CSYS/MATH 300: Principles of Complex Systems—Assignment 1
University of Vermont, Fall 2009

Dispersed: Friday, October 16, 2009.
Due: By start of lecture, 10:00 am, Thursday, October 29, 2009.
Sections covered: .

Some useful reminders:

Instructor: Peter Dodds

Office: 203 Lord House, 16 Colchester Avenue

E-mail: peter.dodds@uvm.edu

Office phone: (802) 656-3089 (email is better...)

Office hours: 11:00 am to 2 pm, Wednesday, Farrell Hall.

Course website: http://www.uvm.edu/~pdodds/teaching/courses/2009-08UVM-300/

All questions are worth 3 points unless marked otherwise. Please show all your working clearly
and list the names of others with whom you collaborated (fellow students, software programs,
adversaries, etc.).

1. (3 pts for a-d, 3 pts for e-g)

Consider a random variable X with a probability distribution given by
P(x)=cx™?

where ¢ is a normalization constant, and 0 < a < z < b. (a and b are the lower and
upper cutoffs respectively.) Assume that v > 1.

(a) Determine c.

(b) Compute the nth moment of X.

(c) In the limit b — oo, how does the nth moment behave as a function of 4?7
(d) For finite cutoffs a and b (still with a < b), which cutoff dominates the

expressions for the moments as a function of 4? (Note: both may be involved to
some degree.)

(e) Noting what constraints, if any, we must place on 7 for the mean to be finite in
the case b — oo, now find o, the standard deviation of X.

How does o behave as a function of ~?

(f) Compute the mean absolute displacement (MAD).
The mean absolute displacement is given by (| X — (X)|) where (-) represents
expected value.
How does MAD behave as a function of 47 How does this compare with the

variance?


http://www.uvm.edu/~pdodds/teaching/courses/2009-08UVM-300/

(g) Why did we assume v > 17

2. Consider a modified version of the Barabasi-Albert (BA) model [I] where two possible
mechanisms are now in play. As in the original model, start with mg nodes at time
t = 0. Let's make these initial guys connected such that each has degree 1. The two
mechanisms are:

M1: With probability p, a new node of degree 1 is added to the network. At time ¢ + 1,
a node connects to an existing node j with probability
kj
N (1)
ZN(t) 1

i=1 M

P(connect to node j) =

where k; is the degree of node j and N(t) is the number of nodes in the system at
time ¢.

M2: With probability g = 1 — p, a randomly chosen node adds a new edge, connecting
to node j with the same preferential attachment probability as above.

Note that in the limit ¢ = 0, we retrieve the original BA model (with the difference that
we are adding one link at a time rather than m here).

In the long time limit t — oo, what is the expected form of the degree distribution P?

3. Now take the Barabasi-Albert model with an attachment kernel A, = k/2. Take newly
arriving nodes as adding m links (m =1 for the preceding question).

Use the same approach as in class (which is a modified version of the original derivation
in [I]), to determine the long-time limiting form of the degree distribution P.

A catch and a hint: to normalize the attachment kernel at each point in time ¢, we have
to divide by the sum of all degrees in the network (as per Eq. [1| above). Recall that for
the original model, the sum of all degrees nicely simplified to 2mt + mg (check over
this). But now we have the sum of kil/z, and its form is not obvious. Here's the help:

assume that
N(t

)
k2 = Mt
i=1
where )\ is to be determined later. In other words, assume that the normalization factor
grows linearly with ¢, as it did for the original model. If this is indeed true, then you will
be able to justify it once you have found P.
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