Structure detection methods Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

References

Outline

Overview

Methods

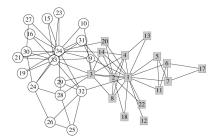
Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing Links
General structure detection

References

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 2/54

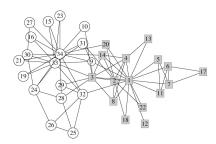
▲ Zachary's karate club [10, 7]

► The issue:

how do we elucidate the internal structure of large networks across many scales?

Structure detection methods

Overview


Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods

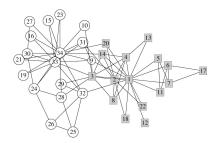
Hierarchies & Missing Links General structure detection

References

► The issue:

how do we elucidate the internal structure of large networks across many scales? Overview

Methods


Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links
General structure detection

References

- ▲ Zachary's karate club [10, 7]
 - Possible substructures: hierarchies, cliques, rings, ...
 - Plus: All combinations of substructures
 - Much focus on hierarchies...

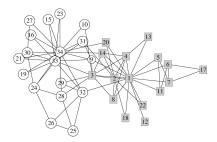
► The issue:

how do we elucidate the internal structure of large networks across many scales?

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing Link


References

▲ Zachary's karate club [10, 7]

- Possible substructures: hierarchies, cliques, rings, ...
- Plus: All combinations of substructures.
- Much focus on hierarchies...

► The issue:

how do we elucidate the internal structure of large networks across many scales? Overview

Methods

Hierarchy by division Hierarchy by shuffling Spectral methods Hierarchies & Missing Link

References

▲ Zachary's karate club [10, 7]

► Possible substructures: hierarchies, cliques, rings, ...

- Plus: All combinations of substructures.
- Much focus on hierarchies...

Outline

Overview

Methods

Hierarchy by aggregation

Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing Links
General structure detection

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Spectral methods

General structure detection

References

Frame 4/54

Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.

- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- ► Procedure:
 - Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- ► Call above property Modularity.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.

- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data
- ► Procedure:
 - Order pair-based distances
 - Sequentially add links between nodes based on closeness.
 - Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
- Clusters gradually emerge, likely with clusters inside
- Call above property Modularity.

Methods

Hierarchy by aggregation

References

Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.

- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- ▶ Procedure:
 - Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

Bottom up:

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

bottom up.

- Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.
- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.

- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

Idea: Extract hierarchical classification scheme for N objects by an agglomeration process.

- Need a measure of distance between all pairs of objects.
- Note: evidently works for non-networked data.
- Procedure:
 - 1. Order pair-based distances.
 - Sequentially add links between nodes based on closeness.
 - 3. Use additional criteria to determine when clusters are meaningful.
- Clusters gradually emerge, likely with clusters inside of clusters.
- Call above property Modularity.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

Bottom up problems:

- Tend to plainly not work on data sets with known modular structures.
- Good at finding cores of well-connected (or similar) nodes...
 - but fail to cope well with peripheral, in-between nodes.

Structure detection methods

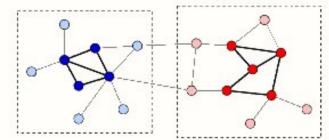
Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References



Bottom up problems:

- Tend to plainly not work on data sets with known modular structures.
- Good at finding cores of well-connected (or similar) nodes...

but fail to cope well with peripheral, in-between nodes.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

Frame 6/54

Outline

Overview

Methods

Hierarchy by aggregation

Hierarchy by division

Hierarchy by shuffling Spectral methods Hierarchies & Missing Links General structure detection

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Link General structure detection

References

Frame 7/54

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have
- We'll first work through "Finding and evaluating
- See also

Methods

Hierarchy by division

References

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).
- ▶ See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE 2001). [5, 6]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). ^[3]

tructure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004). [7]
- ▶ See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE 2001). [5, 6]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). [3]

tructure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).
- See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001). [5, 6]
 - 2. "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). [3]

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods

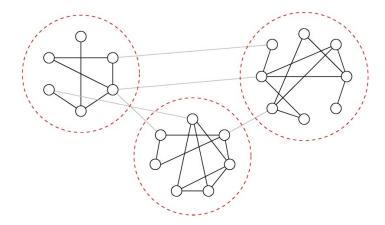
Hierarchies & Missing Links General structure detection

References

Top down:

- Idea: Identify global structure first and recursively uncover more detailed structure.
- Basic objective: find dominant components that have significantly more links within than without, as compared to randomized version.
- We'll first work through "Finding and evaluating community structure in networks" by Newman and Girvan (PRE, 2004).
- See also
 - "Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality" by Newman (PRE, 2001). [5, 6]
 - "Community structure in social and biological networks" by Girvan and Newman (PNAS, 2002). [3]

Overview


Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Link General structure detection

References

► Idea:

Edges that connect communities have higher betweenness than edges within communities.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 9/54

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed
- 5 Record when components appear as a function of # edges removed
- 6 Generate dendogram revealing hierarchical structure.

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

One class of structure-detection algorithms:

- Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

ructure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Structure detection methods

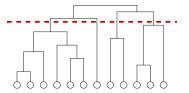
Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References


Helefelices

One class of structure-detection algorithms:

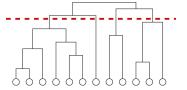
- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Hed line indicates appearance of four (4) components at a certain level.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


Hierarchies & Missing Links General structure detection

References

One class of structure-detection algorithms:

- 1. Compute edge betweenness for whole network.
- 2. Remove edge with highest betweenness.
- 3. Recompute edge betweenness
- 4. Repeat steps 2 and 3 until all edges are removed.
- 5 Record when components appear as a function of # edges removed.
- 6 Generate dendogram revealing hierarchical structure.

Red line indicates appearance of four (4) components at a certain level.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Key element:

- Recomputing betweenness.

Overview

Methods

Hierarchy by division

References

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:
 - $Q = \sum_{j} [e_{ij} (\sum_{j} e_{ij})^{2}] = \text{Tr} \mathbf{E} ||\mathbf{E}^{2}||_{1},$ where e_{ij} is the fraction of edges between identified communities i and j.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Recomputing betweenness.

Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:
 - $Q = \sum_{i} [e_{ii} (\sum_{j} e_{ij})^{2}] = \text{Tr} \mathbf{E} ||\mathbf{E}^{2}||_{1},$ where e_{ij} is the fraction of edges between identified communities i and i.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

$$Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1},$$
 where e_{ij} is the fraction of edges between identified communities i and j .

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Key element:

- Recomputing betweenness.
- Reason: Possible to have a low betweenness in links that connect large communities if other links carry majority of shortest paths.

When to stop?:

- How do we know which divisions are meaningful?
- Modularity measure: difference in fraction of within component nodes to that expected for randomized version:

$$Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr} \mathbf{E} - ||\mathbf{E}^{2}||_{1},$$
 where e_{ij} is the fraction of edges between identified communities i and i .

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Ceneral structure de

References

Frame 11/54

Test case:

- Generate random community-based networks.
- \triangleright N = 128 with four communities of size 32
- Add edges randomly within and across communities.
- ► Example:

$$\langle k \rangle_{\rm in} = 6$$
 and $\langle k \rangle_{\rm out} = 2$

Structure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

Test case:

- Generate random community-based networks.
- ightharpoonup N = 128 with four communities of size 32.
- Add edges randomly within and across communities.
- ▶ Example:

$$\langle k \rangle_{\rm in} = 6$$
 and $\langle k \rangle_{\rm out} = 2$

Structure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 12/54

Test case:

- Generate random community-based networks.
- \triangleright N = 128 with four communities of size 32.
- Add edges randomly within and across communities.
- ► Example:

$$\langle k \rangle_{\rm in} = 6$$
 and $\langle k \rangle_{\rm out} = 2$

Structure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

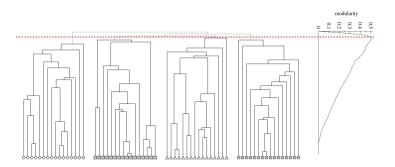
Test case:

- Generate random community-based networks.
- N = 128 with four communities of size 32.
- Add edges randomly within and across communities.
- Example:

$$\langle k \rangle_{\rm in} = 6$$
 and $\langle k \rangle_{\rm out} = 2$.

Structure detection methods

Overview


Methods

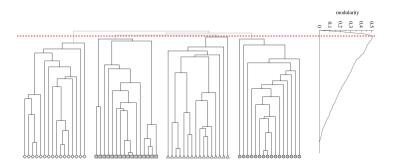
Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

- Maximum modularity $Q \simeq 0.5$ obtained when four communities are uncovered.
- ► Further 'discovery' of internal structure is somewhat meaningless, as any communities arise accidentally.

Structure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

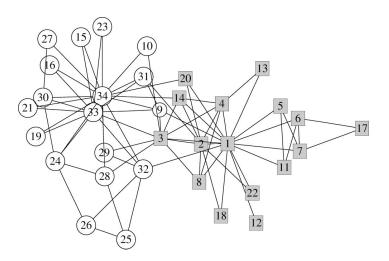
Hierarchies & Missing Links General structure detection

- Maximum modularity $Q \simeq 0.5$ obtained when four communities are uncovered.
- Further 'discovery' of internal structure is somewhat meaningless, as any communities arise accidentally.

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

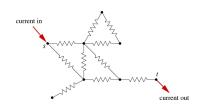
Frame 13/54

► Factions in Zachary's karate club network. [10]

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

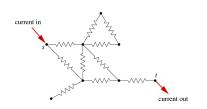
References

Frame 14/54

- Unit resistors on each edge.
- ► For every pair of nodes s (source) and t (sink), set up unit currents in a s and out at t.
- Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.
- Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- ► (Equivalent to random walk betweenness.)
- ► Electronic betweenness for edge between nodes *i* and *j*:

$$B_{ij}^{\text{elec}} = a_{ij}|V_i - V_j|.$$

Structure detection methods


Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing Link

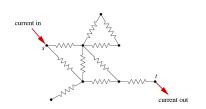
References

- Unit resistors on each edge.
- For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.
- Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- ► (Equivalent to random walk betweenness.)
- ► Electronic betweenness for edge between nodes *i* and *j*:

$$B_{ij}^{\text{elec}} = a_{ij}|V_i - V_j|.$$

tructure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

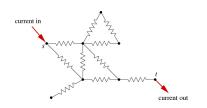
References

- Unit resistors on each edge.
- ► For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.
- Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- ► (Equivalent to random walk betweenness.)
- ► Electronic betweenness for edge between nodes *i* and *j*:

$$B_{ij}^{\text{elec}} = a_{ij}|V_i - V_j|.$$

Structure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

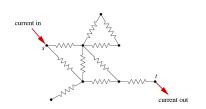
References

- Unit resistors on each edge.
- ► For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.
- ▶ Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- (Equivalent to random walk betweenness.)
- ► Electronic betweenness for edge between nodes *i* and *j*:

$$B_{ij}^{\text{elec}} = a_{ij}|V_i - V_j|.$$

Structure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

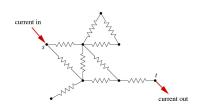
References

- Unit resistors on each edge.
- ► For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.
- ▶ Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- (Equivalent to random walk betweenness.)
- ► Electronic betweenness for edge between nodes *i* and *j*:

$$B_{ij}^{\text{elec}} = a_{ij}|V_i - V_j|.$$

Structure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

- Unit resistors on each edge.
- ► For every pair of nodes s (source) and t (sink), set up unit currents in at s and out at t.
- Measure absolute current along each edge ℓ , $|I_{\ell,st}|$.
- ▶ Sum $|I_{\ell,st}|$ over all pairs of nodes to obtain electronic betweenness for edge ℓ .
- (Equivalent to random walk betweenness.)
- ► Electronic betweenness for edge between nodes *i* and *j*:

$$B_{ij}^{\text{elec}} = a_{ij} |V_i - V_j|.$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side:

$$\sum_{j} a_{ij} (V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$$

$$= V_i k_i - \sum_{j} a_{ij} V_j = k_i \delta_{ij} V_j - \sum_{j} a_{ij} V_j = [(\mathbf{K} - \mathbf{A})\vec{V}]$$

ructure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij} (V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$ $= V_i k_i - \sum_{j} a_{ij} V_i = k_j \delta_{ij} V_i - \sum_{j} a_{ij} V_j = [(\mathbf{K} - \mathbf{A})]$

ructure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- ▶ We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij} (V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$

ructure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- ▶ We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij} (V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$

ructure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side: $\sum_{j} a_{ij} (V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side:

$$\sum_{j} a_{ij} (V_i - V_j) = V_i \sum_{j} a_{ij} - \sum_{j} a_{ij} V_j$$

$$= V_i k_i - \sum_{j} a_{ij} V_j = k_i \delta_{ij} V_j - \sum_{j} a_{ij} V_j = [(\mathbf{K} - \mathbf{A}) \vec{V}]_i$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side:

$$\sum_{j} a_{ij} (V_i - V_j) = \frac{V_i \sum_{j} a_{ij}}{\sum_{j} a_{ij}} - \sum_{j} a_{ij} V_j$$

$$= V_i k_i - \sum_{j} a_{ij} V_j = k_i \delta_{ij} V_j - \sum_{j} a_{ij} V_j = [(\mathbf{K} - \mathbf{A}) \vec{V}]_i$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side:

$$\sum_{j} a_{ij} (V_i - V_j) = \frac{V_i \sum_{j} a_{ij}}{\sum_{j} a_{ij}} - \sum_{j} a_{ij} V_j$$

$$= V_i k_i - \sum_{j} a_{ij} V_j = k_i \delta_{ij} V_j - \sum_{j} a_{ij} V_j = [(\mathbf{K} - \mathbf{A}) \vec{V}]_i$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, R_{ij} = 1 = a_{ij} = 1/a_{ij}.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side:

$$\sum_{j} a_{ij} (V_i - V_j) = \frac{V_i \sum_{j} a_{ij}}{\sum_{j} a_{ij}} - \sum_{j} a_{ij} V_j$$

$$= V_i k_i - \sum_{j} a_{ij} V_j = k_i \delta_{ij} V_j - \sum_{j} a_{ij} V_j = [(K - A) \vec{V}]_i$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

- Define some arbitrary voltage reference.
- Kirchoff's laws: current flowing out of node i must balance:

$$\sum_{j=1}^{N} \frac{1}{R_{ij}} (V_j - V_i) = \delta_{is} - \delta_{it}.$$

- ▶ Between connected nodes, $R_{ij} = 1 = a_{ij} = 1/a_{ij}$.
- ▶ Between unconnected nodes, $R_{ij} = \infty = 1/a_{ij}$.
- We can therefore write:

$$\sum_{j=1}^{N} a_{ij}(V_i - V_j) = \delta_{is} - \delta_{it}.$$

Some gentle jiggery pokery on the left hand side:

$$\sum_{j} a_{ij} (V_i - V_j) = \frac{V_i \sum_{j} a_{ij}}{\sum_{j} a_{ij}} - \sum_{j} a_{ij} V_j$$

$$= V_i k_i - \sum_{j} a_{ij} V_j = k_i \delta_{ij} V_j - \sum_{j} a_{ij} V_j = [(\mathbf{K} - \mathbf{A}) \vec{V}]_i$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

References

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ► L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by LU decomposition (Gaussian elimination).
- ▶ Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- ▶ Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ► L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- ▶ Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- ▶ Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ▶ L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- ▶ Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ▶ L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- ▶ Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ▶ L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- ▶ Write right hand side as $[I^{\text{ext}}]_i = \delta_{is} \delta_{it}$, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ▶ L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ▶ L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

- ▶ Write right hand side as $[I^{\text{ext}}]_i = \delta_{is} \delta_{it}$, where I^{ext} holds external source and sink currents.
- Matrixingly then:

$$(\mathbf{K} - \mathbf{A})\vec{V} = I^{\text{ext}}.$$

- ▶ L = K A is a beast of some utility—known as the Laplacian.
- Solve for voltage vector \vec{V} by **LU** decomposition (Gaussian elimination).
- Do not compute an inverse!
- Note: voltage offset is arbitrary so no unique solution.
- ▶ Presuming network has one component, null space of K – A is one dimensional.
- ▶ In fact, $\mathcal{N}(\mathbf{K} \mathbf{A}) = \{c\vec{1}, c \in R\}$ since $(\mathbf{K} \mathbf{A})\vec{1} = \vec{0}$.

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Asking too much: Need full knowledge of network to travel along shortest paths.
- ➤ One of many alternatives: consider all random walks between pairs of nodes i and j.
- ▶ Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

- Asking too much: Need full knowledge of network to travel along shortest paths.
- ➤ One of many alternatives: consider all random walks between pairs of nodes i and j.
- ▶ Walks starts at node *i*, traverses the network randomly, ending as soon as it reaches *j*.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 18/54

- Asking too much: Need full knowledge of network to travel along shortest paths.
- ➤ One of many alternatives: consider all random walks between pairs of nodes i and j.
- ▶ Walks starts at node i, traverses the network randomly, ending as soon as it reaches j.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- ► Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

tructure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 18/54

- Asking too much: Need full knowledge of network to travel along shortest paths.
- ➤ One of many alternatives: consider all random walks between pairs of nodes i and j.
- ▶ Walks starts at node i, traverses the network randomly, ending as soon as it reaches j.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 18/54

- Asking too much: Need full knowledge of network to travel along shortest paths.
- ➤ One of many alternatives: consider all random walks between pairs of nodes i and j.
- ▶ Walks starts at node i, traverses the network randomly, ending as soon as it reaches j.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 18/54

- ➤ One of many alternatives: consider all random walks between pairs of nodes i and j.
- ▶ Walks starts at node i, traverses the network randomly, ending as soon as it reaches j.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 18/54

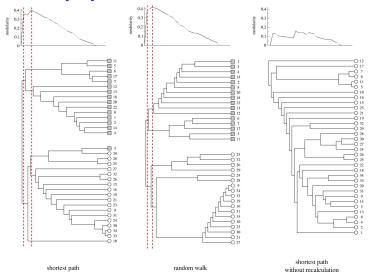
➤ One of many alternatives: consider all random walks between pairs of nodes i and j.

- ▶ Walks starts at node i, traverses the network randomly, ending as soon as it reaches j.
- Record the number of times an edge is followed by a walk.
- Consider all pairs of nodes.
- Random walk betweenness of an edge = absolute difference in probability a random walk travels one way versus the other along the edge.
- Equivalent to electronic betweenness.

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing Links


Hierarchies & Missing Links General structure detection

References

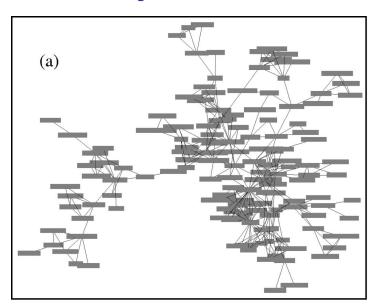
Frame 18/54

Hierarchy by division

Third column shows what happens if we don't recompute betweenness after each edge removal.

Structure detection methods

Overvie

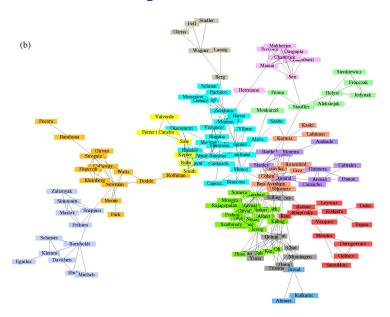

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missier Link

Scientists working on networks

Structure detection methods

Methods


Hierarchy by division

Frame 20/54

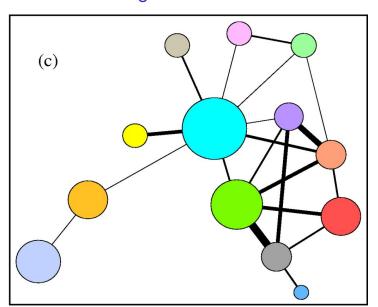
Scientists working on networks

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


Hierarchies & Missing Links General structure detection

References

Frame 21/54

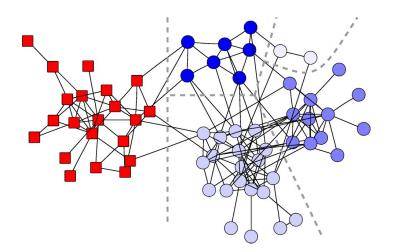
Scientists working on networks

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


Hierarchies & Missing Links

References

Frame 22/54

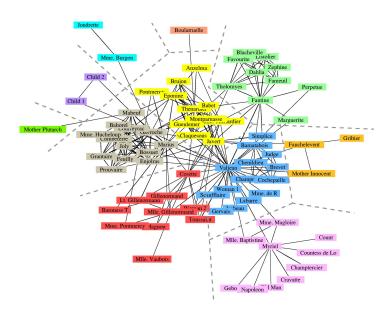
Dolphins!

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


Hierarchies & Missing Links

References

Frame 23/54

Les Miserables

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

References

Frame 24/54

Outline

Overview

Methods

Hierarchy by aggregation Hierarchy by division

Hierarchy by shuffling

Spectral methods
Hierarchies & Missing Links
General structure detection

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Link General structure detection

References

Frame 25/54

- ► Consider all partitions of networks into *m* groups
- ▶ As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1}.$$

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 26/54

- "Extracting the hierarchical organization of complex systems"
 Sales-Pardo et al., PNAS (2007) [8, 9]
- ► Consider all partitions of networks into *m* groups
- ▶ As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1}.$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 26/54

- Consider all partitions of networks into m groups
- ▶ As for Newman and Girvan approach, aim is to find partitions with maximum modularity:

$$Q = \sum_{i} [e_{ii} - (\sum_{j} e_{ij})^{2}] = \text{Tr}\mathbf{E} - ||\mathbf{E}^{2}||_{1}.$$

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 26/54

Consider partition network, i.e., the network of all possible partitions.

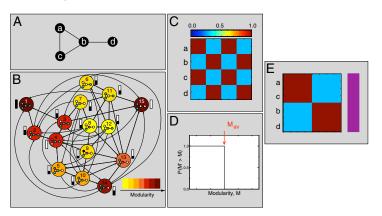
- ▶ Defn: Two partitions are connected if they differ only
- Look for local maxima in partition network.
- ► Construct an affinity matrix with entries *A_{ii}*.
- $A_{ii} = \mathbf{Pr}$ random walker on modularity network ends
- \triangleright C.f. topological overlap between i and i =

References

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- ► Construct an affinity matrix with entries A_{ii}.
- $A_{ii} = \mathbf{Pr}$ random walker on modularity network ends
- \triangleright C.f. topological overlap between i and i =

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- $A_{ii} = \mathbf{Pr}$ random walker on modularity network ends
- \triangleright C.f. topological overlap between i and i =

- Consider partition network, i.e., the network of all possible partitions.
- Defn: Two partitions are connected if they differ only by the reassignment of a single node.
- Look for local maxima in partition network.
- Construct an affinity matrix with entries A_{ij}.
- ▶ A_{ij} = **Pr** random walker on modularity network ends up at a partition with i and j in the same group.
- C.f. topological overlap between i and j = # matching neighbors for i and j divided by maximum of k_i and k_j.


possible partitions.

- by the reassignment of a single node. Look for local maxima in partition network.
- Construct an affinity matrix with entries A_{ii}.
- $ightharpoonup A_{ii} = \mathbf{Pr}$ random walker on modularity network ends up at a partition with *i* and *j* in the same group.

Consider partition network, i.e., the network of all

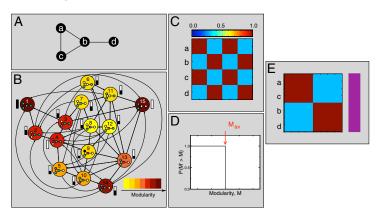
Defn: Two partitions are connected if they differ only

C.f. topological overlap between i and i = # matching neighbors for i and j divided by maximum of k_i and k_i .

A: Base network; B: Partition network; C: Coclassification matrix; D: Comparison to random networks (all the same!); E: Ordered coclassification matrix;

Structure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

References

Frame 28/54

A: Base network; B: Partition network; C: Coclassification matrix; D: Comparison to random networks (all the same!); E: Ordered coclassification matrix; Conclusion: no structure...

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

References

Frame 28/54

- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i - j|.$$

- Use simulated annealing (slow).
- ▶ Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- ► Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i - j|.$$

- Use simulated annealing (slow).
- ▶ Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i - j|.$$

- Use simulated annealing (slow).
- ▶ Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i - j|.$$

- Use simulated annealing (slow).
- ▶ Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- ► Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$

- ▶ Use simulated annealing (slow).
- ▶ Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

tructure detection

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

References

- Note: the hierarchy with the highest modularity score isn't chosen.
- Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$

- Use simulated annealing (slow).
- ▶ Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

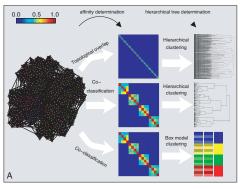
References

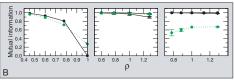
- Note: the hierarchy with the highest modularity score isn't chosen.
- ▶ Idea is to weight possible hierarchies according to their basin of attraction's size in the partition network.
- Next step: Given affinities, now need to sort nodes into modules, submodules, and so on.
- Idea: permute nodes to minimize following cost

$$C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} |i-j|.$$

- Use simulated annealing (slow).
- ▶ Observation: should achieve same results for more general cost function: $C = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} f(|i-j|)$ where f is a strictly monotonically increasing function of 0, 1, 2, ...

Overview


Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

- ► *N* = 640,
- ⟨*k*⟩ = 16,
- 3 tiered hierarchy.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

References

Frame 30/54

- ▶ Define cost matrix as **T** with entries $T_{ij} = f(|i j|)$.
- ▶ Weird observation: if $T_{ij} = (i j)^2$ then **T** is of rank 3, independent of N.
- Discovered by numerical inspection...
- ▶ The eigenvalues are

$$\lambda_1 = -\frac{1}{6}n(n^2 - 1),$$
 $\lambda_2 = +\sqrt{nS_{n,4}} + S_{n,2}, \text{ and }$
 $\lambda_3 = -\sqrt{nS_{n,4}} + S_{n,2}.$

where

$$S_{n,2}=rac{1}{12}n(n^2-1), ext{ and} \ S_{n,4}=rac{1}{240}n(n^2-1)(3n^2-7)$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Link General structure detection

References

- ▶ Define cost matrix as **T** with entries $T_{ij} = f(|i j|)$.
- ▶ Weird observation: if $T_{ij} = (i j)^2$ then **T** is of rank 3, independent of *N*.
- Discovered by numerical inspection...
- ▶ The eigenvalues are

$$\lambda_1 = -\frac{1}{6}n(n^2 - 1),$$
 $\lambda_2 = +\sqrt{nS_{n,4}} + S_{n,2}, \text{ and }$
 $\lambda_3 = -\sqrt{nS_{n,4}} + S_{n,2}.$

where

$$S_{n,2}=rac{1}{12}n(n^2-1), ext{ and} \ S_{n,4}=rac{1}{240}n(n^2-1)(3n^2-7)$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

- ▶ Define cost matrix as **T** with entries $T_{ij} = f(|i j|)$.
- ▶ Weird observation: if $T_{ij} = (i j)^2$ then **T** is of rank 3, independent of *N*.
- Discovered by numerical inspection...
- ▶ The eigenvalues are

$$\lambda_1 = -\frac{1}{6}n(n^2 - 1),$$
 $\lambda_2 = +\sqrt{nS_{n,4}} + S_{n,2}, \text{ and }$
 $\lambda_3 = -\sqrt{nS_{n,4}} + S_{n,2}.$

where

$$S_{n,2}=rac{1}{12}n(n^2-1), ext{ and} \ S_{n,4}=rac{1}{240}n(n^2-1)(3n^2-7)$$

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

- ▶ Define cost matrix as **T** with entries $T_{ij} = f(|i j|)$.
- ▶ Weird observation: if $T_{ij} = (i j)^2$ then **T** is of rank 3, independent of *N*.
- Discovered by numerical inspection...
- ▶ The eigenvalues are

$$\lambda_1 = -\frac{1}{6}n(n^2 - 1),$$
 $\lambda_2 = +\sqrt{nS_{n,4}} + S_{n,2}, \text{ and}$
 $\lambda_3 = -\sqrt{nS_{n,4}} + S_{n,2}.$

where

$$S_{n,2} = \frac{1}{12}n(n^2 - 1)$$
, and
 $S_{n,4} = \frac{1}{240}n(n^2 - 1)(3n^2 - 7)$.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

$$(\vec{v}_1)_i = \left(i - \frac{n+1}{2}\right),$$
 $(\vec{v}_2)_i = \left(i - \frac{n+1}{2}\right)^2 + \sqrt{S_{n,4}/n}, \text{ and }$
 $(\vec{v}_3)_i = \left(i - \frac{n+1}{2}\right)^2 - \sqrt{S_{n,4}/n}.$

Remarkably,

$$T = \lambda_1 \hat{v}_1 \hat{v}_1^{\mathrm{T}} + \lambda_2 \hat{v}_2 \hat{v}_2^{\mathrm{T}} + \lambda_3 \hat{v}_3 \hat{v}_3^{\mathrm{T}}.$$

▶ The next step: figure out how to capitalize on this...

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

$$(\vec{v}_1)_i = \left(i - \frac{n+1}{2}\right),$$
 $(\vec{v}_2)_i = \left(i - \frac{n+1}{2}\right)^2 + \sqrt{S_{n,4}/n}, \text{ and }$
 $(\vec{v}_3)_i = \left(i - \frac{n+1}{2}\right)^2 - \sqrt{S_{n,4}/n}.$

Remarkably,

$$T = \lambda_1 \hat{\mathbf{v}}_1 \hat{\mathbf{v}}_1^{\mathrm{T}} + \lambda_2 \hat{\mathbf{v}}_2 \hat{\mathbf{v}}_2^{\mathrm{T}} + \lambda_3 \hat{\mathbf{v}}_3 \hat{\mathbf{v}}_3^{\mathrm{T}}.$$

▶ The next step: figure out how to capitalize on this...

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Link

$$(\vec{v}_1)_i = \left(i - \frac{n+1}{2}\right),$$
 $(\vec{v}_2)_i = \left(i - \frac{n+1}{2}\right)^2 + \sqrt{S_{n,4}/n}, \text{ and }$
 $(\vec{v}_3)_i = \left(i - \frac{n+1}{2}\right)^2 - \sqrt{S_{n,4}/n}.$

Remarkably,

$$T = \lambda_1 \hat{\mathbf{v}}_1 \hat{\mathbf{v}}_1^{\mathrm{T}} + \lambda_2 \hat{\mathbf{v}}_2 \hat{\mathbf{v}}_2^{\mathrm{T}} + \lambda_3 \hat{\mathbf{v}}_3 \hat{\mathbf{v}}_3^{\mathrm{T}}.$$

► The next step: figure out how to capitalize on this...

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links

Table 1. Top-level structure of real-world networks

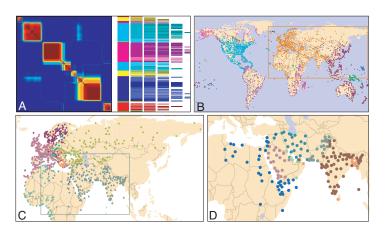
Network	Nodes	Edges	Modules	Main modules
Air transportation	3,618	28,284	57	8
E-mail	1,133	10,902	41	8
Electronic circuit	516	686	18	11
Escherichia coli KEGG	739	1,369	39	13
E. coli UCSD	507	947	28	17

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling


Hierarchies & Missing Links

References

Frame 33/54

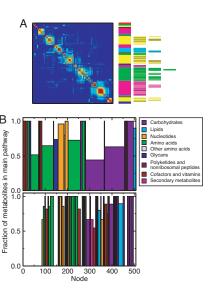
Shuffling for structure

Modules found match up with geopolitical units.

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

Shuffling for structure

 Modularity structure for metabolic network of E. coli (UCSD reconstruction).

Structure detection methods

Overview

Methods

Hierarchy by aggregatio Hierarchy by division Hierarchy by shuffling

. Hierarchies & Missing Links

References

Frame 35/54

Outline

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Spectral methods

Hierarchies & Missing Links General structure detection

References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Link General structure detection

References

Frame 36/54

- "Detecting communities in large networks" Capocci et al.(2005)^[1]
- ► Consider normal matrix $K^{-1}A$, random walk matrix $A^{T}K^{-1}$, Laplacian K A, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

- "Detecting communities in large networks" Capocci et al. (2005) [1]
- Consider normal matrix $K^{-1}A$, random walk matrix $A^{T}K^{-1}$, Laplacian K A, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm.

Structure detection methods

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links

References

Frame 37/54

- "Detecting communities in large networks" Capocci et al.(2005)^[1]
- ► Consider normal matrix $K^{-1}A$, random walk matrix $A^{T}K^{-1}$, Laplacian K A, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

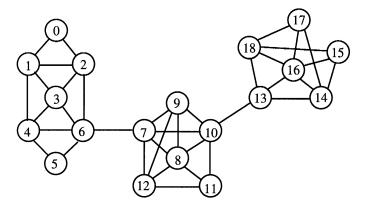
Hierarchies & Missing Links

- "Detecting communities in large networks" Capocci et al. (2005) [1]
- ► Consider normal matrix $K^{-1}A$, random walk matrix $A^{T}K^{-1}$, Laplacian K A, and AA^{T} .
- Basic observation is that eigenvectors associated with secondary eigenvalues reveal evidence of structure.
- Build on Kleinberg's HITS algorithm.

tructure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

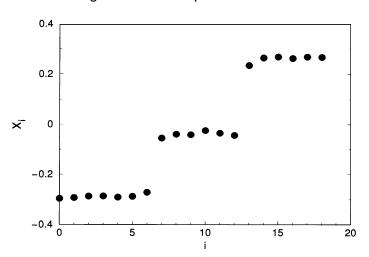
► Example network:

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


Hierarchies & Missing Links

References

Frame 38/54

Second eigenvector's components:

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

References

Frame 39/54

- Network of word associations for 10616 words.
- Average in-degree of 7.
- Using 2nd to 11th evectors of a modified version of AAT:

Table 1 Words most correlated to science, literature and piano in the eigenvectors of $Q^{-1}WW^{T}$

Science	1	Literature	1	Piano	1	
Scientific	0.994	Dictionary	0.994	Cello	0.993	
Chemistry	0.990	Editorial	0.990	Fiddle	0.992	
Physics	0.988	Synopsis	0.988	Viola	0.990	
Concentrate	0.973	Words	0.987	Banjo	0.988	
Thinking	0.973	Grammar	0.986	Saxophone	0.985	
Test	0.973	Adjective	0.983	Director	0.984	
Lab	0.969	Chapter	0.982	Violin	0.983	
Brain	0.965	Prose	0.979	Clarinet	0.983	
Equation	0.963	Topic	0.976	Oboe	0.983	
Examine 0.962		English	0.975	Theater	0.982	

Values indicate the correlation.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links
General structure detection

Outline

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links

General structure detection

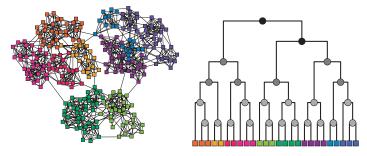
References

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling


Hierarchies & Missing Links General structure detection

References

Frame 41/54

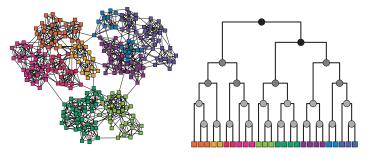
Clauset et al., Nature (2008) [2]

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- ► Handle: Hierarchical random graph models.
- ▶ Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

ructure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

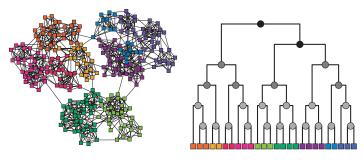
Clauset et al., Nature (2008) [2]

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.
- Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

ructure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

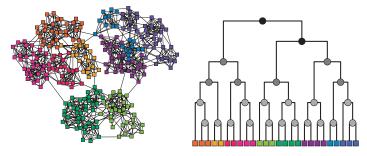
Clauset *et al.*, Nature (2008) [2]

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.
- ▶ Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Clauset *et al.*, Nature (2008) [2]

- Idea: Shades indicate probability that nodes in left and right subtrees of dendogram are connected.
- Handle: Hierarchical random graph models.
- ▶ Plan: Infer consensus dendogram for a given real network.
- Obtain probability that links are missing (big problem...).

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

- Model also predicts reasonably well
 - 1. average degree,
 - 2. clustering,
 - 3. and average shortest path length.

Table 1 | Comparison of original and resampled networks

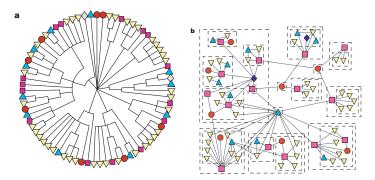
Network	$\langle k \rangle_{\rm real}$	$\langle k \rangle_{\rm samp}$	C_{real}	C_{samp}	$d_{\rm real}$	d_{samp}
T. pallidum	4.8	3.7(1)	0.0625	0.0444(2)	3.690	3.940(6)
Terrorists	4.9	5.1(2)	0.361	0.352(1)	2.575	2.794(7)
Grassland	3.0	2.9(1)	0.174	0.168(1)	3.29	3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by resampling from our hierarchical model. The generated networks closely match the average degree $\langle k \rangle$, clustering coefficient C and average vertex–vertex distance d in each case, suggesting that they capture much of the structure of the real networks. Parenthetical values indicate standard errors on the final digits.

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

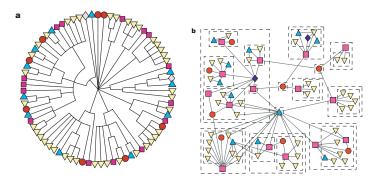
Frame 43/54

- Consensus dendogram for grassland species.
- Copes with disassortative and assortative communities.

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

References

Frame 44/54

- ► Consensus dendogram for grassland species.
- Copes with disassortative and assortative communities.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

Outline

Overview

Methods

Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods
Hierarchies & Missing Links
General structure detection

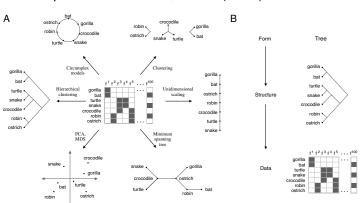
Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection


References

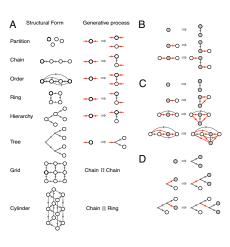
Reference

Frame 45/54

► "The discovery of structural form" Kemp and Tenenbaum, PNAS (2008) [4]

Structure detection methods

Overview


Methods

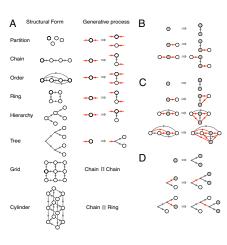
Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling

Hierarchies & Missing Links General structure detection

- Top down description of form.
- Node replacement graph grammar: parent node becomes two child nodes
- ▶ B-D: Growing chains, orders, and trees.

Structure detection methods

Overview


Methods

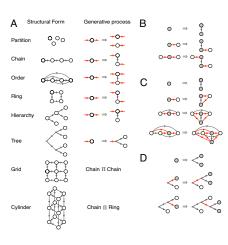
Hierarchy by aggregation
Hierarchy by division
Hierarchy by shuffling
Spectral methods

Hierarchies & Missing Links General structure detection

- Top down description of form.
- Node replacement graph grammar: parent node becomes two child nodes.
- B-D: Growing chains, orders, and trees.

Structure detection methods

Overview


Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

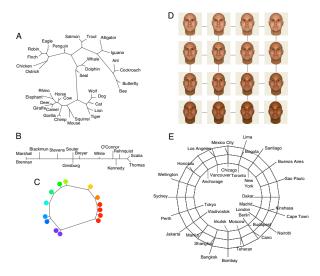
- Top down description of form.
- Node replacement graph grammar: parent node becomes two child nodes.
- B-D: Growing chains, orders, and trees.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


General structure detection

References

Frame 47/54

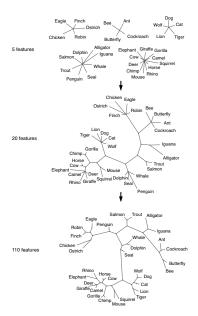
Example learned structures:

▶ Biological features; Supreme Court votes; perceived color differences; face differences; & distances between cities.

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 48/54

 Effect of adding features on detected form.

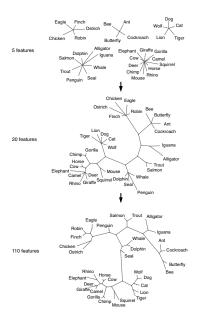
simple tree

complex tree

Structure detection methods

Overview

Methods


Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

References

Frame 49/54

 Effect of adding features on detected form.

Straight partition

simple tree

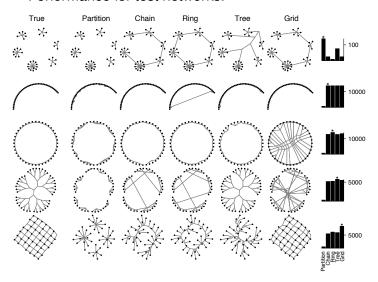
complex tree

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods


General structure detection

References

Frame 49/54

Performance for test networks.

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

General structure detection

Deferences

Frame 50/54

Hierarchies & Missing Li General structure detect

References

[1] A. Capocci, V. Servedio, G. Caldarelli, and F. Colaiori.

Detecting communities in large networks.

Physica A: Statistical Mechanics and its Applications, 352:669–676, 2005. pdf (⊞)

[2] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of missing links in networks.

Nature, 453:98–101, 2008. pdf (⊞)

[3] M. Girvan and M. E. J. Newman.

Community structure in social and biological networks.

Proc. Natl. Acad. Sci., 99:7821–7826, 2002. pdf (⊞)

Frame 51/54

References II

- [4] C. Kemp and J. B. Tenenbaum.
 The discovery of structural form.

 Proc. Natl. Acad. Sci., 105:10687–10692, 2008.
 pdf (⊞)
- [5] M. E. J. Newman.

 Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality.

 Phys. Rev. E, 64(1):016132, 2001. pdf (⊞)
- [6] M. E. J. Newman.

 Erratum: Scientific collaboration networks. II.

 Shortest paths, weighted networks, and centrality
 [Phys. Rev. E 64, 016132 (2001)].

 Phys. Rev. E, 73:039906(E), 2006. pdf (⊞)

Structure detection methods

Overview

Methods

Hierarchy by division
Hierarchy by shuffling
Spectral methods

General structure detec

References

Frame 52/54

References III

[7] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.

Phys. Rev. E, 69(2):026113, 2004. pdf (⊞)

[8] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral.

Extracting the hierarchical organization of complex systems.

Proc. Natl. Acad. Sci., 104:15224–15229, 2007. pdf (⊞)

[9] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral.

Extracting the hierarchical organization of complex systems: Correction.

Proc. Natl. Acad. Sci., 104:18874, 2007. pdf (⊞)

Structure detection methods

Overview

Methods

Hierarchy by aggregation Hierarchy by division Hierarchy by shuffling Spectral methods

Hierarchies & Missing Links General structure detection

References

Frame 53/54

References IV

[10] W. W. Zachary.

An information flow model for conflict and fission in small groups.

J. Anthropol. Res., 33:452-473, 1977.

Structure detection methods

Overview

Methods

References

Frame 54/54

