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Happiness:

http://wikipedia.org

I Greek philosophers held
Eudaimonia as highest good. [7]

I ' flourishing, well-being,
pleasure, ...

I Socrates, Plato,
Aristotle, Epicurus, ...

http://wikipedia.org
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Happiness:

http://wikipedia.org

Bentham’s hedonistic calculus:

“[t]he greatest happiness of the greatest
number is the foundation of morals and
legislation” [14]

Priestly, John Stuart Mill, ...

http://wikipedia.org
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United States’ Declaration of Independence:

http://wikipedia.org

“We hold these truths to be sacred &
undeniable; that all men are created
equal & independent, that from that
equal creation they derive rights
inherent & inalienable, among which are
the preservation of life, & liberty, & the
pursuit of happiness;”

http://wikipedia.org
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Happiness:

Even the odd modern economist
likes happiness:

“Happiness” by Richard Layard [9]

(�)
http://www.amazon.com

http://www.amazon.com/Happiness-Lessons-Science-Richard-Layard/dp/1594200394
http://www.amazon.com
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What makes us happy?

Layard’s summary:

Dominant factors:
I Family

relationships
I Financial situation
I Work
I Community and

Friends

I Health
I Personal Values
I Personal Freedom

Unimportant factors:
I Age
I Gender
I Education

I Inherent
intelligence

I Looks



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 7/55

What makes us happy?

Layard’s summary:

Dominant factors:
I Family

relationships
I Financial situation
I Work
I Community and

Friends

I Health
I Personal Values
I Personal Freedom

Unimportant factors:
I Age
I Gender
I Education

I Inherent
intelligence

I Looks



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 8/55

Desiring happiness—not just for boffins:

I Average people routinely report being happy is what
they want most in life [9, 10]

National indices of well-being:

I Bhutan
I France
I Australia
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Emotional content

So how does one measure

1. happiness?
2. levels of other emotions?

Just ask people how happy they are.

I Experience sampling [2, 4, 3] (Csikszentmihalyi et al.)
I Day reconstruction [8] (Kahneman et al.)

But self-reporting has drawbacks...

I relies on memory and self-perception
I induces misreporting [11]

I costly
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Measuring Emotional Content

We’d like to build an hedonometer:
I An instrument to ‘remotely-sense’ emotional states

and levels, in real time or post hoc.

Ideally:
I Transparent
I Fast
I Based on written

expression
I Uses human evaluation

I Non-reactive
I Complementary to

self-reported measures
I Improvable

Some possibilities:

I Natural language processing (e.g., OpinionFinder)
I Declared mood levels in blogs (e.g., Livejournal) [12]



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 10/55

Measuring Emotional Content

We’d like to build an hedonometer:
I An instrument to ‘remotely-sense’ emotional states

and levels, in real time or post hoc.

Ideally:
I Transparent
I Fast
I Based on written

expression
I Uses human evaluation

I Non-reactive
I Complementary to

self-reported measures
I Improvable

Some possibilities:

I Natural language processing (e.g., OpinionFinder)
I Declared mood levels in blogs (e.g., Livejournal) [12]



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 10/55

Measuring Emotional Content

We’d like to build an hedonometer:
I An instrument to ‘remotely-sense’ emotional states

and levels, in real time or post hoc.

Ideally:
I Transparent
I Fast
I Based on written

expression
I Uses human evaluation

I Non-reactive
I Complementary to

self-reported measures
I Improvable

Some possibilities:

I Natural language processing (e.g., OpinionFinder)
I Declared mood levels in blogs (e.g., Livejournal) [12]



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 11/55

Measuring Emotional Content

I Idea: Gauge emotional content of an entity through
human assessment via semantic differentials.

I Examples:
I hate ↔ love
I rough ↔ smooth
I up ↔ down

I Osgood et al. (1957) [13] identified
a basis of 3 semantic differentials:

I Valence: bad ↔ good
I Dominance: weak ↔ strong
I Arousal: passive ↔ active

(also often: Evaluation, Potency, and Activity)
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ANEW study

I ANEW = “Affective Norms for English Words”

I Study: participants shown lists of isolated words
I Asked to grade each word’s valence, arousal, and

dominance level
I Integer scale of 1–9

I N =1034 words—previously identified as bearing
emotional weight

I Participants = College students (*cough*)
I Results published by Bradley and Lang (1999) [1]
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ANEW study—three 1–9 scales:

valence:
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ANEW study—three 1–9 scales:

valence:

arousal:

dominance:
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ANEW study:

I Valence scale presented to participants as a
‘happy-unhappy scale.’

I Participants were further told:

“At one extreme of this scale, you are happy,
pleased, satisfied, contented, hopeful. . . .

The other end of the scale is when you feel
completely unhappy, annoyed, unsatisfied,
melancholic, despaired, or bored.”
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Top and Bottom 5 words by valence

1 triumphant (8.82) rape (1.25)
2 paradise (8.72) suicide (1.25)
3 love (8.72) funeral (1.39)
4 loved (8.64) cancer (1.50)
5 miracle (8.60) rejected (1.50)
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ANEW study words—examples

0 50 100 150 200
1

2

3

4

5

6

7

8

9

funeral/rape/suicide

trauma/hostage/disgusted

fault/corrupt/lawsuit

derelict/neurotic/vanity

engine/paper/street

optimism/pancakes/church

glory/luxury/trophy

love/paradise/triumphant

frequency

va
le

nc
e 

v
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Analysing text:

I Simplest measure for a text:

θavg =
N∑

i=1

piθi

where pi is fractional abundance of word i and θ is
average valence, arousal, or dominance for word i .

I Focus on valence, θ = v .
I Average valence typically falls between 5 and 7.
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Analysing text:

ANEW
words

11. perfume

14. lie

k=1. love
2. mother
3. baby
4. beauty
5. truth
6. people
7. strong
8. young
9. girl
10. movie

12. queen
13. name

8.72
8.39
8.22
7.82
7.80
7.33
7.11
6.89
6.87
6.86
6.76
6.44
5.55
2.79

1
1
3
1
1

1
2
4
1
1
1
1
1

from a movie scene.

’cause the lie becomes the truth.

And be careful of what you do

She’s just a girl who claims

Billie Jean is not my lover,

that I am the one.

Michael Jackson’s Billie Jean

vMichael
Jackson

vThriller

= 7.1

= 6.4

= 6.3

=v
text ∑

k
fk

vBillie Jean

∑

k
vkfk

fk

“She was more like a beauty queen

2
And mother always told me,

be careful who you love.

vk
Lyrics for
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Unhappiness:

Some obvious problems/issues:

I Partial coverage of all words.
I Context is ignored.

I You just don’t like it.

Really.

Clearly:

I Only suitable for large-scale texts.
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Data sets:

Texts:

1. Song lyrics (1960–2007)
2. Song titles (1960–2008)
3. State of the Union (SOTU) Addresses (1790–2008)

Sources:
I hotlyrics.com (�)
I freedb.com (�)
I American Presidency Project:

www.presidency.ucsb.edu (�).

file:hotlyrics.com
file:freedb.com
http://www.presidency.ucsb.edu/
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Data sets:

4 Blog phrases beginning with “I feel...” or “I am feeling”
taken from wefeelfine.org (�) (API, 2005–2009)

Created by Jonathan Harris and Sep Kamvar

http://www.wefeelfine.org


Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 22/55

wefeelfine.org:
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wefeelfine.org:
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Some demographics for blog sentences:

Breakdown by # of sentences:

Country Percentage
United States 82.3
Canada 6.1
United Kingdom 4.8
Australia 3.7
Philippines 0.4
Germany 0.2
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Some numbers:

Counts Song lyrics Song titles
All words 58,610,849 60,867,223

ANEW words 3,477,575 (5.9%) 5,612,708 (9.2%)
Individuals ∼ 20,000 ∼ 632,000

Counts Weblogs SOTU
All words 155,667,394 1,796,763

ANEW words 8,581,226 (5.5%) 61,926 (3.5%)
Individuals ∼ 2,335,000 43
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Most frequent ANEW words:

Rank Song lyrics Song titles
1 love (7.37%) love (7.39%)
2 time (4.18%) time (4.19%)
3 baby (2.75%) baby (2.75%)
4 life (2.59%) life (2.60%)
5 heart (2.14%) heart (2.15%)

Rank Weblogs SOTU
1 good (4.89%) people (5.49%)
2 time (4.72%) time (4.09%)
3 people (3.94%) present (3.45%)
4 love (3.31%) world (3.10%)
5 life (3.13%) war (2.98%)
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Outline
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Lyrics—average valence

1960 1970 1980 1990 2000 2010
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Lyrics—measurement robustness

19601965197019751980198519901995200020052010
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100 random subsets of 750 ANEW words
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Lyrics—average valence of genres:

1960 1970 1980 1990 2000 2010
4.5

5

5.5

6
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7

year

m
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n 
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e 
v av

g

 

 

Gospel/Soul (6.91)
Pop (6.69)
Reggae (6.40)
Rock (6.27)
Rap/Hip−Hop (6.01)
Punk (5.61)
Metal/Industrial (5.10)
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Valence shift details:

Given two texts a and b:
I Measure difference in average valence: v (b)

avg − v (a)
avg

I Break difference down by contributions from
individual words:

∆i = 100× [pi,b − pi,a]
[vi − v (a)

avg ]

[v (b)
avg − v (a)

avg ]∑
i

∆i = v (b)
avg − v (a)

avg

I Rank words by |∆i |
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−20 −10 0 10

25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1 love ↓

lonely ↓
hate ↑
pain ↑
baby ↓
death ↑
dead ↑
home ↓
sick ↑
fear ↑
hit ↑
hell ↑
fall ↑
sin ↑
lost ↑

sad ↓
burn ↑
lie ↑
scared ↑
afraid ↑
music ↓

life ↑
god ↑

trouble ↓
loneliness ↓

Per word valence shift ∆
i

W
or

d 
nu

m
be

r i

Per word drop in valence of lyrics from 1980−2007 relative to valence of lyrics from 1960−1979:

lonely ↓
sad ↓

trouble ↓
loneliness ↓

devil ↓

Decreases in relatively
low valence words
contribute to increase
in average valence

life ↑
god ↑

truth ↑
party ↑

sex ↑

Increases in relatively
high valence words
contribute to increase
in average valence

hate ↑
pain ↑
death ↑
dead ↑
sick ↑

Increases in relatively
low valence words
contribute to drop
in average valence

love ↓
baby ↓
home ↓
music ↓
good ↓

Decreases in relatively
high valence words
contribute to drop
in average valence

Key:
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Top 50 of ' 20,000 artists:
Rank Artist Valence
1 All-4-One 7.15
2 Luther Vandross 7.12
3 S Club 7 7.05
4 K Ci & JoJo 7.04
5 Perry Como 7.04
6 Diana Ross & The Supremes 7.03
7 Buddy Holly 7.02
8 Faith Evans 7.01
9 The Beach Boys 7.01
10 Jon B 6.98
11 Dru Hill 6.96
12 Earth Wind & Fire 6.95
13 Ashanti 6.95
14 Otis Redding 6.93
15 Faith Hill 6.93
16 NSync 6.93

(criterion: ≥ 50 songs and ≥ 1000 ANEW words)
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Bottom 50 of ' 20,000 artists:
Rank Artist Valence
1 Slayer 4.80
2 Misfits 4.88
3 Staind 4.93
4 Slipknot 4.98
5 Darkthrone 4.98
6 Death 5.02
7 Black Label Society 5.05
8 Pig 5.08
9 Voivod 5.14
10 Fear Factory 5.15
11 Iced Earth 5.16
12 Simple Plan 5.16
13 Machine Head 5.17
14 Metallica 5.19
15 Dimmu Borgir 5.20
16 Mudvayne 5.21

(criterion: ≥ 50 songs and ≥ 1000 ANEW words)
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Blogs—Overall trend
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Blogs—Age

I Self-report studies find little variation in happiness
with age [5, 6]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness
I But maybe it does a little bit—Veenhoven & Hagerty

(2003) and Wolfers & Stevenson (2008).
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I Self-report studies find little variation in happiness
with age [5, 6]

I Surprising: Expect a rise and fall.

I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness
I But maybe it does a little bit—Veenhoven & Hagerty

(2003) and Wolfers & Stevenson (2008).



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 38/55

Blogs—Age

I Self-report studies find little variation in happiness
with age [5, 6]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...

I Related to the Easterlin Paradox:
Money doesn’t buy happiness

I But maybe it does a little bit—Veenhoven & Hagerty
(2003) and Wolfers & Stevenson (2008).



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 38/55

Blogs—Age

I Self-report studies find little variation in happiness
with age [5, 6]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness

I But maybe it does a little bit—Veenhoven & Hagerty
(2003) and Wolfers & Stevenson (2008).



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 38/55

Blogs—Age

I Self-report studies find little variation in happiness
with age [5, 6]

I Surprising: Expect a rise and fall.
I A ‘challenge’ for theory...
I Related to the Easterlin Paradox:

Money doesn’t buy happiness
I But maybe it does a little bit—Veenhoven & Hagerty

(2003) and Wolfers & Stevenson (2008).



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 39/55

Blogs
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I Average valence as a function of the age bloggers
report they will turn in the year of their posting.
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Blogs—Latitude

0 10 20 30 40 50 60 70

5.7

5.75

5.8

5.85

latitude |degrees|

Near equator—social factors

I Increase in ‘sad’, ‘bored’,
‘lonely’, ‘stupid’, ‘guilty’

I Decrease in ‘good’ and
‘people’

Near poles—
social/psychological/climate

I Increase in ‘sick’, ‘guilty’,
‘cold’, ‘depressed’, and
‘headache’ and decrease of
‘love’ and ‘life.’

I Offset by decrease in ‘hurt’
and ‘pain.’

I More ‘bed’ and ‘sleep.’
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Blogs—day of the week

Very gentle weekly cycle:

W T F S S M T W

5.83

5.84

5.85

day of week

Monday is not so bad for bloggers...
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Presidential happiness:
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Comparing Texts

Source vavg Words with same value
Soul/Gospel Music 6.8 chocolate, leisurely, penthouse
Music Lyrics (1970) 6.5 candy, nice, power

Dante’s Paradise 6.5 muffin, rabbit, smooth
Enron Emails 6.2 alert, clouds, computer

SOTU Addresses 6.1 bottle, grass, idol
Music Lyrics (2004) 6.0 curious, fragrance, pancakes

Weblogs 5.8 humble, owl, whistle
Dante’s Inferno 5.5 glacier, mischief, repentant

Metal/Indust Music 5.4 elevator, lamp, truck
Indeterm. Sentence 4.8 anxious, curtains, tease
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Measuring Emotional Content

Goal: Improve on ANEW study

I Obtain estimates via online games.
I The Play Project

I Local: university level
I Intermediate: representative groups
I Global: open on the Web

Measure emotional content of

I Many more words
I Phonemes and letters
I Sentences



Happiness

Some motivation

Measuring
emotional content

Data sets

Analysis
Songs

Blogs

SOTU

Future work

Prediction

References

Frame 47/55

Measuring Emotional Content

Goal: Improve on ANEW study

I Obtain estimates via online games.
I The Play Project
I Local: university level
I Intermediate: representative groups
I Global: open on the Web

Measure emotional content of

I Many more words
I Phonemes and letters
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I Intermediate: representative groups
I Global: open on the Web
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twitter.com Status Updates (microblogs)

http://flowingdata.com

http://flowingdata.com
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The possibilities of Twitter...

Tweeting the Superbowl (�) [NY Times]

http://www.nytimes.com/interactive/2009/02/02/sports/20090202_superbowl_twitter.html
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Alan Greenspan (September 18, 2007):

“I’ve been dealing with these big
mathematical models of forecasting the
economy ...

If I could figure out a way to determine
whether or not people are more fearful
or changing to more euphoric,

I don’t need any of this other stuff.

I could forecast the economy better than
any way I know.”

http://wikipedia.org

http://wikipedia.org
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Economics, Schmeconomics

Greenspan continues:

“The trouble is that we can’t figure that out. I’ve been in
the forecasting business for 50 years. I’m no better than I
ever was, and nobody else is. Forecasting 50 years
ago was as good or as bad as it is today. And the reason
is that human nature hasn’t changed. We can’t improve
ourselves.”

Jon Stewart:

“You just bummed the @*!# out of me.”

wildbluffmedia.com

I From the Daily Show (�) (September 18, 2007)

wildbluffmedia.com
http://www.thedailyshow.com
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