## Contagion

## Santa Fe Institute Summer School, 2009

### Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont











Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

### Contagion

ntroduction

Simple Disease Spreading Models

Social Contagion Models

Frame 1/80



## **Outline**

Introduction

## Simple Disease Spreading Models

Background Prediction

## Social Contagion Models

Granovetter's model Network version Groups Summary

Winning: it's not for everyone

Superstars Musiclab

References

## Contagion ntroduction Simple Disease Spreading Models Social Contagion Frame 2/80



## Contagion

## Definition:

- ▶ (1) The spreading of a quality or quantity between individuals in a population.
- ▶ (2) A disease itself: the plague, a blight, the dreaded lurgi, ...

## Two main classes of contagion:

- Infectious diseases: tuberculosis, HIV, ebola, SARS, influenza, ...
- 2. Social contagion: fashion, word usage, rumors, riots, religion, ...

### Contagion

### Introduction

Simple Disease Spreading Models

Social Contagion Models

Frame 3/80



## Contagion models

## Some large questions concerning network contagion:

- 1. For a given spreading mechanism on a given network, what's the probability that there will be global spreading?
- 2. If spreading does take off, how far will it go?
- 3. How do the details of the network affect the outcome?
- 4. How do the details of the spreading mechanism affect the outcome?
- 5. What if the seed is one or many nodes?

## Contagion

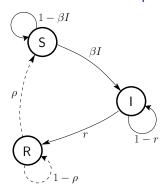
### Introduction

Simple Disease Spreading Models

Models

Frame 4/80






## Mathematical Epidemiology

## The standard SIR model:

- Three states:
  - ► S = Susceptible
  - ► I = Infected
  - ► R = Recovered
- S(t) + I(t) + R(t) = 1
- Presumes random interactions

## Discrete time example:



Transition Probabilities:

 $\beta$  for being infected given contact with infected r for recovery  $\rho$  for loss of immunity

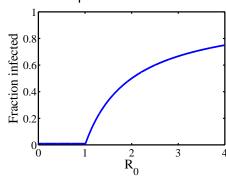
Contagion

ntroduction

Background

Models

Simple Disease


Spreading Models

Social Contagion

Independent Interaction models

## Reproduction Number $R_0$ :

- ► R<sub>0</sub> = expected number of infected individuals resulting from a single initial infective.
- ▶ Epidemic threshold: If  $R_0 > 1$ , 'epidemic' occurs.
- ► Example:



- Continuous phase transition.
- Fine idea from a simple model.

Contagion

Introduction

Simple Disease
Spreading Models
Background
Prediction

Social Contagion
Models
Granovetter's model
Network version
Groups
Summary
Winning: it's not for
everyone
Superstars
Musiciab

References

## Disease spreading models

## For 'novel' diseases:

- 1. Can we predict the size of an epidemic?
- 2. How important/useful is the reproduction number  $R_0$ ?
- 3. What is the population size *N*?

## Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granoveter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiciab References

Frame 9/80

母 りゅつ

Frame 6/80

**母 り**00

## $R_0$ and variation in epidemic sizes

## $R_0$ approximately the same for all of the following:

- ▶ 1918-19 "Spanish Flu"  $\sim$  500,000 deaths in US
- ▶ 1957-58 "Asian Flu"  $\sim$  70,000 deaths in US
- $\blacktriangleright$  1968-69 "Hong Kong Flu"  $\sim$  34,000 deaths in US
- $\blacktriangleright$  2003 "SARS Epidemic"  $\sim$  800 deaths world-wide

Introduction

Simple Disease
Spreading Models
Background
Prediction

Social Contagion
Models
Granovetter's model
Network version
Groups
Summary
Winning: it's not for
everyone
Superstars
Musiclab

References

## Size distributions

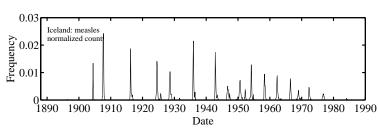
## Elsewhere, event size distributions are important:

- earthquakes (Gutenberg-Richter law)
- city sizes, forest fires, war fatalities
- wealth distributions
- 'popularity' (books, music, websites, ideas)
- What about Epidemics?

Power laws distributions are common but not obligatory...

Contagion

Introduction


Simple Disease
Spreading Models
Background
Prediction

Social Contagion
Models
Granovetter's model
Network version
Groups
Summary

Winning: it's not fo
everyone
Superstars

## Feeling icky in Iceland

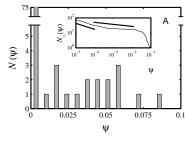
Caseload recorded monthly for range of diseases in Iceland, 1888-1990



Treat outbreaks separated in time as 'novel' diseases.

Contagion

Introduction


Simple Disease
Spreading Models
Background
Prediction

Social Contagion
Models
Granovetter's model
Network version
Groups
Summary

Winning: it's not for
everyone
Superstars
Musiclab

References

## Measles



## Insert plots:

Complementary cumulative frequency distributions:

$$N_{>}(\Psi) \propto \Psi^{-\gamma+1}$$

 $\Psi$  = fractional epidemic size

## Measured values of $\gamma$ :

- ▶ measles: 1.40 (low Ψ) and 1.13 (high Ψ)
- $\blacktriangleright$  Expect 2  $\leq \gamma <$  3 (finite mean, infinite variance)
- ► Distribution is rather flat...

## Contagion

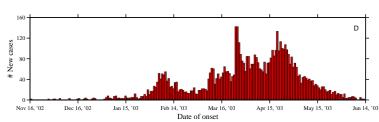
Frame 11/80

ntroduction

Simple Disease Spreading Models Background

Social Contagion Models

Granovetter's model Network version Groups Summary


Winning: it's not for everyone
Superstars
Musiciah

Reference

Frame 13/80

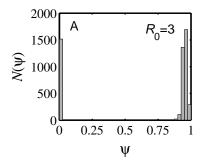


## Resurgence—example of SARS



- ► Epidemic discovers new 'pools' of susceptibles: Resurgence.
- ► Importance of rare, stochastic events.

# Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiciab References


## A challenge

## So... can a simple model produce

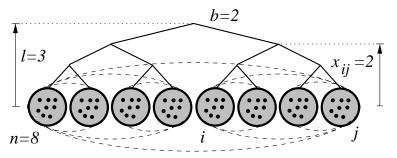
- 1. broad epidemic distributions and
- 2. resurgence?

## Contagion ntroduction Simple Disease Spreading Models Frame 15/80

## Size distributions



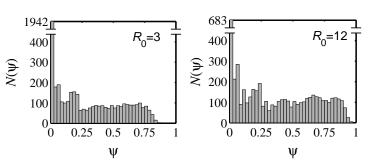
Simple models typically produce bimodal or unimodal size distributions.


- This includes network models: random, small-world, scale-free, ...
- ► Some exceptions:
  - 1. Forest fire models
  - 2. Sophisticated metapopulation models

Contagion ntroduction Spreading Models Frame 16/80



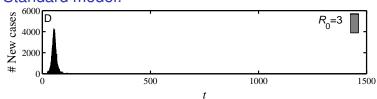
## A toy agent-based model


## Geography: allow people to move between contexts:

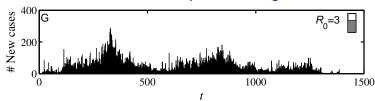


- ► *P* = probability of travel
- ▶ Movement distance:  $Pr(d) \propto exp(-d/\xi)$
- $\triangleright$   $\xi$  = typical travel distance

## Spreading Models Social Contagion Frame 17/80


## Example model output: size distributions




- ▶ Flat distributions are possible for certain  $\xi$  and P.
- ▶ Different R<sub>0</sub>'s may produce similar distributions
- $\triangleright$  Same epidemic sizes may arise from different  $R_0$ 's



## Standard model:



## Standard model with transport: Resurgence



- Disease spread highly sensitive to population structure
- ► Rare events may matter enormously

## Simple disease spreading models

## Attempts to use beyond disease:

- Adoption of ideas/beliefs (Goffman & Newell, 1964)
- Spread of rumors (Daley & Kendall, 1965)
- ▶ Diffusion of innovations (Bass, 1969)
- Spread of fanatical behavior (Castillo-Chávez & Song, 2003)

## ntroduction Simple Disease Spreading Models

Contagion

Frame 20/80



### 母 りへで

## **Social Contagion**



Contagion

Frame 19/80

母 りへで

Contagion

ntroduction

Simple Disease

Spreading Models

Social Contagion

ntroduction

Simple Disease Spreading Models

Social Contagion



## **Social Contagion**

## Examples abound:

- being polite/rude
- strikes
- innovation
- residential segregation
- ipods
- obesity

- Harry Potter
- voting
- gossip
- Rubik's cube §
- religious beliefs
- leaving lectures

## SIR and SIRS contagion possible

Classes of behavior versus specific behavior: dieting

Contagion

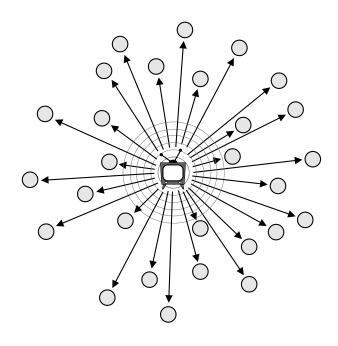
ntroduction

Simple Disease Spreading Models

Social Contagion

Frame 22/80




## **Social Contagion**

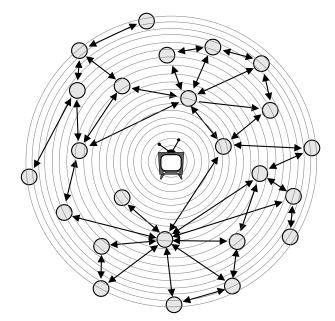
## Two focuses for us:

- ▶ Widespread media influence
- ► Word-of-mouth influence




## The hypodermic model of influence:






## The two step model of influence:





## The general model of influence:





## **Social Contagion**

## Why do things spread?

- ▶ Because of system level properties?
- ► Or properties of special individuals?
- ► Is the match that lights the forest fire the key? (Katz and Lazarsfeld; Gladwell)
- ➤ Yes. But only because we are narrative-making machines...
- System/group properties harder to understand
- Always good to examine what is said before and after the fact...

# Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiclab References

## The Mona Lisa:



- "Becoming Mona Lisa: The Making of a Global Icon"—David Sassoon
- ▶ Not the world's greatest painting from the start...
- ► Escalation through theft, vandalism, parody, ...

## The completely unpredicted fall of Eastern Europe:



Timur Kuran: "Now Out of Never: The Element of Surprise in the East European Revolution of 1989"



Frame 29/80

## **Social Contagion**

## Some important models:

- ► Tipping models—Schelling (1971)
  - Simulation on checker boards
  - Idea of thresholds
- ► Threshold models—Granovetter (1978)
- ► Herding models—Bikhchandani, Hirschleifer, Welch (1992)
  - Social learning theory, Informational cascades,...



Frame 28/80

母 りへで

## Social contagion models

## Thresholds:

- Basic idea: individuals adopt a behavior when a certain fraction of others have adopted
- 'Others' may be everyone in a population, an individual's close friends, any reference group.
- ▶ Response can be probabilistic or deterministic.
- Individual thresholds vary.

Contagion ntroduction Simple Disease Spreading Models Social Contagion Models

## **Social Contagion**

## Some possible origins of thresholds:

- Desire to coordinate, to conform.
- Lack of information: impute the worth of a good or behavior based on degree of adoption (social proof)
- Economics: Network effects or network externalities
  - ▶ Telephones, Facebook, operating systems, ...





Contagion

## **Imitation**



"When people are free to do as they please, they usually imitate each other."

-Eric Hoffer "The Passionate State of Mind" [11]

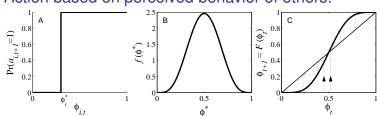
## Contagion

ntroduction

Frame 31/80

**母 り**00

imple Disease Spreading Models


Social Contagion

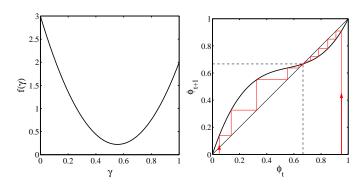
Frame 33/80



## Granovetter's threshold model:

## Action based on perceived behavior of others:




- Two states: S and I.
- $\phi$  = fraction of contacts 'on' (e.g., rioting)

$$\phi_{t+1} = \int_0^{\phi_t} f(\gamma) d\gamma = F(\gamma)|_0^{\phi_t} = F(\phi_t)$$

▶ This is a Critical Mass model

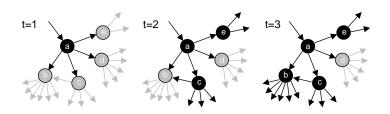
ntroduction Simple Disease Spreading Models Social Contagion Frame 35/80

## Social Sciences: Threshold models



► Example of single stable state model

# Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiciab References


## Social Sciences—Threshold models

## Implications for collective action theory:

- 1. Collective uniformity ⇒ individual uniformity
- 2. Small individual changes ⇒ large global changes



## Threshold model on a network



- ▶ All nodes have threshold  $\phi = 0.2$ .
- "A simple model of global cascades on random networks"

D. J. Watts. Proc. Natl. Acad. Sci., 2002

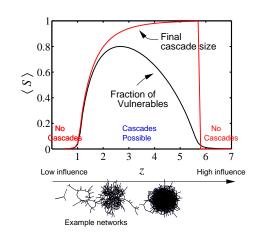


## Snowballing

## The Cascade Condition:

- ▶ If one individual is initially activated, what is the probability that an activation will spread over a network?
- ► What features of a network determine whether a cascade will occur or not?




## The most gullible

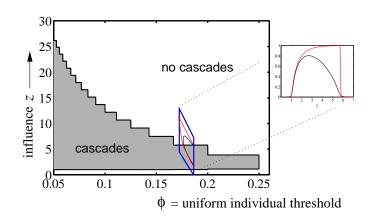
## Vulnerables:

- ▶ = Individuals who can be activated by just one 'infected' contact
- ▶ For global cascades on random networks, must have a global cluster of vulnerables
- Cluster of vulnerables = critical mass
- ▶ Network story: 1 node → critical mass → everyone.

## Contagion ntroduction Simple Disease Spreading Models Social Contagion Network version Frame 41/80

## Cascades on random networks

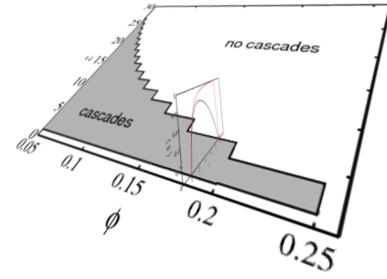



- Cascades occur only if size of max vulnerable cluster > 0.
- System may be 'robust-yet-fragile'.
- 'Ignorance' facilitates spreading.

Contagion ntroduction Spreading Models Network version

Frame 42/80




## Cascade window for random networks



- 'Cascade window' widens as threshold  $\phi$  decreases.
- Lower thresholds enable spreading.

## Contagion ntroduction imple Disease Spreading Models Social Contagion Network version Frame 43/80

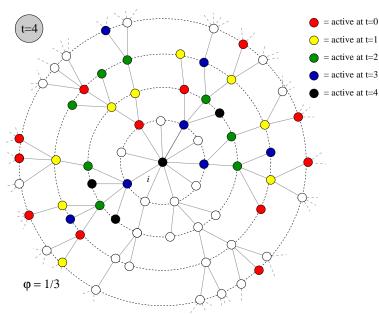
## Cascade window for random networks





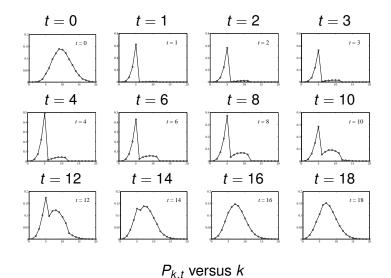
## Analytic work

- ▶ Threshold model completely solved (by 2008):
- ► Cascade condition: [22]


$$\sum_{k=1}^{\infty} k(k-1)\beta_k P_k/z \geq 1.$$

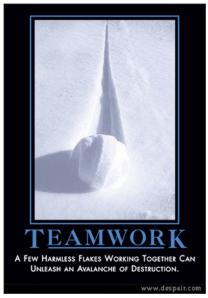
where  $\beta_k$  = probability a degree k node is vulnerable.

- ► Final size of spread figured out by Gleeson and Calahane [9, 8].
- Solution involves finding fixed points of an iterative map of the interval.
- ► Spreading takes off: expansion
- ► Spreading reaches a particular node: contraction




## Expected size of spread



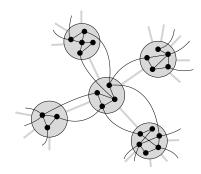



## Early adopters—degree distributions





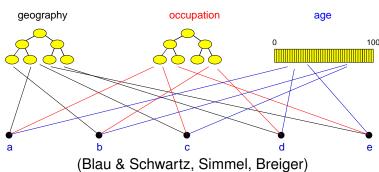
## The power of groups...




despair.com

"A few harmless flakes working together can unleash an avalanche of destruction."

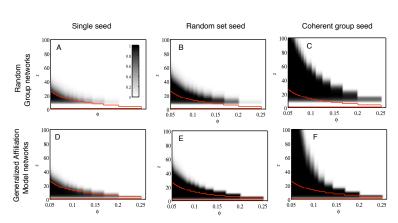



## Group structure—Ramified random networks



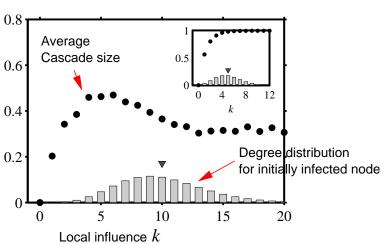
p = intergroup connection probability q = intragroup connection probability.

# Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granoveter's model Network version Groups Summary Winning: it's not for everyona Superstars Musiclab References


## Generalized affiliation model






**回 り**へで

## Cascade windows for group-based networks





## Assortativity in group-based networks



- ► The most connected nodes aren't always the most 'influential.'
- Degree assortativity is the reason.



## Social contagion

## Summary:

- 'Influential vulnerables' are key to spread.
- ► Early adopters are mostly vulnerables.
- ▶ Vulnerable nodes important but not necessary.
- Groups may greatly facilitate spread.
- Extreme/unexpected cascades may occur in highly connected networks
- Many potential 'influentials' exist.
- Average individuals may be more influential system-wise than locally influential individuals.
- ▶ 'Influentials' are posterior constructs.



**母 り**00

## Social contagion

## Implications:

- Focus on the influential vulnerables.
- Create entities that many individuals 'out in the wild' will adopt and display rather than broadcast from a few 'influentials.'
- ► Displaying can be passive = free (yo-yo's, fashion), or active = harder to achieve (political messages).
- Accept that movement of entities will be out of originator's control.
- ▶ Possibly only simple ideas can spread by word-of-mouth.

(Idea of opinion leaders has spread well...)

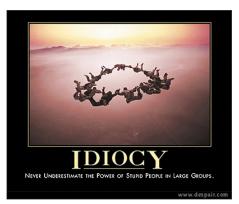






## **Social Contagion**

## Messing with social connections:


- ► Ads based on message content (e.g., Google and email)
- ▶ Buzz media
- Facebook's advertising (Beacon)

Arguably not always a good idea...



## The collective...

despair.com



"Never Underestimate the Power of Stupid People in Large Groups."





## Where do superstars come from?

Rosen (1981): "The Economics of Superstars"

## Examples:

- ▶ Full-time Comedians (≈ 200)
- Soloists in Classical Music
- ► Economic Textbooks (the usual myopic example)
- ▶ Highly skewed distributions again...



## **Superstars**

## Rosen's theory:

- ▶ Individual quality *q* maps to reward *R*(*q*)
- ightharpoonup R(q) is 'convex'  $(d^2R/dq^2 > 0)$
- Two reasons:
  - Imperfect substitution:
     A very good surgeon is worth many mediocre ones
  - Technology:
     Media spreads & technology reduces cost of reproduction of books, songs, etc.
- No social element—success follows 'inherent quality'



## Superstars

Adler (1985): "Stardom and Talent"

- Assumes extreme case of equal 'inherent quality'
- Argues desire for coordination in knowledge and culture leads to differential success
- Success is then purely a social construction

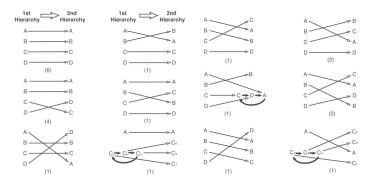


Frame 62/80

## Dominance hierarchies

Chase et al. (2002): "Individual differences versus social dynamics in the formation of animal dominance hierarchies"

The aggressive female Metriaclima zebra (⊞):




Pecking orders for fish...



## Dominance hierarchies

► Fish forget—changing of dominance hierarchies:



▶ 22 observations: about 3/4 of the time, hierarchy changed



## Music Lab Experiment



48 songs 30,000 participants BAND NAME

[Help] [Log off] for both codes

GROWTH PEOPLE: 66

Finance: 9

Tother people: 9

Tother people: 9

Town own out 9

SONG TIFLE NUMBER OF DOWNLOADS

multiple 'worlds'
Inter-world variability

► How probable is the world?

- ▶ Can we estimate variability?
- Superstars dominate but are unpredictable. Why?

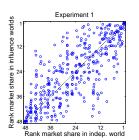


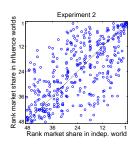
## Music Lab Experiment



Salganik et al. (2006) "An experimental study of inequality and unpredictability in an artificial cultural market"

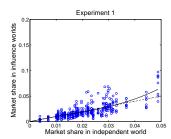


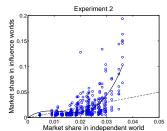

## Music Lab Experiment









## Music Lab Experiment






▶ Variability in final rank.

## Music Lab Experiment

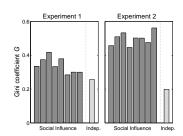




Variability in final number of downloads.

Frame 70/80

Musiclab




Contagion

ntroduction

Spreading Models

## Music Lab Experiment



▶ Inequality as measured by Gini coefficient:

$$G = \frac{1}{(2N_s - 1)} \sum_{i=1}^{N_s} \sum_{j=1}^{N_s} |m_i - m_j|$$

## Contagion

Frame 69/80

**回 り**へで

Contagion

ntroduction

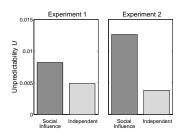
Simple Disease Spreading Models

Social Contagion Models

Musiclab

ntroduction

Simple Disease Spreading Models


Social Contagion

Musiclab

Frame 71/80



## Music Lab Experiment



Unpredictability

$$U = \frac{1}{N_{\rm s} \binom{N_{\rm w}}{2}} \sum_{i=1}^{N_{\rm s}} \sum_{j=1}^{N_{\rm w}} \sum_{k=j+1}^{N_{\rm w}} |m_{i,j} - m_{i,k}|$$

## Contagion

ntroduction

Simple Disease Spreading Models

Social Contagion

Musiclab

Frame 72/80





## Music Lab Experiment

## Sensible result:

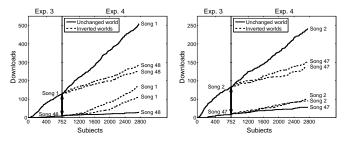
Stronger social signal leads to greater following and greater inequality.

## Peculiar result:

 Stronger social signal leads to greater unpredictability.

## Very peculiar observation:

- The most unequal distributions would suggest the greatest variation in underlying 'quality.'
- But success may be due to social construction through following...


## Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary

Musiclab

Frame 73/80

**母 り**00

## Music Lab Experiment—Sneakiness



- Inversion of download count
- The 'pretend rich' get richer ...
- ... but at a slower rate

# Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiclab References

## References I

[1] M. Adler.
Stardom and talent.

American Economic Review, pages 208–212, 1985.
pdf (⊞)

- [2] S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads, fashion, custom, and cultural change as informational cascades.

  J. Polit. Econ., 100:992–1026, 1992.
- [3] S. Bikhchandani, D. Hirshleifer, and I. Welch. Learning from the behavior of others: Conformity, fads, and informational cascades.

*J. Econ. Perspect.*, 12(3):151–170, 1998. pdf (⊞)

## Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstand Musicials References

Frame 75/80

## References II

 $pdf (\boxplus)$ 

[4] J. Carlson and J. Doyle. Highly optimized tolerance: A mechanism for power laws in design systems.

Phys. Rev. Lett., 60(2):1412-1427, 1999. pdf (⊞)

- [5] J. Carlson and J. Doyle.
  Highly optimized tolerance: Robustness and design in complex systems.

  Phys. Rev. Lett., 84(11):2529–2532, 2000. pdf (H)
- [6] I. D. Chase, C. Tovey, D. Spangler-Martin, and M. Manfredonia.
  Individual differences versus social dynamics in the formation of animal dominance hierarchies.

  Proc. Natl. Acad. Sci., 99(8):5744–5749, 2002.

Contagion

Introduction

Simple Disease
Spreading Models
Background
Prediction

Social Contagion
Models
Granovetter's model
Network version
Groups
Summary

Winning: it's not for
everyone
Superstars
Musiclab

References

## References III

[7] M. Gladwell.The Tipping Point.Little, Brown and Company, New York, 2000.

[8] J. P. Gleeson.

Cascades on correlated and modular random networks.

*Phys. Rev. E*, 77:046117, 2008. pdf (⊞)

[9] J. P. Gleeson and D. J. Cahalane. Seed size strongly affects cascades on random networks.

*Phys. Rev. E*, 75:056103, 2007. pdf (⊞)

[10] M. Granovetter.
Threshold models of collective behavior.

Am. J. Sociol., 83(6):1420–1443, 1978. pdf (H)

# Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiciatb References

## References IV

[11] E. Hoffer.

The Passionate State of Mind: And Other Aphorisms.

Buccaneer Books, 1954.

[12] E. Katz and P. F. Lazarsfeld. Personal Influence. The Free Press, New York, 1955.

[13] T. Kuran.

Now out of never: The element of surprise in the east european revolution of 1989.

World Politics, 44:7–48, 1991.

[14] T. Kuran.

Private Truths, Public Lies: The Social

Consequences of Preference Falsification.

Harvard University Press, Cambridge, MA, Reprint edition, 1997.

# Contagion Introduction Simple Disease Spreading Models Background Prediction Social Contagion Models Granovetter's model Network version Groups Summary Winning: it's not for everyone Superstars Musiclab References

## References V

[15] J. D. Murray.

Mathematical Biology.

Springer, New York, Third edition, 2002.

[16] S. Rosen. The economics of superstars. Am. Econ. Rev., 71:845–858, 1981. pdf (⊞)

[17] M. J. Salganik, P. S. Dodds, and D. J. Watts. An experimental study of inequality and unpredictability in an artificial cultural market. *Science*, 311:854–856, 2006. pdf (⊞)

[18] T. Schelling. Dynamic models of segregation. J. Math. Sociol., 1:143–186, 1971.

## Contagion

Introduction

Simple Disease Spreading Models Background Prediction

Social Contagion Models Granovetter's model Network version Groups Summary

Winning: it's not for everyone
Superstars

References

Frame 79/80



## References VI

 $pdf(\boxplus)$ 

[19] T. C. Schelling.
Hockey helmets, concealed weapons, and daylight saving: A study of binary choices with externalities. *J. Conflict Resolut.*, 17:381–428, 1973.

[20] T. C. Schelling.

Micromotives and Macrobehavior.

Norton, New York, 1978.

[21] D. Sornette.

Critical Phenomena in Natural Sciences.

Springer-Verlag, Berlin, 2nd edition, 2003.

[22] D. J. Watts. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci., 99(9):5766–5771, 2002.

