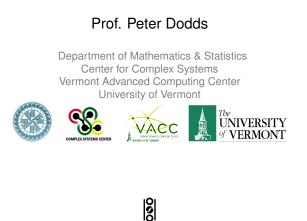
Models of Complex Networks Santa Fe Institute Summer School, 2009



080

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Models

Some important models:

- 1. Generalized random networks
- 2. <u>Scale-free networks</u> (⊞)
- 3. <u>Small-world networks</u> (⊞)
- 4. Statistical generative models (p^*)
- 5. Generalized affiliation networks

Outline

Modeling Complex Networks

Random networks Basics Configuration model

Scale-free networks

History BA model Redner & Krapivisky's model Robustness

Small-world networks

References

Models

1. Generalized random networks:

- Arbitrary degree distribution P_k.
- Wire nodes together randomly.
- Create ensemble to test deviations from randomness.
- Interesting, applicable, rich mathematically.
- Much fun to be had with these guys...

Models of Complex Networks

Modeling Complex Networks

Random networks Basics

Scale-free networks History BA model Redner & Krapivisky

Small-world networks

Frame 2/73

日 りへや

Models of Complex Networks

Modeling Complex Networks

Random networks Basics Configuration model

> cale-free story A model edner & Krapivisky's odel

Small-world networks

References

Frame 4/73

Modeling Complex Networks Basics Configuration model Scale-free networks History BA model Redner & Krapivisky's model Robustness Small-world networks

Frame 3/73

B 990

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Frame 1/73

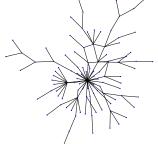
B Dac

Models of

Complex Networks

Models

2. 'Scale-free networks':



 $\gamma = 2.5$ $\langle k \rangle = 1.8$ N = 150

Models

4. Generative statistical models

- Idea is to realize networks based on certain tendencies:
 - Clustering (triadic closure)...
 - Types of nodes that like each other...
 - Anything really...
- Use statistical methods to estimate 'best' values of parameters.
- Drawback: parameters are not real, measurable quantities.
- Non-mechanistic and blackboxish.
- c.f., temperature in statistical mechanics.

Models of complex Networks

Modeling Complex

Random networks

Networks

Scale-free

Frame 5/73

B 990

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

Frame 7/73

Due to Barabasi and Albert^[2]

• *P*[attachment to node i] $\propto k_i^{\alpha}$. ▶ Produces $P_k \sim k^{-\gamma}$ when

Generative model

 $\alpha = 1$.

distributions...

Preferential attachment

Trickiness: other models

generate skewed degree

model with growth

3. Small-world networks

Due to Watts and Strogatz^[18]

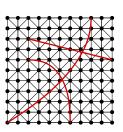
Two scales:

Models

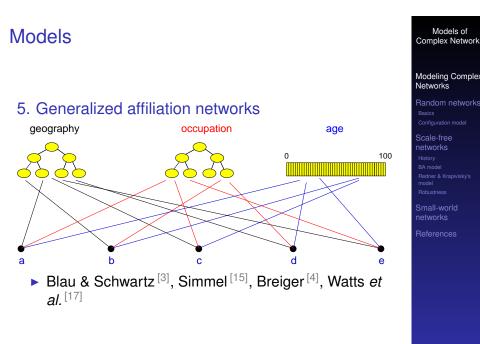
- local regularity (high clustering—an individual's friends know each other)
- global randomness (shortcuts).

Strong effects:

- Shortcuts make world 'small'
- Shortcuts allow disease to jump
- Facilitates synchronization^[7]



Frame 6/73



Models of Complex Network

Modeling Complex Networks

Random networks Basics

Scale-free

Frame 8/73

Pure, abstract random networks:

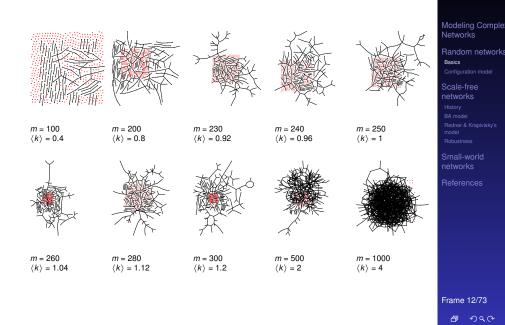
- Consider set of all networks with N labelled nodes and m edges.
- Horribly, there are $\binom{\binom{N}{2}}{m}$ of them.
- Standard random network = randomly chosen network from this set.
- To be clear: each network is equally probable.
- Known as Erdős-Rényi random networks
- Key structural feature of random networks is that they locally look like branching networks
- (No small cycles and zero clustering).

Models of

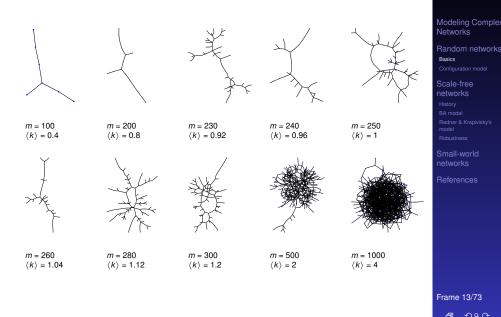
Complex Networks

P

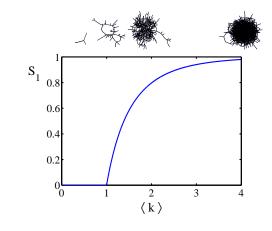
Random networks: examples for N=500



Random networks: largest components



Giant component:



- \triangleright S₁ = fraction of nodes in largest component.
- Old school phase transition.
- Key idea in modeling contagion.

Models of Complex Networks

Models of

Complex Networks

Modeling Comple Networks

Random networks Basics

Scale-free

Frame 14/73

Properties

But:

- Erdős-Rényi random networks are a mathematical construct.
- Real networks are a microscopic subset of all networks...
- ex: 'Scale-free' networks are growing networks that form according to a plausible mechanism.

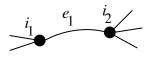
But but:

Randomness is out there, just not to the degree of a completely random network.

General random rewiring algorithm

e'

 l_{Λ}



- Randomly choose two edges. (Or choose problem edge and a random edge)
 - Check to make sure edges are disjoint.
 - Rewire one end of each edge.
 - Node degrees do not change.
 - ▶ Works if *e*₁ is a self-loop or repeated edge.
 - Same as finding on/off/on/off 4-cycles. and rotating them.

	Models of Complex Networks
	Modeling Complex Networks
I	Random networks Basics Configuration model
	Scale-free networks History BA model Redner & Krapivisky's model Robustness
	Small-world networks
	References

Frame 18/73

Models of

omplex Network

Modeling Complex

Random networks

Vetworks

Scale-free

Frame 15/73

B 990

networks

Basics

General random networks

- So... standard random networks have a Poisson degree distribution
- Can happily generalize to arbitrary degree distribution P_k .
- Also known as the configuration model.^[11]
- Can generalize construction method from ER random networks.
- Assign each node a weight w from some distribution and form links with probability

P(link between *i* and *j*) $\propto w_i w_i$.

A more useful way:

 $\gamma = 2.19$

 $\gamma = 2.64$

 $\langle k \rangle = 1.6$

 $\langle k \rangle = 2.986$

- 1. Randomly wire up (and rewire) already existing nodes with fixed degrees.
- 2. Examine mechanisms that lead to networks with certain degree distributions.

Models of Complex Network

Modeling Comple Vetworks

Random networks Basics Configuration model Scale-free

networks

Frame 17/73 **日** りへで

Models of

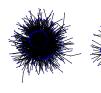
Complex Networks

Random networks

Vetworks

Scale-free networks

Basics Configuration model



 $\gamma = 2.1$

 $\gamma = 2.55$

 $\langle k \rangle = 1.712$

 $\langle k \rangle = 3.448$

 $\gamma = 2.28$

 $\gamma = 2.73$

 $\langle k \rangle = 1.862$

 $\langle k \rangle = 2.306$

 $\gamma = 2.37$

= 2.82

 $\langle k \rangle = 1.386$

(k) = 2.504

= 2.91

 $\langle k \rangle = 1.49$

 $\gamma = 2.46$ $\langle k \rangle = 1.856$

Frame 20/73

The edge-degree distribution:

- The degree distribution P_k is fundamental for our description of many complex networks
- A related key distribution:
 R_k = probability that a friend of a random node has
 k other friends.

$$R_k = rac{(k+1)P_{k+1}}{\sum_{k'=0}(k'+1)P_{k'+1}} = rac{(k+1)P_{k+1}}{\langle k
angle}$$

- Natural question: what's the expected number of other friends that one friend has?
- ► Find

$$\langle k \rangle_R = \frac{1}{\langle k \rangle} \left(\langle k^2 \rangle - \langle k \rangle \right)$$

True for all random networks, independent of degree distribution.

Mild weirdness...

Average # friends of friends per node is

$$\langle k_2 \rangle = \langle k^2 \rangle - \langle k \rangle.$$

- Average depends on the 1st and 2nd moments of P_k and not just the 1st moment.
- Three peculiarities:
 - 1. We might guess $\langle k_2 \rangle = \langle k \rangle (\langle k \rangle 1)$ but it's actually $\langle k(k-1) \rangle$.
 - 2. If P_k has a large second moment, then $\langle k_2 \rangle$ will be big.
 - 3. Your friends have more friends than you...

Giant component condition

► If:

Models of

Complex Networks

Modeling Complex

Random networks

Configuration model

Scale-free

Frame 21/73

B 990

Models of

Complex Networks

Modeling Comple>

Vetworks

Frame 23/73

Basics Configuration model Scale-free

Vetworks

Basics

$$ig \langle k
angle_R = rac{1}{\langle k
angle} \left(\langle k^2
angle - \langle k
angle
ight) > 1$$

then our random network has a giant component.

- Exponential explosion in number of nodes as we move out from a random node.
- Number of nodes expected at n steps:

$$\langle k \rangle \cdot \langle k \rangle_R^{n-1} = \frac{1}{\langle k \rangle^{n-2}} \left(\langle k^2 \rangle - \langle k \rangle \right)^{n-1}$$

We'll see this again for contagion models...

Frame 22/73 日 りへへ

Models of

Complex Network

Modeling Comple

Random networks

Configuration model

Scale-free

Vetworks

Basics

Size distributions

The sizes of many systems' elements appear to obey an inverse power-law size distribution:

$$P(\text{size} = x) \sim c x^{-\gamma}$$

where $x_{\min} < x < x_{\max}$ and $\gamma > 1$.

- x can be continuous or discrete.
- Typically, $2 < \gamma < 3$.
- ▶ No dominant internal scale between x_{\min} and x_{\max} .
- If $\gamma < 3$, variance and higher moments are 'infinite'
- If $\gamma < 2$, mean and higher moments are 'infinite'
- Negative linear relationship in log-log space:

 $\log P(x) = \log c - \gamma \log x$

Models of Complex Networks

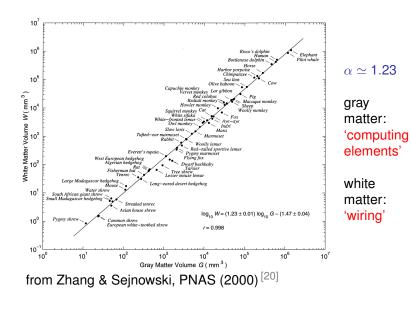
Modeling Complex Networks

Random networks Basics Configuration model Scale-free networks

BA model Redner & Krapivisky's model Robustness

Small-world networks

A beautiful, heart-warming example:



Examples:

- Earthquake magnitude (Gutenberg Richter law): $P(M) \propto M^{-3}$
- Number of war deaths: $P(d) \propto d^{-1.8 [14]}$
- Sizes of forest fires
- Sizes of cities: $P(n) \propto n^{-2.1}$
- Number of links to and from websites

Size distributions

Power law size distributions are sometimes called <u>Pareto distributions</u> (\boxplus) after Italian scholar Vilfredo Pareto.

- Pareto noted wealth in Italy was distributed unevenly (80–20 rule).
- Term used especially by economists

Models of

Complex Network

Modeling Comple

Random network

Vetworks

Scale-free

networks

Size distributions

Examples:

- Number of citations to papers: $P(k) \propto k^{-3}$.
- ▶ Individual wealth (maybe): $P(W) \propto W^{-2}$.
- Distributions of tree trunk diameters: $P(d) \propto d^{-2}$.
- ► The gravitational force at a random point in the universe: P(F) ∝ F^{-5/2}.
- Diameter of moon craters: $P(d) \propto d^{-3}$.
- Word frequency: e.g., $P(k) \propto k^{-2.2}$ (variable)

Note: Exponents range in error; see M.E.J. Newman arxiv.org/cond-mat/0412004v3 (⊞) Models of Complex Networks

Modeling Comple» Networks

Random networks Basics Configuration model

Scale-free networks History BA model Redner & Krapivisky's model

Small-world networks

Frame 28/73

🗗 ୬ ଏ ୯

Frame 27/73

Models of

Complex Networks

Modeling Comple>

Random networks

Vetworks

Scale-free

Frame 25/73

B 990

Models of

Complex Networks

Modeling Comple>

Random networks

Vetworks

Scale-free

networks

networks

Basics

History

- Random Additive/Copying Processes involving Competition.
- Widespread: Words, Cities, the Web, Wealth, Productivity (Lotka), Popularity (Books, People, ...)
- Competing mechanisms (more trickiness)

Not everyone is happy...

Mandelbrot vs. Simon:

- Mandelbrot (1953): "An Informational Theory of the Statistical Structure of Languages" [10]
- Simon (1955): "On a class of skew distribution functions" ^[16]
- Mandelbrot (1959): "A note on a class of skew distribution function: analysis and critique of a paper by H.A. Simon"
- Simon (1960): "Some further notes on a class of skew distribution functions"

Models of Complex Networks
Modeling Complex Networks
Random networks Basics Configuration model
Scale-free networks History BA model Redner & Krapivisky's model Robustness
Small-world networks
References
Frame 30/73
এ ০০ দ্ব

Models of

Complex Networks

Modeling Complex Networks

Random networks

Scale-free

Frame 32/73

P

Work of Yore

- 1924: G. Udny Yule^[19]: # Species per Genus
- 1926: Lotka^[9]: # Scientific papers per author (Lotka's law)
- 1953: Mandelbrot^[10]: Optimality argument for Zipf's law; focus on language.
- 1955: Herbert Simon^[16, 21]: Zipf's law for word frequency, city size, income, publications, and species per genus.
- 1965/1976: Derek de Solla Price^[12, 13]: Network of Scientific Citations.
- 1999: Barabasi and Albert^[2]: The World Wide Web, networks-at-large.

Networks Random networks Basics Configuration model Scale-free networks History BA model Rodner & Kraptvisky's model Robustness Small-world

Models of

Complex Network

Modeling Comple

Frame 31/73 日 のへで

Not everyone is happy... (cont.)

Mandelbrot vs. Simon:

- Mandelbrot (1961): "Final note on a class of skew distribution functions: analysis and critique of a model due to H.A. Simon"
- Simon (1961): "Reply to 'final note' by Benoit Mandelbrot"
- Mandelbrot (1961): "Post scriptum to 'final note"
- Simon (1961): "Reply to Dr. Mandelbrot's post scriptum"

Models of Complex Networks

Modeling Comple: Networks

Random networks Basics Configuration model

Scale-free networks History BA model Redner & Krapivisky's model Rebustbace

Small-world networks

Frame 33/73

Not everyone is happy... (cont.)

Mandelbrot:

"We shall restate in detail our 1959 objections to Simon's 1955 model for the Pareto-Yule-Zipf distribution. Our objections are valid quite irrespectively of the sign of p-1, so that most of Simon's (1960) reply was irrelevant."

Simon:

"Dr. Mandelbrot has proposed a new set of objections to my 1955 models of the Yule distribution. Like his earlier objections, these are invalid."

Random Competitive Replication

Example: Words in a text

- Consider words as they appear sequentially.
- With probability ρ, the next word has not previously appeared
 - Mutation/Innovation
- With probability 1 ρ, randomly choose one word from all words that have come before, and reuse this word
 - ► Replication/Imitation
- Please note: authors do not do this...

andom networks	
cale-free	
etworks	
istory	
edner & Krapivisky's odel	
mall-world	

Frame 34/73

B 990

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

Frame 36/73

P

Models of

Complex Networks

Modeling Complex

Networks

Essential Extract of a Growth Model

Random Competitive Replication (RCR):

- 1. Start with 1 element of a particular flavor at t = 1
- 2. At time *t* = 2, 3, 4, . . ., add a new element in one of two ways:
 - With probability ρ, create a new element with a new flavor
 - ► Mutation/Innovation
 - With probability 1 ρ, randomly choose from all existing elements, and make a copy.
 > Replication/Imitation
 - Elements of the same flavor form a group

Frame 35/73 日 - シュで

Models of

Complex Network

Modeling Complex

Random networks Basics

Networks

Scale-free

networks

History

Random Competitive Replication

- Competition for replication between elements is random
- Competition for growth between groups is not random
- Selection on groups is biased by size
- Rich-gets-richer story
- Random selection is easy
- No great knowledge of system needed

Models of Complex Networks

Modeling Comple: Networks

Random networks Basics Configuration model

Scale-free networks History BA model Redner & Krapivisky's model

Small-world networks

References

Frame 37/73

Random Competitive Replication

After some thrashing around, one finds:

$$P_k \propto k^{-rac{(2-
ho)}{(1-
ho)}} = k^{-\gamma}$$

 $\gamma = 1 + \frac{1}{(1-\rho)}$

• See γ is governed by rate of new flavor creation, ρ .

Evolution of catch phrases

- Robert K. Merton: the Matthew Effect
- Studied careers of scientists and found credit flowed disproportionately to the already famous

From the Gospel of Matthew:

"For to every one that hath shall be given... (Wait! There's more....)

but from him that hath not, that also which he seemeth to have shall be taken away. And cast the worthless servant into the outer darkness; there men will weep and gnash their teeth."

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

Frame 40/73

P

Evolution of catch phrases

- Yule's paper (1924)^[19]:
 "A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S."
- Simon's paper (1955) ^[16]:
 "On a class of skew distribution functions" (snore)
- Price's term: Cumulative Advantage

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

Basics

History

Evolution of catch phrases

Merton was a catchphrase machine:

- 1. self-fulfilling prophecy
- 2. role model
- 3. unintended (or unanticipated) consequences
- 4. focused interview \rightarrow focus group

And just to rub it in...

Merton's son, Robert C. Merton, won the Nobel Prize for Economics in 1997.

Models of Complex Networks

Modeling Complex Networks

Random networks Basics Configuration model

Scale-free networks History BA model Redner & Krapivisky's model

Small-world networks

References

Frame 41/73

Evolution of catch phrases

- Barabási and Albert^[2]—thinking about the Web
- Independent reinvention of a version of Simon and Price's theory for networks
- Another term: "Preferential Attachment"
- ► Basic idea: a new node arrives every discrete time step and connects to an existing node *i* with probability ∝ k_i.
- Connection: Groups of a single flavor ~ edges of a node
- Small hitch: selection mechanism is now non-random
- Solution: Connect to a random node (easy)
- + Randomly connect to the node's friends (also easy)
- Scale-free networks = food on the table for physicists

Scale-free networks

- ▶ Term 'scale-free' is somewhat confusing...
- Scale-free networks are not fractal in any sense.
- Usually talking about networks whose links are abstract, relational, informational, ... (non-physical)
- Main reason is link cost.
- Primary example: hyperlink network of the Web
- Much arguing about whether or networks are 'scale-free' or not...

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

Frame 42/73

B 990

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

BA model

Frame 45/73

P

- Networks with power-law degree distributions have become known as scale-free networks.
- Scale-free refers specifically to the degree distribution having a power-law decay in its tail:

 $P_k \sim k^{-\gamma}$ for 'large' k

 Please note: not every network is a scale-free network...

> Frame 44/73 日 のへで

Models of

Complex Network

Modeling Comple

Random networks

Networks

BA model

Scale-free networks

The big deal:

We move beyond describing networks to finding mechanisms for why certain networks arise.

A big deal for scale-free networks:

- How does the exponent γ depend on the mechanism?
- Do the mechanism's details matter?
- We know they do for Simon's model...

Models of Complex Networks

Modeling Complex Networks

Random networks Basics Configuration model

Scale-free networks History BA model Redner & Krapivisky's model Robustness

networks

Frame 46/73

Real data (eek!)

From Barabási and Albert's original paper^[2]:

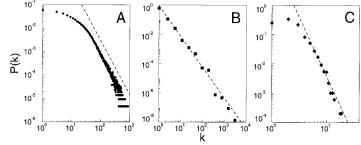


Fig. 1. The distribution function of connectivities for various large networks. (A) Actor collaboration graph with N = 212,250 vertices and average connectivity $\langle k \rangle = 28.78$. (B) WWW, N = 325,729, $\langle k \rangle = 5.46$ (6). (C) Power grid data, N = 4941, $\langle k \rangle = 2.67$. The dashed lines have slopes (A) $\gamma_{actor} = 2.3$, (B) $\gamma_{wvw} = 2.1$ and (C) $\gamma_{power} = 4$.

- But typically for real networks: $2 < \gamma < 3$.
- (Plot C is on the bogus side of things...)

Universality?

- Consider $A_1 = \alpha$ and $A_k = k$ for $k \ge 2$.
- Some unsettling calculations leads to $P_k \sim k^{-\gamma}$ where

$$\gamma = \mathbf{1} + \frac{\mathbf{1} + \sqrt{\mathbf{1} + \mathbf{8}\alpha}}{\mathbf{2}}$$

We then have

$$\mathbf{0} \le lpha < \infty \Rightarrow \mathbf{2} \le \gamma < \infty$$

Craziness...

Models of Complex Networks Modeling Complex Networks Random networks Basics Configuration model Scale-free networks History BA model Redner & Krapivisky's model Redner & Krapivisky's Redner & Krapiv

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

BA model

Frame 47/73

B 990

Generalized model

Fooling with the mechanism:

2001: Redner & Krapivsky (RK)^[8] explored the general attachment kernel:

Pr(attach to node *i*) $\propto A_k = k_i^{\nu}$

where A_k is the attachment kernel and $\nu > 0$.

- RK also looked at changing very subtle details of the attachment kernel.
- e.g., keep $A_k \sim k$ for large k but tweak A_k for low k.
- ▶ RK's approach is to use rate equations (⊞).

Models of

Complex Network

Modeling Comple

Random networks

Vetworks

Scale-free

Redner & Krapivisky's

Basics

model

Sublinear attachment kernels

Rich-get-somewhat-richer:

 $A_k \sim k^{\nu}$ with $0 < \nu < 1$.

General finding by Krapivsky and Redner:^[8]

 $P_k \sim k^{-\nu} e^{-c_1 k^{1-\nu} + \text{correction terms}}.$

- Weibull distribution*ish* (truncated power laws).
- Universality: now details of kernel do not matter.

Models of Complex Networks

Modeling Comple: Networks

Random networks Basics Configuration model

Scale-free

networks History BA model Redner & Krapivisky's model

Small-world networks

Frame 51/73

ମ୍ବ ୬ବ୍ଦ

Superlinear attachment kernels

Rich-get-much-richer:

 $A_k \sim k^{\nu}$ with $\nu > 1$.

- Now a winner-take-all mechanism.
- One single node ends up being connected to almost all other nodes.
- For v > 2, all but a finite # of nodes connect to one node.

Models of

Complex Networks

Modeling Comple» Networks

Random networks

Scale-free

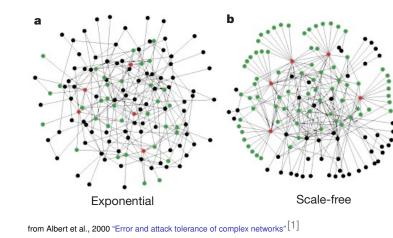
Robustness

Frame 55/73

ð

Robustness

 Standard random networks (Erdős-Rényi) versus
 Scale-free networks



ences

Models of

Complex Network

Modeling Comple

Random networks

Vetworks

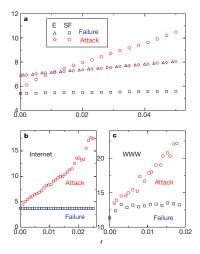
Scale-free

networks

Robustness

Basics

Robustness



- Plots of network diameter as a function of fraction of nodes removed
- Erdős-Rényi versus scale-free networks
- blue symbols = random removal
- red symbols = targeted removal (most connected first)

Robustness

- Scale-free networks are thus robust to random failures yet fragile to targeted ones.
- All very reasonable: Hubs are a big deal.
- But: next issue is whether hubs are vulnerable or not.
- Representing all webpages as the same size node is obviously a stretch (e.g., google vs. a random person's webpage)
- Most connected nodes are either:
 - 1. Physically larger nodes that may be harder to 'target'
 - 2. or subnetworks of smaller, normal-sized nodes.
- Need to explore cost of various targeting schemes.

Models of Complex Networks

Modeling Complex Networks

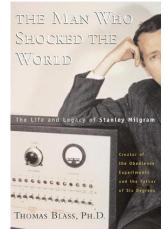
Random networks Basics Configuration model Scale-free

networks History BA model Redner & Krapivisky's model Robustness

Small-world networks

🗗 🔊 ९ ९ ९

Milgram's social search experiment (1960s)



http://www.stanleymilgram.com

- Target person = Boston stockbroker.
- 296 senders from Boston and Omaha.
- 20% of senders reached target.
- chain length \simeq 6.5.

Popular terms:

- The Small World Phenomenon:
- "Six Degrees of Separation."

Frame 57/73

Models of

Milgram's experiment with e-mail^[5]

18 targets in 13 countries including

- a professor at an Ivy League university,
- an archival inspector in Estonia,
- a technology consultant in India.

Participants:

countries

24.000+ chains

▶ Big media boost...

▶ 60,000+ people in 166

- a policeman in Australia.
- a potter in
- a veterinarian in the Norwegian army.

Frame 58/73 **日** りへで

Models of

Complex Networks

Modeling Comple>

Random networks

Vetworks

Scale-free

Small-world

networks

networks

Basics

Social search—the Columbia experiment

The world is smaller:

- $\langle L \rangle = 4.05$ for all completed chains
- L_* = Estimated 'true' median chain length (zero attrition)
- Intra-country chains: $L_* = 5$
- ▶ Inter-country chains: $L_* = 7$
- ▶ All chains: $L_* = 7$
- ▶ c.f. Milgram (zero attrition): $L_* \simeq 9$

Randomness + regularity



 $d_{AB} = 10$ without random paths $d_{AB} = 3$ with random paths

New Zealand,

Models of Complex Networks

Networks

Random networks

Scale-free

Small-world networks

Frame 60/73

Theory of Small-World networks

Introduced by Watts and Strogatz (Nature, 1998)^[18] "Collective dynamics of 'small-world' networks."

Small-world networks are found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

Previous work-finding short paths

But are these short cuts findable?

No!

Nodes cannot find each other quickly with any local search method.

- Jon Kleinberg (Nature, 2000)^[6]
 "Navigation in a small world."
- Only certain networks are navigable
- So what's special about social networks?

Models of Complex Network

Modeling Complex Networks

Random networks Basics Configuration model

Scale-free networks History BA model Redner & Krapivisky' model

Small-world networks

Frame 62/73 日 クへへ

The model

One approach: incorporate identity.

(See "Identity and Search in Social Networks." Science, 2002, Watts, Dodds, and Newman $^{[17]}$)

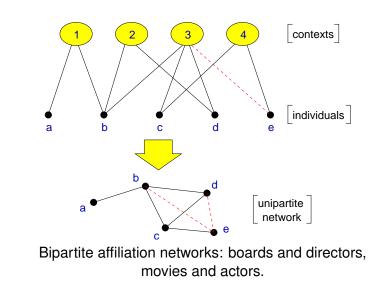
Identity is formed from attributes such as:

- Geographic location
- Type of employment
- Religious beliefs
- Recreational activities.

Groups are formed by people with at least one similar attribute.

Attributes \Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.

Social distance—Bipartite affiliation networks



Models of Complex Networks

Modeling Comple Networks

Random networks Basics Configuration model Scale-free networks

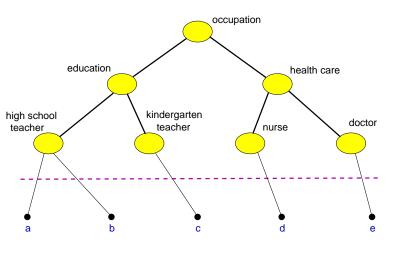
> History BA model Redner & Krapivisky's model

Small-world networks

References

Frame 64/73

Social distance as a function of identity



Social Search-Real world uses

- Tagging: e.g., Flickr induces a network between photos
- Search in organizations for solutions to problems
- Peer-to-peer networks
- Synchronization in networked systems
- Motivation for search matters...

Models of

Complex Networks

Modeling Complex

Random networks

Networks

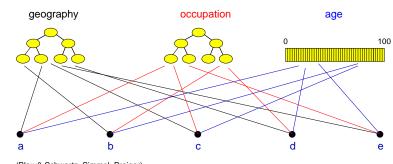
Scale-free

Small-world

Frame 67/73

D 200

Homophily



(Blau & Schwartz, Simmel, Breiger)

- Networks built with 'birds of a feather...' are searchable.
- ► Attributes ⇔ Contexts ⇔ Interactions ⇔ Networks.

Modeling Complex Networks Random networks Basics Configuration model Scale-free networks History BA model Rodner & Krapivisky's model Robustness Small-world networks References

Models of

Complex Networks

References I

- [1] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. *Nature*, 406:378–382, July 2000. pdf (⊞)
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–511, 1999. pdf (⊞)
- [3] P. M. Blau and J. E. Schwartz. Crosscutting Social Circles. Academic Press, Orlando, FL, 1984.
- [4] R. L. Breiger.
 The duality of persons and groups. Social Forces, 53(2):181–190, 1974.

Models of Complex Networks

Modeling Complex Networks

Random networks Basics Configuration model

Scale-free networks History BA model Redner & Krapivisky's model Robustness

Small-world networks

References

Frame 68/73

References II

- [5] P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in global social networks. Science, 301:827–829, 2003. pdf (⊞)
 - [6] J. Kleinberg. Navigation in a small world. *Nature*, 406:845, 2000. pdf (⊞)
- [7] G. Korniss, M. A. Novotny, H. Guclu, Z. Toroczkai, and P. A. Rikvold. Suppressing roughness of virtual times in parallel discrete-event simulations. Science, 299:677-679, 2003.
- [8] P. L. Krapivsky and S. Redner. Organization of growing random networks. Phys. Rev. E, 63:066123, 2001. pdf (⊞)

References IV

[13] D. J. d. S. Price.

A general theory of bibliometric and other cumulative advantage processes. J. Amer. Soc. Inform. Sci., 27:292-306, 1976.

[14] L. F. Richardson.

Variation of the frequency of fatal guarrels with magnitude.

J. Amer. Stat. Assoc., 43:523–546, 1949.

[15] G. Simmel.

The number of members as determining the sociological form of the group. I. American Journal of Sociology, 8:1-46, 1902.

[16] H. A. Simon.

On a class of skew distribution functions. *Biometrika*, 42:425–440, 1955. pdf (⊞)

References III

Models of

Complex Networks

Modeling Complex

Random networks

Networks

Scale-free

References

Frame 69/73

B 990

Models of

Complex Networks

Modeling Complex Networks

Random networks

Scale-free

References

Frame 71/73

P

[9] A. J. Lotka. Modeling Comple Vetworks The frequency distribution of scientific productivity. Random networks Journal of the Washington Academy of Science, 16:317-323, 1926. Scale-free [10] B. B. Mandelbrot. An informational theory of the statistical structure of languages. In W. Jackson, editor, Communication Theory, pages 486–502. Butterworth, Woburn, MA, 1953. References [11] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003. pdf (⊞) [12] D. J. d. S. Price. Networks of scientific papers. Science, 149:510–515, 1965. pdf (⊞) Frame 70/73 **日** りへで

References V

[17] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf (⊞)

[18] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393:440–442, 1998. pdf (⊞)

[19] G. U. Yule.

A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. B, 213:21-, 1924.

[20] K. Zhang and T. J. Sejnowski.

A universal scaling law between gray matter and white matter of cerebral cortex.

Proceedings of the National Academy of Sciences, 97:5621–5626, May 2000. pdf (⊞)

Models of Complex Networks

Models of

Complex Networks

Networks

Random networks

Scale-free

References

Frame 72/73

References VI

[21] G. K. Zipf.

Human Behaviour and the Principle of Least-Effort. Addison-Wesley, Cambridge, MA, 1949. Models of Complex Networks Modeling Complex Networks Random networks Basics Conjugation model Scale-free networks History BA model Reduer Kaptivisky's model Radner Kaptivisky's model Radner Kaptivisky's Model References