.78 sin(sin(8)) - ©

(h) d8/dt = w
dw/dt = -1.54 8 sin(0.58w)/0.38

(i) de/dt=w
dw/dt = sin(-13.37/7.85/t)/0.38

(j) der/dt=w +t-t
dw/dt = sin(-16.3/7.85/ sin(8) ) / 0.38

(€) do/dt = w — (0.33+ B/w) / (W+6.781) (K) do/dt = w

dw/dt = sin(w + (8-0.27) / (t+2.04) + 8.94) dw/dt = sin( -16.26 /8.3 / sin(8) ) / 0.21
(f) de/dt = w — (3.08/2t 5 +3.89t+t) (I) de/dt=w

dw/dt = sin(w + (8+t) / (t+2.04) + 8.94 ) dw/dt = sin(t-t) — 9.79987sin(8)
Fa(3sec) rtolsecy ~ [N [c(15isect =] [d(26.8s86F ——— [e (1 min) f (5 min)
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System 1 System 2 System 3
2 dx, /dt= -3x,x, -3%,X, +2X,X, dx,/dt=-3X X, +3X,X, +3X,Xy dx, /dt=3X, X -X4X5 -X,Xqo
variables dxfdt= =X X, -3X, X, -2X,X, dx,/dt=-3X,X;-2X, X, +2XoX, dx,/dt=X,X; +3X,Y, -X,X,
Success 20% (no partitioning) 0% (no partitioning) 0% (no partitioning)
rate 100% (partitioning) 96.7% (partitioning) 100% (partitioning)
3 dx,/dt=-3X X3 -2XoX5 -3X3X3 dx,/dt=-X;X, +X;X3 -X,X5 dx,/dt=-3X ;X5 +X;X5 ~X3X5
variables dx,/dt=-3X Xy +X;X5 =3X,X3 dx,/dt=X; X +2X;X, +2X,X5 dx,/dt=-2X X3 +3X,X5 +3X3X5
dx,/dt=3X,X, +3X; X5 —XyX5 dxy/dt=-2X X4 +X;X, =3X,X3 dx,/dt=2X,X, ~2X X3 -2XoX5
Success 0% (no partitioning) 0% (no partitioning) 0% (no partitioning)
rate 63.3% (partitioning) 100% (partitioning) 96.7% (partitioning)
4 dx,/dt=-X,X,+2X,X3+2X X4 dx, /At=X X4+ XX 4 X4 X4 dx,/dt=-3XX;+3X X5 +3X,X4
variables dx,/dt=X X5 -3X4X5 -3X,X4 dx,/dt=-3X X5=2XX5-3X35X4 dx,/dt=-X,X1-2XX53-3X 4 X
dx,/dt=-X,X4 -X,X,4 +3X,X, dX,/dt=2X ;X=X ;X5 +2X X, dx,/dt=-2X, X, +X,X5-3X5X 4
dx,/dt=-3X X5 -3X 41X, —3X3X4 dx,/dt=X X5+3X,X5-X5X4 dx,/dt=-X,X,+2X,X4-3X5X 4
Success 0% (no partitioning) 0% (no partitioning) 0% (no partitioning)
rate 90% (partitioning) 83.3% (partitioning) 90% (partitioning)
5 dx,/dt=-3X,Xg +3X,X5 -3X,Xg dx,/dt=-2X, X5 +3X5X5+2X4X dx,/dt=2x,X, +2X,X5 ~X,X4
variables dx,/dt=-3X,X3 -2X3X, ~X4Xg dx,/dt=3X,X, +X;X5 -2X,Xs5 dx,/dt=xX X5 +3XX, +X;X4
dx,/dt=xX; -3X,X4 +X,X, dx,/dt=X X, +2XoXg +2X X5 dx,/dt=-2x,X; +2X,X, -3XX3
dx,/dt=3x,X5 -3X;X, +2X,X, dx,/dt=2x,X, +3X,X5 ~X4X5 dx,/dt=-3X,X5 +3X3X, ~X3X5
dxg/dt=3x,X, +3X;3X5 +3X5X, dx/dt=2X, X5 -X,X5 ~2X5X5 dxg/dt=X X +X;X5 XX
Success 0% (no partitioning) 0% (no partitioning) 0% (no partitioning)
rate 76.7% (partitioning) 76.7% (partitioning) 76.7% (partitioning)
6 dx,/dt=-2XXg+X,X4-2XoXg dx,/dt=-2XX5-3X,X, +2X3X5 dx,/dt=X X5 +X,Xg+X4X5
variables dX,/dt=X X 4=X(X5=2X 4 X dX,/dt=-3X,X ;X5 X4-X3Xg dx,/dt=-2X,X5=2X X5+ 2X X
dX,/dt=2X,X5-X3X 4 +X5X;5 dX,/dt=-X X=X X5 FX4Xg dX,/dt=-X,X5-2X5X 4 +X X
dx,/dt=-3X4X5-2X X +2X X5 dx,/dt=-X X, XX5-2X 4 X dx,/dt=3%,X,+3X,X5-2X4X;
dXg/dt=X5Xg=2X 4 X 4~3X 4 X5 dxg/dt=3X,Xo-3X 1 Xg-X5X5 dxg/dt=-3X X5 +X,X,+3X,Xg
dxg/dt=X5X4=X3Xg+2X,Xg dxg/dt=-3X X3-2X,Xg-3X4Xg dxg/dt=-X,X5-2X5X5-3X5Xg
Success 0% (no partitioning) 0% (no partitioning) 0% (no partitioning)
rate 80% (partitioning) 70% (partitioning) 93% (partitioning)
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EEA for General Automated Modeling

Candidate models I Candidate tests
% =2v* +logx %= ﬂﬁﬁ%
| dy ¥ Ei—y=—.f::i11y i
== T dt J
L dt 6 ? Candidate /
H Initial
@:_3};_4_1 £=—yl's+logx
at y-1 t
dy X d_y s
& x4l at e time - time
b The inference process c The inference process
generates several different generates several possible
candidate symbolic models Inference Process new candidate tests that
that match sensor data disambiguate competing
collected while performing models (make them disagree
previous tests. It does not in their predictions).

know which model is
correct. | /&\ Initial

Outputs Conditions

(sensors) €« 7 - . %N 7 (actuators)
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a Theinference process physically performs an
experiment by setting initial conditions, perturbing the
hidden system and recording time series of its behavior.
Initially, this experiment is random; subsequently, it is
the best test generated in step c.

Bongard, J and Lipson, H (2007). Automated reverse engineering of nonlinear
dynamical systems. Proceedings of the National Academy of Sciences, to appear.



Estimation-Exploration Algorithm (EEA) for Robotics
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Cornell University

Robust Machines Through Continuous Self-Modeling

Josh Bongard, Victor Zykov, Hod Lipson

Computational Synthesis Laboratory
Sibley School of Mechanical and Aerospace Engineering
Cornell University

Cornell University

Robust Machines Through Continuous Self-Modeling
Josh Bongard, Victor Zykov, Hod Lipson
Computational Synthesis Laboratory

Sibley School of Mechanical and Aerospace Engineering
Cornell University

Bongard, J., V. Zykov and H. Lipson (2006) Resilient Machines
Through Continuous Self-Modeling, Science, 314: 1118-1121.

Estimation-Exploration Algorithm
iR

!

The robot perforns a random action (a). A set of random models (one of which is
shown in b) is synthesized into approximate maodels (one of which is shown in c).
T

] Sy

-

“‘tx

Anew acfion is then synthesized to create maximal model disagreement and is
performed by the physical robot (d}, after which further modeling ensues. This cycle

continues undl no further mod (ef).

qJ h

el impravement is possible

/

The best madel is then used to synthesize a behavior (in this case, forward
locomotion, the first few movernents of which are shown ing-).

| G k
*"“

This behavior is then executed by the physical robot ().

—a_

-

4]

m n |
The robot then suffers damage (the lower part of the right leg breaks off. m).

Modeling then recommences with the bestmodel so far (n), and using the same
process of modeling and experimentation, eventually discovers the damage (o).

q r

\ “

p

| “= b ] , 8
The new model is then used to synthesize a new behavior (p-r), which is executed
by the physical robot (8-u), allowing it to recover functionality despite this

unanticipated change.



Conclusions

The Estimation-Exploration Algorithm (EEA) generates sets of differential equations
directly from time-series data.

Assumes all variables are observable.
Uses three new methods:

Active probing
generate new experiments to try based on current set of models

Partitioning
dissociate coupled variables, and approximate them separately

Snipping
Replace existing model with a similar, smaller model

Results
Can create models independent of domain (ecological, mechanical, etc.)

Active probing, partitioning and snipping improve modeling

Tests focus on bifurcations and extremal regions of the target system.



