The Small-World Phenomenon Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Outline

History

An online experiment

Previous theoretical work

An improved model

References

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Frame 2/47

日 りへで

Some problems for sociologists

How are social networks structured?

- How do we define connections?
- How do we measure connections?
- (remote sensing, self-reporting)

What about the dynamics of social networks?

- How do social networks evolve?
- How do social movements begin?
- How does collective problem solving work?
- How is information transmitted through social networks?

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Some problems for sociologists

How are social networks structured?

- How do we define connections?
- How do we measure connections?
- (remote sensing, self-reporting)

What about the dynamics of social networks?

- How do social networks evolve?
- How do social movements begin?
- How does collective problem solving work?
- How is information transmitted through social networks?

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

A small slice of the pie:

- Q. Can people pass messages between distant individuals using only their existing social connections?
- ► A. Apparently yes...

Handles:

- The Small World Phenomenon
- or "Six Degrees of Separation."

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 4/47

୍ର୍ବ୍ର୍

A small slice of the pie:

- Q. Can people pass messages between distant individuals using only their existing social connections?
- A. Apparently yes...

Handles:

- The Small World Phenomenon
- or "Six Degrees of Separation."

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 4/47

ା ୬ବ୍ଦ

A small slice of the pie:

- Q. Can people pass messages between distant individuals using only their existing social connections?
- A. Apparently yes...

Handles:

- The Small World Phenomenon
- or "Six Degrees of Separation."

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 4/47

୬ବ୍ଦ

A small slice of the pie:

- Q. Can people pass messages between distant individuals using only their existing social connections?
- A. Apparently yes...

Handles:

- The Small World Phenomenon
- or "Six Degrees of Separation."

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 4/47

ମ୍ ରୁ

A small slice of the pie:

- Q. Can people pass messages between distant individuals using only their existing social connections?
- A. Apparently yes...

Handles:

- The Small World Phenomenon
- or "Six Degrees of Separation."

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 4/47

凸 うくい

The problem

Stanley Milgram et al., late 1960's:

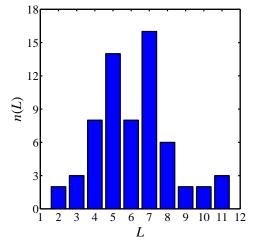
- Target person worked in Boston as a stockbroker.
- 296 senders from Boston and Omaha.
- 20% of senders reached target.
- average chain length \simeq 6.5.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work


An improved model

References

Frame 5/47

P

The problem

Lengths of successful chains:

From Travers and Milgram (1969) in Sociometry:^[4] "An Experimental Study of the Small World Problem."

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

The problem

Two features characterize a social 'Small World':

- 1. Short paths exist
 - and
- 2. People are good at finding them.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 7/47

Two features characterize a social 'Small World':

1. Short paths exist

and

People are good at finding them.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 7/47

Two features characterize a social 'Small World':

1. Short paths exist

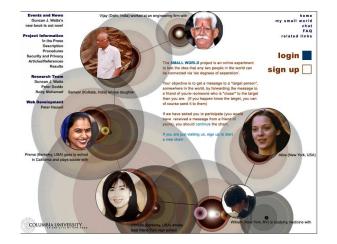
and

2. People are good at finding them.

The Small-World Phenomenon

History

An online experiment


Previous theoretical work

An improved model

References

Frame 7/47

Milgram's small world experiment with e-mail^[2]

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 8/47

60,000+ participants in 166 countries

18 targets in 13 countries including

- a professor at an Ivy League university,
- an archival inspector in Estonia
- a technology consultant in India,
- a policeman in Australia, and
- a veterinarian in the Norwegian army.
- 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

60,000+ participants in 166 countries

18 targets in 13 countries including

- a professor at an Ivy League university,
- an archival inspector in Estonia
- a technology consultant in India,
- a policeman in Australia, and
- a veterinarian in the Norwegian army.
- 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia
 - a technology consultant in India
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.
- 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.
- 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.
- 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.
- 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.

▶ 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.
- 24,000+ chains

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Milgram's participation rate was roughly 75%

Email version: Approximately 37% participation rate.

Probability of a chain of length 10 getting through:

 $.37^{10}\simeq 5\times 10^{-5}$

▶ \Rightarrow 384 completed chains (1.6% of all chains).

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

- Milgram's participation rate was roughly 75%
- Email version: Approximately 37% participation rate.
- Probability of a chain of length 10 getting through:

 $.37^{10}\simeq 5\times 10^{-5}$

 $\blacktriangleright \Rightarrow$ 384 completed chains (1.6% of all chains).

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

- Milgram's participation rate was roughly 75%
- Email version: Approximately 37% participation rate.
- Probability of a chain of length 10 getting through:

 $.37^{10}\simeq 5\times 10^{-5}$

 \blacktriangleright \Rightarrow 384 completed chains (1.6% of all chains).

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

- Milgram's participation rate was roughly 75%
- Email version: Approximately 37% participation rate.
- Probability of a chain of length 10 getting through:

$$.37^{10}\simeq 5\times 10^{-5}$$

▶ \Rightarrow 384 completed chains (1.6% of all chains).

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Motivation/Incentives/Perception matter.

- ► If target seems reachable ⇒ participation more likely.
- Small changes in attrition rates
 ⇒ large changes in completion rates
- ▶ e.g., \ 15% in attrition rate
 ⇒ 2800% in completion rate

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Motivation/Incentives/Perception matter.
- ► If target seems reachable ⇒ participation more likely.
- Small changes in attrition rates
 ⇒ large changes in completion rates
- ▶ e.g., \ 15% in attrition rate
 ⇒ 2800% in completion rate

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Motivation/Incentives/Perception matter.
- ► If target seems reachable ⇒ participation more likely.
- Small changes in attrition rates
 ⇒ large changes in completion rates
- ▶ e.g., \ 15% in attrition rate
 ⇒ 2800% in completion rate

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Motivation/Incentives/Perception matter.
- ► If target seems reachable ⇒ participation more likely.
- Small changes in attrition rates
 ⇒ large changes in completion rates
- e.g., \ 15% in attrition rate

 →
 × 800% in completion rate

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

$\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Successful chains disproportionately used

weak ties (Granovetter)

- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

$\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
 target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

$\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college

target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

 $\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 12/47 日 のへへ

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

hubs (8% vs. 1%) (+ no evidence of funnels)

family/friendship ties (60% vs. 83%)

 $\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 12/47 日 のへへ

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

hubs (8% vs. 1%) (+ no evidence of funnels)

family/friendship ties (60% vs. 83%)

 $\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

$\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

 $\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

 $\textbf{Geography} \rightarrow \textbf{Work}$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 13/47 日 のへで

Nevertheless, some weak discrepencies do exist...

An above average connector:

Norwegian, secular male, aged 30-39, earning over \$100K, with graduate level education working in mass media or science, who uses relatively weak ties to people they met in college or at work.

A below average connector:

Italian, Islamic or Christian female earning less than \$2K, with elementary school education and retired, who uses strong ties to family members.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Nevertheless, some weak discrepencies do exist...

An above average connector:

Norwegian, secular male, aged 30-39, earning over \$100K, with graduate level education working in mass media or science, who uses relatively weak ties to people they met in college or at work.

A below average connector:

Italian, Islamic or Christian female earning less than \$2K, with elementary school education and retired, who uses strong ties to family members.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Mildly bad for continuing chain:

choosing recipients because "they have lots of friends" or because they will "likely continue the chain."

Why:

- Specificity important
- Successful links used relevant information.
 (e.g. connecting to someone who shares same profession as target.)

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Mildly bad for continuing chain:

choosing recipients because "they have lots of friends" or because they will "likely continue the chain."

Why:

Specificity important

 Successful links used relevant information.
 (e.g. connecting to someone who shares same profession as target.)

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Mildly bad for continuing chain:

choosing recipients because "they have lots of friends" or because they will "likely continue the chain."

Why:

- Specificity important
- Successful links used relevant information.
 (e.g. connecting to someone who shares same profession as target.)

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 15/47

Basic results:

- $\langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- lntra-country chains: $L_* = 5$
- Inter-country chains: $L_* = 7$
- All chains: $L_* = 7$
- Milgram: $L_* \simeq 9$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Basic results:

- $\langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- Intra-country chains: $L_* = 5$
- Inter-country chains: $L_* = 7$
- All chains: $L_* = 7$
- Milgram: $L_* \simeq 9$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Basic results:

- $\langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- Intra-country chains: $L_* = 5$
- Inter-country chains: $L_* = 7$
- All chains: $L_* = 7$
- Milgram: $L_* \simeq 9$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Basic results:

- $\langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- Intra-country chains: $L_* = 5$
- Inter-country chains: $L_* = 7$
- All chains: $L_* = 7$
- Milgram: $L_* \simeq 9$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Basic results:

- $\langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- Intra-country chains: $L_* = 5$
- Inter-country chains: $L_* = 7$
- All chains: $L_* = 7$

• Milgram: $L_* \simeq 9$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Basic results:

- $\langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- Intra-country chains: $L_* = 5$
- Inter-country chains: $L_* = 7$
- All chains: $L_* = 7$
- Milgram: $L_* \simeq 9$

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Previous work-short paths

Connected random networks have short average path lengths:

 $\langle d_{AB}
angle \sim \log(N)$

N = population size,

- d_{AB} = distance between nodes A and B.
- But: social networks aren't random...

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Previous work—short paths

Connected random networks have short average path lengths:

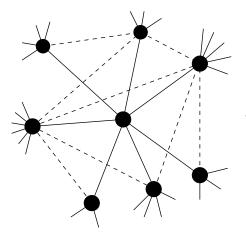
 $\langle d_{AB}
angle \sim \log(N)$

N = population size,

 d_{AB} = distance between nodes A and B.

But: social networks aren't random...

The Small-World Phenomenon


History

An online experiment

Previous theoretical work

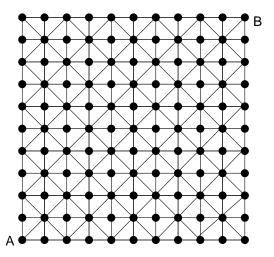
An improved model

Previous work—short paths

Need "clustering" (your friends are likely to know each other):

The Small-World Phenomenon

Histor


An online experiment

Previous theoretical work

An improved model

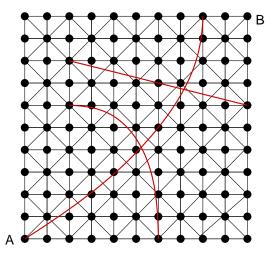
References

Non-randomness gives clustering

 $d_{AB} = 10 \rightarrow$ too many long paths.

The Small-World Phenomenon

History


An online experiment

Previous theoretical work

An improved model

References

Randomness + regularity

Now have $d_{AB} = 3$

 $\langle d \rangle$ decreases overall

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Introduced by Watts and Strogatz (Nature, 1998)^[6] "Collective dynamics of 'small-world' networks."

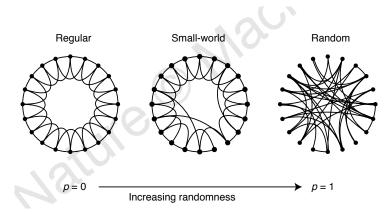
Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

The Small-World Phenomenon


History

An online experiment

Previous theoretical work

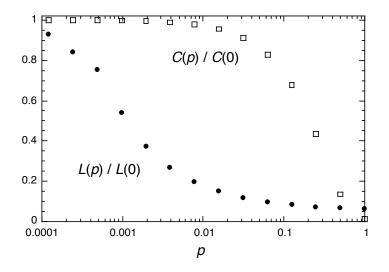
An improved model

Toy model

The Small-World Phenomenon

Histor

An online experiment


Previous theoretical work

An improved nodel

References

Frame 22/47

The structural small-world property

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

But are these short cuts findable?

No.

Nodes cannot find each other quickly with any local search method.

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Frame 24/47

But are these short cuts findable?

No.

Nodes cannot find each other quickly with any local search method.

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Frame 24/47

But are these short cuts findable?

No.

Nodes cannot find each other quickly with any local search method.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 24/47

What can a local search method reasonably use?

- How to find things without a map?
- Need some measure of distance between friends and the target.

Some possible knowledge:

- Target's identity
- Friends' popularity
- Friends' identities
- ▶ Where message has been

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

What can a local search method reasonably use?

- How to find things without a map?
- Need some measure of distance between friends and the target.

Some possible knowledge:

- Target's identity
- Friends' popularity
- Friends' identities
- Where message has been

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- What can a local search method reasonably use?
- How to find things without a map?
- Need some measure of distance between friends and the target.

Some possible knowledge:

- Target's identity
- Friends' popularity
- Friends' identities
- Where message has been

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- What can a local search method reasonably use?
- How to find things without a map?
- Need some measure of distance between friends and the target.

Some possible knowledge:

- Target's identity
- Friends' popularity
- Friends' identities
- Where message has been

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 25/47 日 のへへ

Jon Kleinberg (Nature, 2000)^[3] "Navigation in a small world."

Allowed to vary:

1. local search algorithm and

2. network structure.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 26/47

Jon Kleinberg (Nature, 2000)^[3] "Navigation in a small world."

Allowed to vary:

1. local search algorithm

and

2. network structure.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 26/47

Jon Kleinberg (Nature, 2000)^[3] "Navigation in a small world."

Allowed to vary:

- 1. local search algorithm and
- 2. network structure.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 26/47

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance *q*.
- 3. Add *m* short cuts per node.
- 4. Connect *i* to *j* with probability

 $p_{ij} \propto d_{ij}^{-lpha}.$

- $\alpha = 0$: random connections.
- α large: reinforce local connections.
- $\alpha = d$: same number of connections at all scales.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance *q*.
- 3. Add *m* short cuts per node.
- 4. Connect *i* to *j* with probability

 $p_{ij} \propto d_{ij}^{-lpha}.$

- $\alpha = 0$: random connections.
- α large: reinforce local connections.
- $\alpha = d$: same number of connections at all scales.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 27/47

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance *q*.
- 3. Add *m* short cuts per node.
- 4. Connect *i* to *j* with probability

 $p_{ij} \propto d_{ij}^{-lpha}.$

- $\alpha = 0$: random connections.
- α large: reinforce local connections.
- $\alpha = d$: same number of connections at all scales.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 27/47 日 うくへ

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance *q*.
- 3. Add *m* short cuts per node.

4. Connect *i* to *j* with probability

 $p_{ij} \propto d_{ij}^{-lpha}.$

- $\alpha = 0$: random connections.
- α large: reinforce local connections.
- $\alpha = d$: same number of connections at all scales.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance *q*.
- 3. Add *m* short cuts per node.
- 4. Connect *i* to *j* with probability

$$p_{ij} \propto d_{ij}^{-lpha}$$
.

- $\alpha = 0$: random connections.
- α large: reinforce local connections.
- $\alpha = d$: same number of connections at all scales.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Kleinberg's Network:

- 1. Start with regular d-dimensional cubic lattice.
- 2. Add local links so nodes know all nodes within a distance *q*.
- 3. Add *m* short cuts per node.
- 4. Connect *i* to *j* with probability

$$p_{ij} \propto d_{ij}^{-lpha}.$$

- $\alpha = 0$: random connections.
- α large: reinforce local connections.
- $\alpha = d$: same number of connections at all scales.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

Theoretical optimal search:

"Greedy" algorithm.

Same number of connections at all scales: $\alpha = d$.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 28/47

Theoretical optimal search:

- "Greedy" algorithm.
- Same number of connections at all scales: $\alpha = d$.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 28/47

Theoretical optimal search:

- "Greedy" algorithm.
- Same number of connections at all scales: $\alpha = d$.

Search time grows slowly with system size (like $\log^2 N$).

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 28/47

Theoretical optimal search:

- "Greedy" algorithm.
- Same number of connections at all scales: $\alpha = d$.

Search time grows slowly with system size (like $\log^2 N$).

But: social networks aren't lattices plus links.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

 If networks have hubs can also search well: Adamic et al. (2001)^[1]

 $P(k_i) \propto k_i^{-\gamma}$

where k = degree of node i (number of friends).

- Basic idea: get to hubs first (airline networks).
- But: hubs in social networks are limited.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 29/47

 If networks have hubs can also search well: Adamic et al. (2001)^[1]

 $P(k_i) \propto k_i^{-\gamma}$

where k = degree of node i (number of friends).

- Basic idea: get to hubs first (airline networks).
- But: hubs in social networks are limited.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 29/47

 If networks have hubs can also search well: Adamic et al. (2001)^[1]

 $P(k_i) \propto k_i^{-\gamma}$

where k = degree of node i (number of friends).

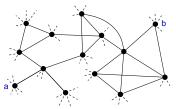
- Basic idea: get to hubs first (airline networks).
- But: hubs in social networks are limited.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work


An improved model

References

Frame 29/47

The problem

If there are no hubs and no underlying lattice, how can search be efficient?

Which friend of a is closest to the target b?

What does 'closest' mean?

What is 'social distance'?

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

One approach: incorporate identity. (See "Identity and Search in Social Networks." Science, 2002, Watts, Dodds, and Newman^[5])

Identity is formed from attributes such as:

- Geographic location
- Type of employment
- Religious beliefs
- Recreational activities.

Groups are formed by people with at least one similar attribute.

Attributes \Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

One approach: incorporate identity. (See "Identity and Search in Social Networks." Science, 2002, Watts, Dodds, and Newman^[5])

Identity is formed from attributes such as:

- Geographic location
- Type of employment
- Religious beliefs
- Recreational activities.

Groups are formed by people with at least one similar attribute.

Attributes \Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

One approach: incorporate identity. (See "Identity and Search in Social Networks." Science, 2002, Watts, Dodds, and Newman^[5])

Identity is formed from attributes such as:

- Geographic location
- Type of employment
- Religious beliefs
- Recreational activities.

Groups are formed by people with at least one similar attribute.

Attributes \Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

One approach: incorporate identity. (See "Identity and Search in Social Networks." Science, 2002, Watts, Dodds, and Newman^[5])

Identity is formed from attributes such as:

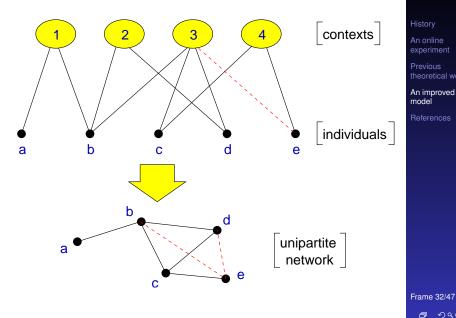
- Geographic location
- Type of employment
- Religious beliefs
- Recreational activities.

Groups are formed by people with at least one similar attribute.

Attributes \Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.

The Small-World Phenomenon

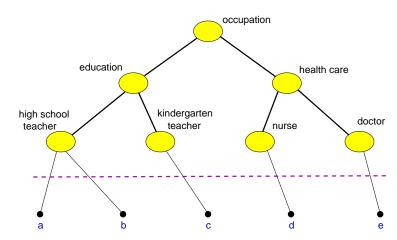
History


An online experiment

Previous theoretical work

An improved model

References


Social distance—Bipartite affiliation networks

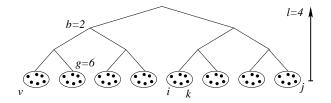
The Small-World Phenomenon

 \mathcal{I}

Social distance—Context distance

The Small-World Phenomenon

Histor


An online experiment

Previous theoretical work

An improved model

References

Distance between two individuals x_{ij} is the height of lowest common ancestor.

$$x_{ij} = 3, x_{ik} = 1, x_{iv} = 4.$$

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Frame 34/47

- Individuals are more likely to know each other the closer they are within a hierarchy.
- Construct z connections for each node using

 $p_{ij} = c \exp\{-\alpha x_{ij}\}.$

- $\alpha = 0$: random connections.
- α large: local connections.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

- Individuals are more likely to know each other the closer they are within a hierarchy.
- Construct z connections for each node using

 $\boldsymbol{p}_{ij} = \boldsymbol{c} \exp\{-\alpha \boldsymbol{x}_{ij}\}.$

α = 0: random connections.
 α large: local connections.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

- Individuals are more likely to know each other the closer they are within a hierarchy.
- Construct z connections for each node using

 $\boldsymbol{p}_{ij} = \boldsymbol{c} \exp\{-\alpha \boldsymbol{x}_{ij}\}.$

- $\alpha = 0$: random connections.
- α large: local connections.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

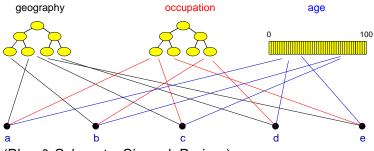
Frame 35/47

- Individuals are more likely to know each other the closer they are within a hierarchy.
- Construct z connections for each node using

 $\boldsymbol{p}_{ij} = \boldsymbol{c} \exp\{-\alpha \boldsymbol{x}_{ij}\}.$

- $\alpha = 0$: random connections.
- α large: local connections.

The Small-World Phenomenon


History

An online experiment

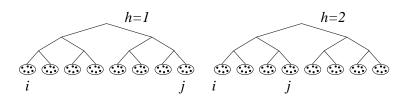
Previous theoretical work

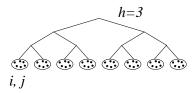
An improved model

Social distance—Generalized context space

(Blau & Schwartz, Simmel, Breiger)

The Small-World Phenomenon


History


An online experiment

Previous theoretical work

An improved model

References

$$\vec{v}_i = [1 \ 1 \ 1]^T, \ \vec{v}_j = [8 \ 4 \ 1]^T$$

 $x_{ij}^1 = 4, \ x_{ij}^2 = 3, \ x_{ij}^3 = 1.$

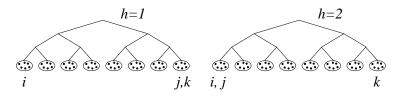
Social distance:

$$y_{ij} = \min_h x_{ij}^h.$$

The Small-World Phenomenon

History

An online experiment


Previous theoretical work

An improved model

References

Frame 37/47 日 のへへ

Triangle inequality doesn't hold:

 $y_{ik} = 4 > y_{ij} + y_{jk} = 1 + 1 = 2.$

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Frame 38/47

Individuals know the identity vectors of

- 1. themselves,
- 2. their friends,
 - and
- 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Individuals know the identity vectors of

- 1. themselves,
- 2. their friends,
 - and
- 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Individuals know the identity vectors of

- 1. themselves,
- 2. their friends,

and

- 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Individuals know the identity vectors of

- 1. themselves,
- 2. their friends,
 - and
- 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Individuals know the identity vectors of

- 1. themselves,
- 2. their friends,
 - and
- 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

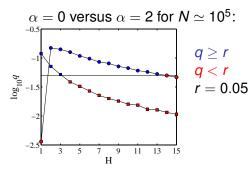
References

Individuals know the identity vectors of

- 1. themselves,
- 2. their friends,
 - and
- 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

The Small-World Phenomenon

History


An online experiment

Previous theoretical work

An improved model

References

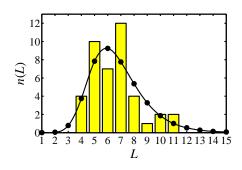
The model-results—searchable networks

The Small-World Phenomenon

History

An online experiment

Previous theoretical work


An improved model

References

- *q* = probability an arbitrary message chain reaches a target.
- A few dimensions help.
- Searchability decreases as population increases.
- Precise form of hierarchy largely doesn't matter.

The model-results

Milgram's Nebraska-Boston data:

Model parameters:

► $N = 10^8$,

The Small-World Phenomenon

Histor

An online experiment

Previous theoretical work

An improved model

References

Social search—Data

Adamic and Adar (2003)

- For HP Labs, found probability of connection as function of organization distance well fit by exponential distribution.
- Probability of connection as function of real distance $\propto 1/r$.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 42/47

Social search—Data

Adamic and Adar (2003)

- For HP Labs, found probability of connection as function of organization distance well fit by exponential distribution.
- Probability of connection as function of real distance $\propto 1/r$.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 42/47

Social Search—Real world uses

- Tags create identities for objects
- Website tagging: http://www.del.icio.us
- (e.g., Wikipedia)
- Photo tagging: http://www.flickr.com
- Dynamic creation of metadata plus links between information objects.
- Folksonomy: collaborative creation of metadata

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 43/47

Social Search—Real world uses

Recommender systems:

- Amazon uses people's actions to build effective connections between books.
- Conflict between 'expert judgments' and tagging of the hoi polloi.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 44/47

Sac

Social Search—Real world uses

Recommender systems:

- Amazon uses people's actions to build effective connections between books.
- Conflict between 'expert judgments' and tagging of the hoi polloi.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 44/47

P

Bare networks are typically unsearchable.

- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Bare networks are typically unsearchable.
- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Bare networks are typically unsearchable.
- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Bare networks are typically unsearchable.
- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Bare networks are typically unsearchable.
- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

- Bare networks are typically unsearchable.
- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

References I

- [1] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman. Search in power-law networks. *Phys. Rev. E*, 64:046135, 2001. <u>pdf</u> (⊞)
 [2] P. S. Dodds, R. Muhamad, and D. J. Watts.
 - An experimental study of search in global social networks.

Science, 301:827–829, 2003. pdf (⊞)

- [3] J. Kleinberg. Navigation in a small world. *Nature*, 406:845, 2000. pdf (⊞)
- [4] J. Travers and S. Milgram.
 An experimental study of the small world problem.
 Sociometry, 32:425–443, 1969. pdf (⊞)

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

References II

- [5] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks. Science, 296:1302–1305, 2002. pdf (⊞)
- [6] D. J. Watts and S. J. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393:440–442, 1998. pdf (⊞)

The Small-World Phenomenon

History

An online experiment

Previous theoretical work

An improved model

References

Frame 47/47