The Small-World Phenomenon Complex Networks, Course 303A, Spring, 2009

Prof. Peter Dodds

Department of Mathematics & Statistics University of Vermont

History

An online

Previous

model

References

Frame 1/47

Previous

Previous theoretical work

An improved model

An online experiment

References

Frame 2/47

How are social networks structured?

- How do we define connections?
- How do we measure connections?
- (remote sensing, self-reporting)

What about the dynamics of social networks?

- How do social networks evolve?
- How do social movements begin?
- How does collective problem solving work?
- How is information transmitted through social networks?

History

An online experiment

Previous theoretical work

An improved

References

Frame 3/47

A small slice of the pie:

- Q. Can people pass messages between distant individuals using only their existing social connections?
- A. Apparently yes...

Handles:

- The Small World Phenomenon
- or "Six Degrees of Separation."

History

An online experiment

Previous theoretical work

An improved model

References

Stanley Milgram et al., late 1960's:

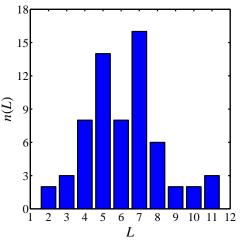
- Target person worked in Boston as a stockbroker.
- ▶ 296 senders from Boston and Omaha.
- 20% of senders reached target.
- average chain length \simeq 6.5.

History

An online experiment

Previous theoretical work

An improved model


References

Frame 5/47

The problem

Lengths of successful chains:

From Travers and Milgram (1969) in Sociometry: [4] "An Experimental Study of the Small World Problem." History

An online experiment

Previous theoretical work

An improved model

References

Frame 6/47

model

References


Two features characterize a social 'Small World':

- Short paths exist and
- 2. People are good at finding them.

Frame 7/47

Milgram's small world experiment with e-mail [2]

History

An online experiment

Previous

An improved model

References

Frame 8/47

An online experiment

Previous theoretical work

An improved

References

- 60,000+ participants in 166 countries
- 18 targets in 13 countries including
 - a professor at an Ivy League university,
 - an archival inspector in Estonia,
 - a technology consultant in India,
 - a policeman in Australia, and
 - a veterinarian in the Norwegian army.
- 24,000+ chains

Frame 9/47

Previous theoretical work

An improved model

References

- Milgram's participation rate was roughly 75%
- ► Email version: Approximately 37% participation rate.
- Probability of a chain of length 10 getting through:

$$.37^{10} \simeq 5 \times 10^{-5}$$

ightharpoonup \Rightarrow 384 completed chains (1.6% of all chains).

Frame 10/47

An online experiment

Previous theoretical work

An improved model

References

- Motivation/Incentives/Perception matter.
- ▶ If target *seems* reachable
 - \Rightarrow participation more likely.
- Small changes in attrition rates
 - ⇒ large changes in completion rates
- ▶ e.g., \ 15% in attrition rate
 - \Rightarrow / 800% in completion rate

Frame 11/47

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34% vs. 13%)
- ties originating at work/college
- target's work (65% vs. 40%)

... and disproportionately avoided

- hubs (8% vs. 1%) (+ no evidence of funnels)
- family/friendship ties (60% vs. 83%)

Geography → Work

History

An online experiment

Previous theoretical work

An improved model

References

Frame 12/47

An online experiment

Previous theoretical work

An improved model

References

Senders of successful messages showed little absolute dependency on

- age, gender
- country of residence
- income
- religion
- relationship to recipient

Range of completion rates for subpopulations:

30% to 40%

Frame 13/47

An online experiment

Previous theoretical work

An improved model

References

Nevertheless, some weak discrepencies do exist...

An above average connector:

Norwegian, secular male, aged 30-39, earning over \$100K, with graduate level education working in mass media or science, who uses relatively weak ties to people they met in college or at work.

A below average connector:

Italian, Islamic or Christian female earning less than \$2K, with elementary school education and retired, who uses strong ties to family members.

Frame 14/47

An online experiment

Previous theoretical work

An improved

References

Mildly bad for continuing chain:

choosing recipients because "they have lots of friends" or because they will "likely continue the chain."

Why:

- Specificity important
- Successful links used relevant information.
 (e.g. connecting to someone who shares same profession as target.)

Frame 15/47

An online experiment

Previous theoretical work

An improved model

References

Basic results:

- $ightharpoonup \langle L \rangle = 4.05$ for all completed chains
- L_{*} = Estimated 'true' median chain length (zero attrition)
- ▶ Intra-country chains: $L_* = 5$
- ▶ Inter-country chains: $L_* = 7$
- ▶ All chains: $L_* = 7$
- ► Milgram: *L*_{*} ≃ 9

Frame 16/47

An online experiment

Previous theoretical work

An improved model

References

Connected random networks have short average path lengths:

$$\langle \textit{d}_{\textit{AB}} \rangle \sim \log(\textit{N})$$

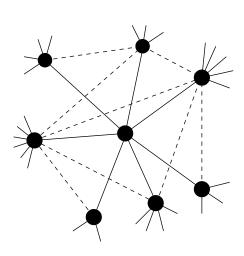
N = population size,

 d_{AB} = distance between nodes A and B.

But: social networks aren't random...

Frame 17/47

Previous work—short paths



An online experiment

Previous theoretical work

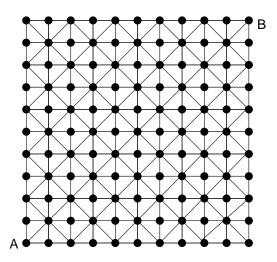
modeĺ

References

Need "clustering" (your friends are likely to know each other):

Frame 18/47

Non-randomness gives clustering



An online experimen

Previous theoretical work

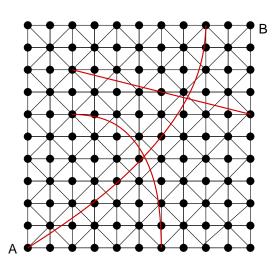
model

Reference

 $d_{AB} = 10 \rightarrow$ too many long paths.

Frame 19/47

Randomness + regularity



An online experiment

Previous theoretical work

model

Reference

Now have $d_{AB} = 3$

 $\langle d \rangle$ decreases overall

Frame 20/47

Introduced by Watts and Strogatz (Nature, 1998) [6] "Collective dynamics of 'small-world' networks."

Small-world networks were found everywhere:

- neural network of C. elegans,
- semantic networks of languages,
- actor collaboration graph,
- food webs,
- social networks of comic book characters,...

Very weak requirements:

local regularity + random short cuts

History

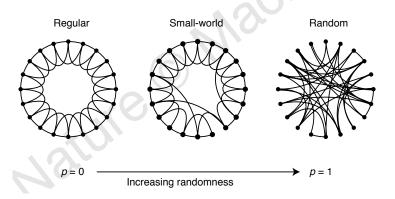
An online experiment

Previous theoretical work

An improved

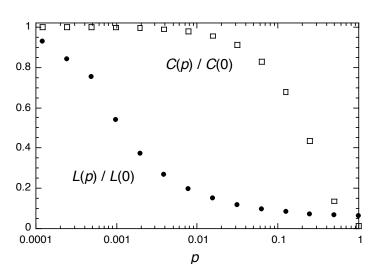
References

Frame 21/47



An online experiment

Previous theoretical work


An improve model

Reference

Frame 22/47

An online experiment

Previous theoretical work

An improved model

References

Frame 23/47

An online experiment

Previous theoretical work

model

References

No.

Nodes cannot find each other quickly with any local search method.

But are these short cuts findable?

Frame 24/47

- What can a local search method reasonably use?
- How to find things without a map?
- Need some measure of distance between friends and the target.

Some possible knowledge:

- Target's identity
- Friends' popularity
- Friends' identities
- Where message has been

History

An online experiment

Previous theoretical work

An improved

References

Frame 25/47

Jon Kleinberg (Nature, 2000) [3] "Navigation in a small world."

Allowed to vary:

- local search algorithm and
- network structure.

History

An online experiment

Previous theoretical work

An improved model

References

Kleinberg's Network:

- Start with regular d-dimensional cubic lattice.
- Add local links so nodes know all nodes within a distance q.
- 3. Add *m* short cuts per node.
- 4. Connect *i* to *j* with probability

$$p_{ij} \propto d_{ij}^{-\alpha}$$
.

- $\sim \alpha = 0$: random connections.
- $ightharpoonup \alpha$ large: reinforce local connections.
- $\sim \alpha = d$: same number of connections at all scales.

History

An online experiment

Previous theoretical work

An improved

References

Frame 27/47

An online experiment

Previous theoretical work

An improved model

References

Theoretical optimal search:

- "Greedy" algorithm.
- ▶ Same number of connections at all scales: $\alpha = d$.

Search time grows slowly with system size (like $\log^2 N$).

But: social networks aren't lattices plus links.

Frame 28/47

An online experiment

Previous theoretical work

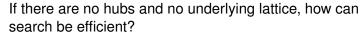
An improved model

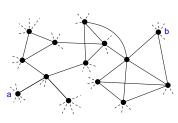
References

► If networks have hubs can also search well: Adamic et al. (2001)^[1]

$$P(k_i) \propto k_i^{-\gamma}$$

where k = degree of node i (number of friends).


- Basic idea: get to hubs first (airline networks).
- But: hubs in social networks are limited.


Frame 29/47

An improved model

References

Which friend of a is closest to the target b?

What does 'closest' mean?

What is 'social distance'?

Frame 30/47

One approach: incorporate identity. (See "Identity and Search in Social Networks." Science, 2002, Watts, Dodds, and Newman [5])

Identity is formed from attributes such as:

- Geographic location
- Type of employment
- Religious beliefs
- Recreational activities.

Groups are formed by people with at least one similar attribute.

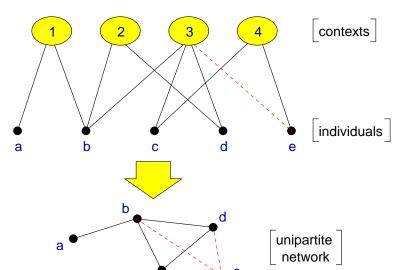
Attributes \Leftrightarrow Contexts \Leftrightarrow Interactions \Leftrightarrow Networks.

History

An online experiment

Previous theoretical work

An improved model


References

Frame 31/47

Social distance—Bipartite affiliation networks

The Small-World Phenomenon

History

An online experiment

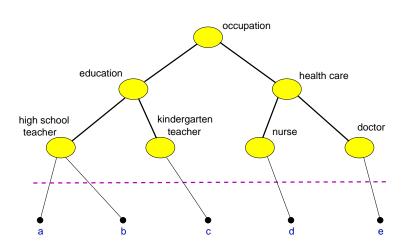
Previous theoretical work

An improved model

References

Frame 32/47

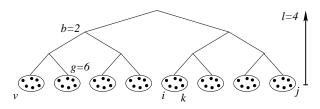
Social distance—Context distance



An online experiment

Previous theoretical work

An improved model


References

Frame 33/47

Distance between two individuals x_{ij} is the height of lowest common ancestor.

$$x_{ij} = 3$$
, $x_{ik} = 1$, $x_{iv} = 4$.

History

An online experiment

Previous theoretical work

An improved model

References

Individuals are more likely to know each other the

Construct z connections for each node using

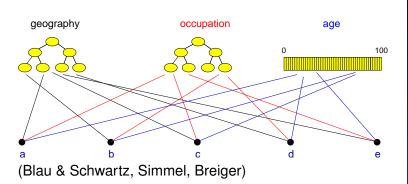
$$p_{ij} = c \exp\{-\alpha x_{ij}\}.$$

ho α = 0: random connections.

closer they are within a hierarchy.

 $\triangleright \alpha$ large: local connections.

Frame 35/47

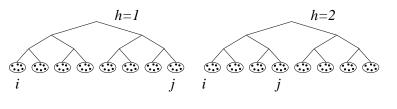


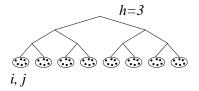
An online experiment

Previous theoretical work

An improved model

Poforonco




Frame 36/47

The model

$$\vec{v}_i = [1 \ 1 \ 1]^T, \ \vec{v}_j = [8 \ 4 \ 1]^T$$

 $x_{ij}^1 = 4, \ x_{ij}^2 = 3, \ x_{ij}^3 = 1.$

Social distance:

$$y_{ij} = \min_h x_{ij}^h$$
.

History

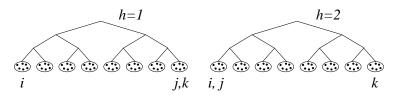
An online experiment

Previous theoretical work

An improved model

References

Frame 37/47



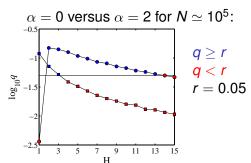
Previous theoretical work

An improved model

References

$$y_{ik} = 4 > y_{ij} + y_{jk} = 1 + 1 = 2.$$

Frame 38/47


An improved model

References

- Individuals know the identity vectors of
 - themselves,
 - their friends, and
 - 3. the target.
- Individuals can estimate the social distance between their friends and the target.
- Use a greedy algorithm + allow searches to fail randomly.

Frame 39/47

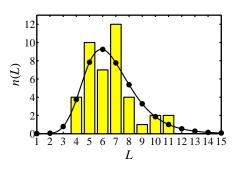
q = probability an arbitrary message chain reaches a target.

- A few dimensions help.
- Searchability decreases as population increases.
- Precise form of hierarchy largely doesn't matter.

History

An online experiment

Previous theoretical work


An improved model

References

Frame 40/47

Milgram's Nebraska-Boston data:

Model parameters:

- $N = 10^8$
- ightharpoonup z = 300, g = 100,
- ▶ b = 10,
- ▶ $\alpha = 1, H = 2;$
- $ightharpoonup \langle L_{
 m model} \rangle \simeq 6.7$
- $ightharpoonup L_{\rm data} \simeq 6.5$

History

An online experiment

Previous theoretical work

An improved model

References

An online experiment

Previous theoretical work

An improved model

References

Adamic and Adar (2003)

- For HP Labs, found probability of connection as function of organization distance well fit by exponential distribution.
- ▶ Probability of connection as function of real distance $\propto 1/r$.

Frame 42/47

Previous theoretical work

An improved model

References

- Tags create identities for objects
- Website tagging: http://www.del.icio.us
- ► (e.g., Wikipedia)
- Photo tagging: http://www.flickr.com
- Dynamic creation of metadata plus links between information objects.
- Folksonomy: collaborative creation of metadata

Frame 43/47

An online experiment

Previous theoretical work

An improved model

References

Recommender systems:

- Amazon uses people's actions to build effective connections between books.
- Conflict between 'expert judgments' and tagging of the hoi polloi.

Frame 44/47

An improved model

References

- Bare networks are typically unsearchable.
- Paths are findable if nodes understand how network is formed.
- Importance of identity (interaction contexts).
- Improved social network models.
- Construction of peer-to-peer networks.
- Construction of searchable information databases.

Frame 45/47

References I

[1] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman.

Search in power-law networks.

Phys. Rev. E, 64:046135, 2001. pdf (⊞)

[2] P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in global social networks.

Science, 301:827–829, 2003. pdf (⊞)

[3] J. Kleinberg.
Navigation in a small world.
Nature, 406:845, 2000. pdf (⊞)

[4] J. Travers and S. Milgram.

An experimental study of the small world problem.

Sociometry, 32:425–443, 1969. pdf (⊞)

History

An online experiment

Previous theoretical work

An improved model

References

Frame 46/47

Previous theoretical work

An improved model

References

[5] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and search in social networks.

Science, 296:1302–1305, 2002. pdf (⊞)

[6] D. J. Watts and S. J. Strogatz.
Collective dynamics of 'small-world' networks.

Nature, 393:440–442, 1998. pdf (⊞)

Frame 47/47

