Overview of Complex Networks Santa Fe Institute Summer School, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Plan Basic definitions Popularity according to book Examples of Complex Network Properties of Complex Network Nutshell References

Outline

Plan

Basic definitions

Popularity according to books

Examples of Complex Networks

Properties of Complex Networks

Nutshell

References

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

Something of a plan:

► Lecture 1: Overview; Background; Basic models

▶ Lecture 2: Random networks; Scale-free networks

▶ Lecture 3: Transportation; Contagion

► Lecture 4: Discovering structure

Plan Basic definitions Popularity

Overview

Frame 1/47

雪 かくい

according to books

Examples of

Properties of Complex Networks

Nutshe

References

Exciting details regarding these slides:

- ► Three versions (all in pdf):
 - 1. Presentation,
 - 2. Flat Presentation,
 - 3. Handout (2x2).
- ► Presentation versions are navigable and hyperlinks are clickable.
- ▶ Web links look <u>like this</u> (⊞).
- References in slides link to full citation at end. [1]
- ► Citations contain links to papers in pdf (if available).
- ▶ 50 hours of lectures → 5 hours.
- ▶ Brought to you by a concoction of LATEX, Beamer, and perl.

Frame 3/47

Basic definitions

Complex System—Some ingredients:

- Distributed system of many interrelated parts
- No centralized control
- Nonlinear relationships
- Existence of feedback loops
- Complex systems are open (out of equilibrium)
- Presence of Memory
- ► Modular (nested)/multiscale structure
- Opaque boundaries
- ► Emergence—'More is Different' [1]

Basic definitions Popularity

Overview

Complex: (Latin = with + fold/weave (com + plex)) **Adjective**

- Made up of multiple parts; intricate or detailed.
- Not simple or straightforward.

Thesaurus deliciousness:

Overview Basic definitions Popularity Frame 6/47

母 り00

Frame 5/47

net•work | 'net,wərk|

- 1 an arrangement of intersecting horizontal and vertical lines.
 - a complex system of roads, railroads, or other transportation routes : a network of railroads.
- **2** a group or system of interconnected people or things : a trade network.
- a group of people who exchange information, contacts, and experience for professional or social purposes: a support network.
- a group of broadcasting stations that connect for the simultaneous broadcast of a program: the introduction of a second TV network | [as adj.] network television.
- a number of interconnected computers, machines, or operations : specialized computers that manage multiple outside connections to a network | a local cellular phone network.
- a system of connected electrical conductors.

connect as or operate with a network: the stock exchanges have proven to be resourceful in networking these deals.

- link (machines, esp. computers) to operate interactively : [as adj.] (**networked**) networked workstations.
- [intrans.] [often as n.] (**networking**) interact with other people to exchange information and develop contacts, esp. to further one's career: the skills of networking, bargaining, and negotiation.

Overview

Basic definitions

Popularity

Properties of

network

noun

- 1 a network of arteries WEB, lattice, net, matrix, mesh, crisscross, grid, reticulum, reticulation; Anatomy plexus.
- 2 a network of lanes MAZE, labyrinth, warren, tangle.
- 3 a network of friends SYSTEM, complex, nexus, web, webwork.

Overview

Basic definitions

Popularity

Frame 8/47

Ancestry:

From Keith Briggs's excellent etymological investigation: (⊞)

- Opus reticulatum:
- A Latin origin?

[http://serialconsign.com/2007/11/we-put-net-network]

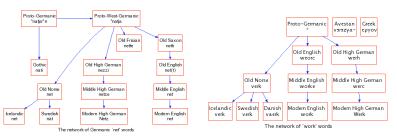
Ancestry:

First known use: Geneva Bible, 1560

'And thou shalt make unto it a grate like networke of brass (Exodus xxvii 4).'

From the OED via Briggs:

- 1658—: reticulate structures in animals
- 1839-: rivers and canals
- ▶ 1869–: railways
- 1883—: distribution network of electrical cables
- ▶ 1914—: wireless broadcasting networks



Ancestry:

Net and Work are venerable old words:

- ► 'Net' first used to mean spider web (King Ælfréd, 888).
- 'Work' appear to have long meant purposeful action.

- 'Network' = something built based on the idea of natural, flexible lattice or web.
- c.f., ironwork, stonework, fretwork.

Overview Basic definitions Popularity

Frame 11/47

母 りゅつ

Overview

Basic definitions

Popularity

References

Frame 9/47

母 り00

Key Observation:

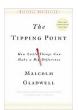
- Many complex systems can be viewed as complex networks of physical or abstract interactions.
- Opens door to mathematical and numerical analysis.
- Dominant approach of last decade of a theoretical-physics/stat-mechish flavor.
- Mindboggling amount of work published on complex networks since 1998...
- ▶ ... largely due to your typical theoretical physicist:

- Piranha physicus
- Hunt in packs.
- Feast on new and interesting ideas (see chaos, cellular automata, ...)

Frame 12/47

Popularity (according to ISI)

"Collective dynamics of 'small-world' networks" [19]


- Watts and Strogatz Nature, 1998
- ightharpoonup pprox 3752 citations (as of June 5, 2009)
- Over 1100 citations in 2008 alone.

"Emergence of scaling in random networks" [2]

- Barabási and Albert Science, 1999
- $ightharpoonup \approx 3860$ citations (as of June 5, 2009)
- Over 1100 citations in 2008 alone.

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

Popularity according to books:

The Tipping Point: How Little Things can make a Big Difference—Malcolm Gladwell [8]

Nexus: Small Worlds and the Groundbreaking Science of Networks—Mark Buchanan

Plan
Basic definitions
Popularity
according to books
Examples of
Complex Networks
Properties of
Complex Networks
Nutshell
References

Popularity according to books:

Linked: How Everything Is Connected to Everything Else and What It Means—Albert-Laszlo Barabási

Six Degrees: The Science of a Connected Age—Duncan Watts [18]

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

Frame 15/47

母 り00

Frame 13/47

母 り00

Overview

Numerous others:

- ► Complex Social Networks—F. Vega-Redondo [17]
- ► Fractal River Basins: Chance and Self-Organization—I. Rodríguez-Iturbe and A. Rinaldo [14]
- ► Random Graph Dynamics—R. Durette
- Scale-Free Networks—Guido Caldarelli
- Evolution and Structure of the Internet: A Statistical Physics Approach—Romu Pastor-Satorras and Alessandro Vespignani
- ► Complex Graphs and Networks—Fan Chung
- Social Network Analysis—Stanley Wasserman and Kathleen Faust
- ► Handbook of Graphs and Networks—Eds: Stefan Bornholdt and H. G. Schuster [4]
- ► Evolution of Networks—S. N. Dorogovtsev and J. F. F. Mendes [7]

More observations

- ▶ But surely networks aren't new...
- Graph theory is well established...
- Study of social networks started in the 1930's...
- So why all this 'new' research on networks?
- ► Answer: Oodles of Easily Accessible Data.
- ▶ We can now inform (alas) our theories with a much more measurable reality.*
- ► A worthy goal: establish mechanistic explanations.

* If this is upsetting, maybe string theory is for you...

Overview More observations

Web-scale data sets can be overly exciting.

Witness:

- ► The End of Theory: The Data Deluge Makes the Scientific Theory Obsolete (Anderson, Wired) (H)
- ▶ "The Unreasonable Effectiveness of Data." Halevy et al. [9].

But:

- ► For scientists, description is only part of the battle.
- We still need to understand.

Overview Basic definitions Popularity according to books Frame 18/47 **一 り**へで

Super Basic definitions

Nodes = A collection of entities which have properties that are somehow related to each other

• e.g., people, forks in rivers, proteins, webpages, organisms,...

Links = Connections between nodes

- Links may be directed or undirected.
- Links may be binary or weighted.

Other spiffing words: vertices and edges.

Overview

Frame 17/47

母 り00

Popularity

according to books

Popularity according to books

Complex Networks

Super Basic definitions

Node degree = Number of links per node

- Notation: Node *i*'s degree = k_i .
- $k_i = 0,1,2,...$
- Notation: the average degree of a network = $\langle k \rangle$ (and sometimes z)
- ▶ Connection between number of edges *m* and average degree:

$$\langle k \rangle = \frac{2m}{N}.$$

▶ Defn: \mathcal{N}_i = the set of i's k_i neighbors

Overview

Basic definitions

Popularity according to books

Examples of

Frame 20/47

Frame 19/47

Super Basic definitions

Adjacency matrix:

- ▶ We represent a directed network by a matrix A with link weight a_{ii} for nodes i and j in entry (i, j).
- ► e.g.,

$$A = \left[\begin{array}{ccccccc} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{array} \right]$$

► (n.b., for numerical work, we always use sparse matrices.)

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks

Examples

So what passes for a complex network?

- Complex networks are large (in node number)
- Complex networks are sparse (low edge to node ratio)
- ► Complex networks are usually dynamic and evolving
- ► Complex networks can be social, economic, natural, informational, abstract, ...

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

Examples

Physical networks

- River networks
- Neural networks
- Trees and leaves
- ▶ Blood networks

▶ The Internet

Power grids

Road networks

Distribution (branching) vs. redistribution (cyclical)

Overview

Frame 21/47

母 り00

Pian

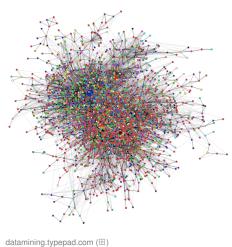
Basic definitions

Popularity

Examples of

Complex Networks

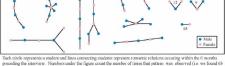
Properties of Complex Network


References

Examples

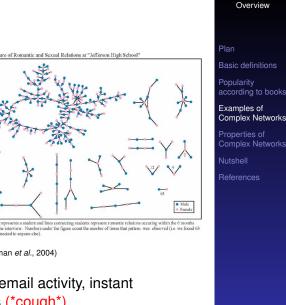
Interaction networks

- ▶ The Blogosphere
- Biochemical networks
- Gene-protein networks
- Food webs: who eats whom
- ► The World Wide Web (?)
- Airline networks
- Call networks (AT&T)
- ► The Media
- Paper citations

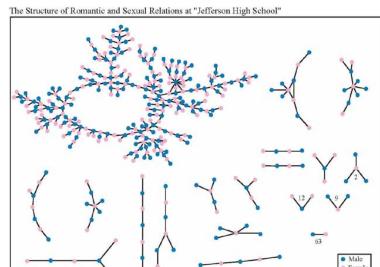


Plan
Basic definitions
Popularity
according to books
Examples of
Complex Networks
Properties of
Complex Networks
Nutshell
References

Examples


Interaction networks: social networks

- Snogging
- Friendships
- Acquaintances
- Boards and directors
- Organizations
- ► myspace.com (⊞), facebook.com (⊞)



(Bearman et al., 2004)

▶ 'Remotely sensed' by: email activity, instant messaging, phone logs (*cough*).

Examples

Each circle represents a student and lines connecting students represent romantic relations occurring within the 6 months preceding the interview. Numbers under the figure count the number of times that pattern was observed (i.e. we found 63 pairs unconnected to anyone else).

Overview Popularity Examples of Complex Networks Frame 26/47

Examples

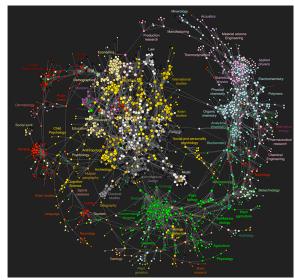
Relational networks

- ▶ Consumer purchases (Wal-Mart: ≈ 1 petabyte = 10^{15} bytes)
- ▶ Thesauri: Networks of words generated by meanings
- ► Knowledge/Databases/Ideas
- Metadata—Tagging: del.icio.us (⊞), flickr (⊞)

common tags cloud | list

community daily dictionary education encyclopedia english free imported info information internet knowledge reference research resource learning news wiki search tools useful web web2.0 resources wikipedia

Basic definitions Popularity according to books Examples of Complex Networks

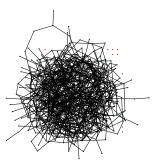

Overview

Frame 25/47

母 り00

Frame 27/47

Clickworthy Science:



Bollen et al. [3]

Overview Basic definitions Popularity Examples of Complex Networks Frame 28/47

A notable feature of large-scale networks:

Graphical renderings are often just a big mess.

- ← Typical hairball
- ▶ number of nodes N = 500
- ▶ number of edges m = 1000
- average degree ⟨k⟩ = 4
- ► And even when renderings somehow look good: "That is a very graphic analogy which aids understanding wonderfully while being, strictly speaking, wrong in every possible way" said Ponder [Stibbons] — Making Money, T. Pratchett.
- ▶ We need to extract digestible, meaningful aspects.

Overview Properties

Plan

Basic definitions

Popularity according to book

Examples of Complex Networks

Properties of Complex Networks

Nutshell

Referenc

Some key features of real complex networks:

- Degree distribution
- Assortativity
- ► Homophily
- Clustering
- Motifs
- Modularity

- Concurrency
- Hierarchical scaling
- Network distances
- Centrality
- ► Efficiency
- Robustness
- Coevolution of network structure and processes on networks.

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

Properties

1. Degree distribution P_k

- ▶ P_k is the probability that a randomly selected node has degree k
- ightharpoonup Big deal: Form of P_k key to network's behavior
- ex 1: Erdős-Rényi random networks have a Poisson distribution:

$$P_k = e^{-\langle k \rangle} \langle k \rangle^k / k!$$

- ex 2: "Scale-free" networks: $P_k \propto k^{-\gamma} \Rightarrow$ 'hubs'
- We'll come back to this business soon...

Overview

Plan

Basic definitions

Frame 29/47

母 り00

Popularity

Examples of Complex Networks

Properties of Complex Networks

Nutsneii

References

Properties

2. Assortativity/3. Homophily:

- ► Social networks: Homophily (⊞) = birds of a feather
- e.g., degree is standard property for sorting: measure degree-degree correlations.
- ► Assortative network: [12] similar degree nodes connecting to each other.
 - Often social: company directors, coauthors, actors.
- ▶ Disassortative network: high degree nodes connecting to low degree nodes.
 - Often techological or biological: Internet, WWW, protein interactions, neural networks, food webs.

Overview

Plan

Basic definitions

Popularity according to books

Examples of Complex Networks

Properties of Complex Networks

lutshell

References

Frame 32/47

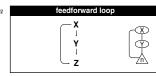
Properties

4. Clustering:

- Your friends tend to know each other.
- Two measures:

$$C_1 = \left\langle \frac{\sum_{j_1 j_2 \in \mathcal{N}_i} a_{j_1 j_2}}{k_i (k_i - 1)/2} \right\rangle_i$$
 due to Watts & Strogatz^[19]

$$C_2 = \frac{3 \times \# \text{triangles}}{\# \text{triples}}$$
 due to Newman^[13]


- ► C₁ is the average fraction of pairs of neighbors who are connected.
- ► Interpret *C*₂ as probability two of a node's friends know each other.

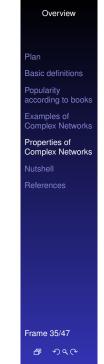
Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks

Properties

5. Motifs:

- Small, recurring functional subnetworks
- e.g., Feed Forward Loop:

Shen-Orr, Uri Alon, et al. [15]


Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

Properties

6. modularity:

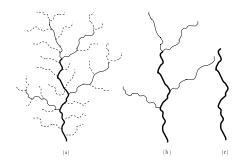
Clauset et al., 2006 [5]: NCAA football

Frame 33/47

母 りゅつ

Properties

7. Concurrency:


- ► Transmission of a contagious element only occurs during contact [11]
- ► Rather obvious but easily missed in a simple model
- Dynamic property—static networks are not enough
- ► Knowledge of previous contacts crucial
- Beware cumulated network data!

Properties

8. Horton-Strahler stream ordering:

- Metrics for branching networks:
 - Method for ordering streams hierarchically
 - Reveals fractal nature of natural branching networks
 - Hierarchy is not pure but mixed (Tokunaga) [16, 6].
 - Major examples: rivers and blood networks.

Overview Basic definitions Popularity Properties of Complex Networks References

Properties

9. Network distances:

(a) shortest path length d_{ii} :

- ▶ Fewest number of steps between nodes *i* and *j*.
- (Also called the chemical distance between i and j.)

(b) average path length $\langle d_{ii} \rangle$:

- Average shortest path length in whole network.
- Good algorithms exist for calculation.
- Weighted links can be accommodated.

Overview Basic definitions Popularity Properties of Complex Networks Frame 38/47

Properties

Network distances:

(c) Network diameter d_{max} :

Maximum shortest path length in network.

(d) Closeness $d_{cl} = [\sum_{ij} d_{ij}^{-1} / {n \choose 2}]^{-1}$:

- Average 'distance' between any two nodes.
- ▶ Closeness handles disconnected networks ($d_{ii} = \infty$)
- ▶ $d_{\rm cl} = \infty$ only when all nodes are isolated.

Overview

Frame 37/47

母 り00

Basic definitions

Popularity

Properties of Complex Networks

Properties

10. Centrality:

- Many such measures of a node's 'importance.'
- ex 1: Degree centrality: k_i.
- ex 2: Node i's betweenness
 - = fraction of shortest paths that pass through i.
- ► ex 3: Edge ℓ's betweenness
 - = fraction of shortest paths that travel along ℓ .
- ex 4: Recursive centrality: Hubs and Authorities (Jon Kleinberg [10])

Overview

Basic definitions

Popularity

Complex Networks

Properties of Complex Networks

Nutshell

Frame 40/47

Frame 39/47

Nutshell:

Overview Key Points:

- ► The field of complex networks came into existence in the late 1990s.
- Explosion of papers and interest since 1998/99.
- ▶ Hardened up much thinking about complex systems.
- ► Specific focus on networks that are large-scale, sparse, natural or man-made, evolving and dynamic, and (crucially) measurable.
- ► Three main (blurred) categories:
 - 1. Physical (e.g., river networks),
 - 2. Interactional (e.g., social networks),
 - 3. Abstract (e.g., thesauri).

Overview Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

Frame 41/47

母 り00

Basic definitions

Popularity

References

Frame 43/47

Nutshell:

Overview Key Points (cont.):

- Obvious connections with the vast extant field of graph theory.
- But focus on dynamics is more of a physics/stat-mech/comp-sci flavor.
- ▶ Two main areas of focus:
 - 1. Description: Characterizing very large networks
 - 2. Explanation: Micro story ⇒ Macro features
- Some essential structural aspects are understood: degree distribution, clustering, assortativity, group structure, overall structure,...
- Still much work to be done, especially with respect to dynamics...

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

References I

- [1] P. W. Anderson.

 More is different.

 Science, 177(4047):393–396, August 1972. pdf (⊞)
- [2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. *Science*, 286:509–511, 1999. pdf (⊞)
- [3] J. Bollen, H. Van de Sompel, A. Hagberg, L. Bettencourt, R. Chute, M. A. Rodriguez, and B. Lyudmila.
 Clickstream data yields high-resolution maps of science.

 PLoS ONE, 4:e4803, 2009. pdf (⊞)
- [4] S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and Networks. Wiley-VCH, Berlin, 2003.


Overview References II

- [5] A. Clauset, C. Moore, and M. E. J. Newman. Structural inference of hierarchies in networks, 2006. pdf (\boxplus)
- [6] P. S. Dodds and D. H. Rothman.
 Unified view of scaling laws for river networks.

 Physical Review E, 59(5):4865–4877, 1999. pdf (⊞)
- [7] S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Networks. Oxford University Press, Oxford, UK, 2003.
- [8] M. Gladwell.

 The Tipping Point.

 Little, Brown and Company, New York, 2000.

母 り00

References III

[9] A. Halevy, P. Norvig, and F. Pereira.

The unreasonable effectiveness of data.

IEEE Intelligent Systems, 24:8–12, 2009. pdf (⊞)

[10] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. pdf (⊞)

[11] M. Kretzschmar and M. Morris.

Measures of concurrency in networks and the spread of infectious disease.

Math. Biosci., 133:165–95, 1996.

[12] M. Newman.
Assortative mixing in networks.

Phys. Rev. Lett., 89:208701, 2002. pdf (⊞)

Overview Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

References IV

[13] M. E. J. Newman.

The structure and function of complex networks.

SIAM Review, 45(2):167–256, 2003. pdf (⊞)

[14] I. Rodríguez-Iturbe and A. Rinaldo. Fractal River Basins: Chance and Self-Organization. Cambridge University Press, Cambrigde, UK, 1997.

[15] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of *Escherichia coli*.

Nature Genetics, pages 64–68, 2002. pdf (⊞)

[16] E. Tokunaga.
The composition of drainage network in Toyohira
River Basin and the valuation of Horton's first law.

Geophysical Bulletin of Hokkaido University, 15:1–19, 1966.

Plan Basic definitions Popularity according to books Examples of Complex Networks Properties of Complex Networks Nutshell References

一 りへで

Overview

References V

[17] F. Vega-Redondo.

Complex Social Networks.

Cambridge University Press, 2007.

[18] D. J. Watts. Six Degrees. Norton, New York, 2003.

[19] D. J. Watts and S. J. Strogatz.
Collective dynamics of 'small-world' networks.

Nature, 393:440–442, 1998. pdf (⊞)

Overview

Plan

Basic definitions

Popularity
according to books

Examples of
Complex Networks

Properties of
Complex Networks

Nutshell

References

Frame 45/47

Frame 47/47

回 りへの